Homochiral Metal–Organic Frameworks of Lead(II) and Cadmium(II) Constructed by Amino Acid-Functionalized Isophthalic Acid: Synthesis, Structure Diversity, and Optical Properties

Yafang Ge,[†] Baoshan Teng, Lulu Lv,[†] Rui Chen,[†] and Benlai Wu^{*,†} [†]College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

	1		
Pb1-O2A	2.494(18)	Pb1-O3	2.515(9)
Pb1-O6B	2.563(17)	Pb1-O4	2.577(15)
Pb1-O1A	2.635(16)	Pb1-O5B	2.719(14)
Pb2-O7C	2.516(17)	Pb2-O10	2.519(15)
Pb2-O11D	2.523(15)	Pb2-O8C	2.676(16)
Pb2-O12D	2.703(14)	Pb2-O9	2.704(12)
O2A-Pb1-O3	127.7(5)	O2A-Pb1-O6B	80.6(7)
O3-Pb1-O6B	84.8(7)	O2A-Pb1-O4	76.8(5)
O3-Pb1-O4	51.9(4)	O6B-Pb1-O4	84.1(6)
O2A-Pb1-O1A	49.8(5)	O3-Pb1-O1A	161.5(4)
O6B-Pb1-O1A	76.7(7)	O4-Pb1-O1A	125.1(4)
O2A-Pb1-O5B	117.3(8)	O3-Pb1-O5B	87.1(9)
O6B-Pb1-O5B	48.9(5)	O4-Pb1-O5B	122.1(7)
O1A-Pb1-O5B	80.5(9)	O7C-Pb2-O10	74.1(5)
O7C-Pb2-O11D	80.4(6)	O10-Pb2-O11D	85.5(5)
O7C-Pb2-O8C	51.6(5)	O10-Pb2-O8C	125.5(4)
O11D-Pb2-O8C	83.1(6)	O7C-Pb2-O12D	118.9(7)

Table S1. Selected Bond Lengths (Å) and Angles (°) for 1–4

O10-Pb2-O12D	123.2(6)		O11D-Pb2-O12D	49.0(4)
O8C-Pb2-O12D	86.0(7)		O7C-Pb2-O9	118.4(5)
O10-Pb2-O9	49.0(4)		O11D-Pb2-O9	74.4(6)
O8C-Pb2-O9	157.0(4)		O12D-Pb2-O9	82.8(7)
		2		
Pb1-O4A	2.45(2)		Pb1-O1	2.47(2)
Pb1-O3A	2.51(2)		Pb1-O6B	2.54(2)
Pb1-O2	2.66(2)		Pb1-O5B	2.73(2)
Pb2-O12C	2.41(2)		Pb2-O10A	2.53(2)
Pb2-O7	2.53(2)		Pb2-O8	2.655(19)
Pb2-O11C	2.69(2)		O4A-Pb1-O1	76.8(7)
O4A-Pb1-O3A	50.1(7)		O1-Pb1-O3A	126.5(7)
O4A-Pb1-O6B	81.8(8)		O1-Pb1-O6B	83.6(7)
O3A-Pb1-O6B	82.7(8)		O4A-Pb1-O2	123.2(7)
O1-Pb1-O2	49.1(7)		O3A-Pb1-O2	159.6(7)
O6B-Pb1-O2	77.1(7)		O4A-Pb1-O5B	119.0(8)
O1-Pb1-O5B	121.2(8)		O3A-Pb1-O5B	85.3(8)
O6B-Pb1-O5B	49.1(6)		O2-Pb1-O5B	83.4(8)
O12C-Pb2-O10A	81.4(7)		O12C-Pb2-O7	79.9(8)
O10A-Pb2-O7	74.2(6)		O12C-Pb2-O8	79.6(8)
O10A-Pb2-O8	125.2(6)		O7-Pb2-O8	52.0(6)
O12C-Pb2-O11C	50.2(7)		O10A-Pb2-O11C	121.8(6)
O7-Pb2-O11C	117.6(7)		O8-Pb2-O11C	80.8(7)
		3		
Cd1-O11A	2.268(10)		Cd1-07	2.328(11)
Cd1-N2B	2.339(11)		Cd1-O1	2.351(10)
Cd1-O12B	2.368(10)		Cd1-O2	2.461(10)
Cd2-O4	2.288(12)		Cd2-O14	2.289(14)
Cd2-09	2.297(10)		Cd2-N1C	2.302(12)

Cd2-06C	2.403(11)	Cd2-O3	2.444(11)
Cd2-O8	2.645(12)	Cd3-O5D	2.164(12)
Cd3015	2.230(13)	Cd3-O13	2.264(14)
Cd3-O16	2.324(14)	Cd3-O17	2.381(13)
Cd3-O12	2.647(9)	Cd4-O20C	2.268(11)
Cd4-O24	2.339(11)	Cd4-N3	2.342(11)
Cd4-O28E	2.362(12)	Cd4-O18	2.365(14)
Cd4-027E	2.457(13)	Cd4-O22	2.306(10)
Cd5-N4C	2.338(13)	Cd5-O25	2.359(13)
Cd5-O31	2.375(11)	Cd5-O29C	2.380(12)
Cd5-O26	2.429(12)	Cd5-O23	2.549(11)
Cd6019F	2.131(16)	Cd6-O34	2.189(14)
Cd6-O32	2.29(3)	Cd6-O29	2.334(10)
Cd6-O33	2.41(2)	Cd6-O35	2.46(2)
O11A-Cd1-O7	89.1(5)	O11A-Cd1-N2B	141.9(3)
O7-Cd1-N2B	90.4(4)	O11A-Cd1-O1	85.7(3)
O7-Cd1-O1	90.4(4)	N2B-Cd1-O1	132.5(4)
O11A-Cd1-O12	91.4(4)	O7-Cd1-O12B	151.4(4)
В			
N2B-Cd1-O12B	72.0(4)	O1-Cd1-O12B	118.2(4)
O11A-Cd1-O2	138.9(3)	O7-Cd1-O2	86.2(4)
N2B-Cd1-O2	79.0(4)	O1-Cd1-O2	53.6(3)
O12B-Cd1-O2	111.3(4)	O4-Cd2-O14	92.4(5)
O4-Cd2-O9	83.9(4)	O14-Cd2-O9	90.8(6)
O4-Cd2-N1C	143.2(4)	O14-Cd2-N1C	95.6(5)
O9-Cd2-N1C	131.7(4)	O4-Cd2-O6C	110.1(5)
O14-Cd2-O6C	155.2(5)	O9-Cd2-O6C	81.7(4)
N1C-Cd2-O6C	72.9(4)	O4-Cd2-O3	55.0(4)
O14-Cd2-O3	93.6(6)	O9-Cd2-O3	138.8(4)

N1C-Cd2-O3	88.6(4)	O6C-Cd2-O3	107.7(5)
O4-Cd2-O8	134.9(4)	O14-Cd2-O8	79.6(5)
O9-Cd2-O8	52.3(4)	N1C-Cd2-O8	81.9(4)
O6C-Cd2-O8	77.0(4)	O3-Cd2-O8	167.7(4)
O5D-Cd3-O15	123.5(6)	O5D-Cd3-O13	117.8(5)
O15-Cd3-O13	88.3(7)	O5D-Cd3-O16	137.2(5)
O15-Cd3-O16	91.7(6)	O13-Cd3-O16	83.2(5)
O5D-Cd3-O17	81.9(5)	O15-Cd3-O17	83.6(7)
O13-Cd3-O17	159.7(5)	O16-Cd3-O17	78.5(6)
O5D-Cd3-O12	82.7(4)	O15-Cd3-O12	75.7(4)
O13-Cd3-O12	52.5(3)	O16-Cd3-O12	133.6(4)
O17-Cd3-O12	141.3(5)	O20C-Cd4-O24	84.2(4)
O20C-Cd4-N3	141.6(4)	O24-Cd4-N3	94.2(4)
O20C-Cd4-O28E	136.8(4)	O24-Cd4-O28E	89.8(5)
N3-Cd4-O28E	81.4(4)	O20C-Cd4-O18	94.2(5)
O24-Cd4-O18	155.2(4)	N3-Cd4-O18	71.8(4)
O28E-Cd4-O18	107.6(5)	O20C-Cd4-O27E	84.3(4)
O24-Cd4-O27E	98.0(5)	N3-Cd4-O27E	133.6(4)
O28E-Cd4-O27E	54.2(4)	O18-Cd4-O27E	106.4(5)
O22-Cd5-N4C	135.8(4)	O22-Cd5-O25	87.1(4)
N4C-Cd5-O25	134.1(5)	O22-Cd5-O31	84.7(4)
O4C-Cd5-O31	97.0(5)	O25-Cd5-O31	103.8(5)
O22-Cd5-O29C	88.8(4)	N4C-Cd5-O29C	73.4(4)
O25-Cd5-O29C	96.8(5)	O31-Cd5-O29C	158.0(5)
O22-Cd5-O26	132.1(4)	N4C-Cd5-O26	91.2(4)
O25-Cd5-O26	53.9(4)	O31-Cd5-O26	80.1(4)
O29C-Cd5-O26	119.1(4)	O22-Cd5-O23	53.7(4)
N4C-Cd5-O23	82.9(4)	O25-Cd5-O23	140.3(4)
O31-Cd5-O23	80.5(4)	O29C-Cd5-O23	78.7(5)

O26-Cd5-O23	158.8(4)	O19F-Cd6-O34	94.3(13)
O19F-Cd6-O32	160.8(10)	O34-Cd6-O32	94.6(14)
O19F-Cd6-O29	94.6(5)	O34-Cd6-O29	110.8(11)
O32-Cd6-O29	98.1(8)	O19F-Cd6-O33	79.7(8)
O34-Cd6-O33	88.0(12)	O32-Cd6-O33	83.6(10)
O29-Cd6-O33	160.9(6)	O19F-Cd6-O35	84.6(8)
O34-Cd6-O35	163.9(12)	O32-Cd6-O35	82.2(10)
O29-Cd6-O35	85.3(6)	O33-Cd6-O35	76.0(7)
	4		
Pb1-O5	2.462(7)	Pb1-O3A	2.509(6)
Pb1-O5 Pb1-O4A	2.462(7) 2.558(7)	Рb1-O3A Рb1-O1B	2.509(6) 2.575(7)
Pb1-O5 Pb1-O4A Pb1-O2C	2.462(7) 2.558(7) 2.692(6)	Pb1-O3A Pb1-O1B O5-Pb1-O3A	2.509(6) 2.575(7) 103.3(2)
Pb1-O5 Pb1-O4A Pb1-O2C O5-Pb1-O4A	2.462(7) 2.558(7) 2.692(6) 80.4(3)	Pb1-O3A Pb1-O1B O5-Pb1-O3A O3A-Pb1-O4A	2.509(6) 2.575(7) 103.3(2) 50.9(2)
Pb1-O5 Pb1-O4A Pb1-O2C O5-Pb1-O4A O5-Pb1-O1B	2.462(7) 2.558(7) 2.692(6) 80.4(3) 124.1(3)	Pb1-O3A Pb1-O1B O5-Pb1-O3A O3A-Pb1-O4A O3A-Pb1-O1B	2.509(6) 2.575(7) 103.3(2) 50.9(2) 95.3(3)
Pb1-O5 Pb1-O4A Pb1-O2C O5-Pb1-O4A O5-Pb1-O1B O4A-Pb1-O1B	2.462(7) 2.558(7) 2.692(6) 80.4(3) 124.1(3) 71.9(3)	Pb1-O3A Pb1-O1B O5-Pb1-O3A O3A-Pb1-O4A O3A-Pb1-O1B O5-Pb1-O2C	2.509(6) 2.575(7) 103.3(2) 50.9(2) 95.3(3) 68.5(2)
Pb1-O5 Pb1-O4A Pb1-O2C O5-Pb1-O4A O5-Pb1-O1B O4A-Pb1-O1B O3A-Pb1-O2C	2.462(7) 2.558(7) 2.692(6) 80.4(3) 124.1(3) 71.9(3) 73.7(2)	Pb1-O3A Pb1-O1B O5-Pb1-O3A O3A-Pb1-O4A O3A-Pb1-O1B O5-Pb1-O2C O4A-Pb1-O2C	2.509(6) 2.575(7) 103.3(2) 50.9(2) 95.3(3) 68.5(2) 106.4(2)

Symmetry codes: (A) x, y + 1, z; (B) x - 1/2, y + 1/2, z; (C) x, y - 1, z; (D) x + 1/2, y - 1/2, z for 1. (A) x + 1, y, z; (B) x, y - 1, z; (C) x + 1, y + 1, z; (D) x - 1, y, z; (E) x, y + 1, z; (F) x - 1, y - 1, z for 2. (A) x + 1, y, z; (B) x + 1, y - 1, z; (C) x, y + 1, z; (D) -x + 1, y + 3/2, -z + 1; (E) x + 1, y + 1, z; (F) -x + 2, y - 3/2, -z + 2; (G) -x + 1, y - 3/2, -z + 1; (H) x, y - 1, z; (I) x - 1, y, z; (J) x - 1, y + 1, z; (K) -x + 2, y + 3/2, -z + 2; (L) x - 1, y - 1, z for 3. (A) -x, y + 1/2, -z + 1/2; (B) x + 1/2, -y + 3/2, -z + 1; (C) x + 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (D) x - 1/2, -y + 3/2, -z + 1; (E) x - 1, y, z; (F) -x, y - 1/2, -z + 1/2 for 4.

Figure S1. Solid-state CD spectra of H₃L² ligand in KBr.

Figure S2. Solid-state CD spectra of H₃L³ ligand in KBr.

Figure S3. As-synthesized and simulated PXRD patterns of compound 1.

Figure S4. As-synthesized and simulated PXRD patterns of compound 2.

Figure S5. As-synthesized and simulated PXRD patterns of compound 3.

Figure S6. As-synthesized and simulated PXRD patterns of compound 4.

Figure S7. TGA curves of compounds 1–4.

Figure S8. View of two independent zwitterionic $(HL^2)^{2-}$ ligands acting as κ_6 - and κ_5 -linkers to connect three symmetry-related Pb1 and Pb2 in **1**, respectively. Symmetry code: (A) x, 1 + y, z; (B) -1/2 + x, 1/2 + y, z; (C) x, -1 + y, z; (D) 1/2 + x,

-1/2 + y, z.

Figure S9. Water cluster $(H_2O)_{11}$ formed through hydrogen-bonding interactions between lattice water molecules O13A, O14A, O15, O16, O17B, O18, O19, O20B, O21B, O22E, and O23B (O18···O22E = 2.651 Å, O15···O18 = 2.816 Å, O15···O19 = 2.688 Å, O23B···O18 = 2.567 Å, O16···O15 = 2.622 Å, O14A···O16 = 2.817 Å, O13A···O14A = 2.642 Å, O13A···O17B = 2.783 Å, O20B···O23B = 2.669 Å, O20B···O21B = 2.858 Å) in **1**. Hydrogen-bonding connections between water cluster (H₂O)₁₁ and N_{amino} and O_{carboxylate} of ligands (HL¹)²⁻ (N1E···O22E = 2.798 Å, O18···O3A = 2.879 Å, N2···O15 = 2.775 Å, O16···O7 = 2.740 Å, O14A···O11F = 2.935 Å, N2A···O13A = 2.871 Å, O21B···O6G = 2.731 Å, O17B···O5E = 2.658 Å, N1B···O20B = 2.756 Å, O17B···O8B = 2.704 Å, O23B···O1A = 2.599 Å). Hydrogen bond lengths calculated by Mercury program. Symmetry code: (A) *x*, 1 + *y*, *z*; (B) -1/2 + x, 1/2 + y, *z*; (E) -1/2 + x, 3/2 + y, *z*; (F) -1/2 + x, 1/2 + y, -2 + z; (G) 1 - x, 1 + y, 1 - z.

Figure S10. View of two independent zwitterionic $(HL^1)^{2-}$ ligands chelating three symmetry-related Pb1 and three symmetry-related Pb2 in **2**, respectively. Symmetry code: (D) -1 + x, *y*, *z*; (E) *x*, 1 + y, *z*; (F) -1 + x, -1 + y, *z*.

Figure S11. View of two types of unsupported wave-like homochiral polymeric layers with 6³ topologies in **2**, namely, Pb1-layer being fabricated by the coordination of the symmetry-related $[(HL^2)_{including N1}]^{2-}$ ligands and symmetry-related Pb1 nodes, and Pb2-layer being created by the coordination of the symmetry-related $[(HL^2)_{including N1}]^{2-}$ ligands and symmetry-related Pb2 nodes.

Figure S12. Interdigitation of isobutyl groups between two bilayers in **2**, showing the stacking of Pb1-layer and Pb2-layer following the ABAB pattern.

Figure S13. View of 6³-network formed by the two independent $(L^2)^{3-}$ ligands linking with Cd1 and Cd2 centers in **3**, with coordination water molecules being omitted for clarity. Symmetry code: (H) x, -1 + y, z; (I) -1 + x, y, z; (J) -1 + x, 1 + y, z.

Figure S14. View of *b*-axially extending left- and right-handed 2_1 helixes in the double-layer framework containing symmetry-related Cd1, Cd2, and Cd3 in **3**, with coordination water molecules and the isobutyls of amino acid groups in ligands $(L^2)^{3-}$ being omitted for clarity.

Figure S15. View of 6³-network formed by the two independent $(L^2)^{3-}$ ligands linking with Cd4 and Cd5 centers in **3**, with coordination water molecules being omitted for clarity. Symmetry code: (H) x, -1 + y, z; (L) -1 + x, -1 + y, z.

Figure S16. View of *b*-axially extending left- and right-handed 2_1 helixes in the double-layer framework containing symmetry-related Cd4, Cd5, and Cd6 in **3**, with coordination water molecules and the isobutyls of amino acid groups in ligands $(L^2)^{3-}$ being omitted for clarity.

Figure S17. Solid-state fluorescent behaviors of free ligands $H_3L^1-H_3L^3$ at room temperature excited at 310, 309 and 373 nm, respectively.

Figure S18. Solid-state excitation spectra of free ligands $H_3L^1-H_3L^3$ at room temperature.

Figure S19. Solid-state excitation spectra of free ligands 1–4 at room temperature.

Figure S20. Solid-state fluorescent behavior of 3D Pb^{II} compound of H_3L^1 in ref 37 at room temperature.

Figure S21. Solid-state fluorescent behaviors of free ligands H_3L^3 and its complex 4 at room temperature excited at 310 and 314 nm, respectively.

Figure S22. Second-harmonic generation efficiency of 1.

Figure S23. Second-harmonic generation efficiency of 2.

Figure S24. Second-harmonic generation efficiency of 3.