Sc(OTf)₃-Catalyzed Chemodivergent Annulations of γ-Butyrolactone Fused Cyclopropanes with Anthranils

Xingyu Zhang, Manli Feng, Gaosheng Yang* and Zhuo Chai

MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based

Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui

Normal University, Wuhu, Anhui 241002, China

Supporting Information

Content

I. X-ray crystallographic analysis	
II. Copies of NMR spectra for 3	S4
III. Copies of NMR spectra for 4	
IV. Copies of NMR spectra for 5s, 6s	
V. HPLC traces for compound 1r, 3ra	

I. X-ray crystallographic analysis

The single crystals of **3ga**, **4a** and **6s** suitable for X-ray crystallographic analysis were obtained by recrystallization from a mixed solvent of dichloromethane and petroleum ether. The single crystal X-ray diffraction data for the six compounds were collected on a diffractometer with graphite monchromated Cu K_a radiation ($\lambda = 1.54178$ Å) for **3ga** and **4a**, Mo K_a radiation ($\lambda = 0.71073$ Å) for **6s**. Saint program and SADABS program carried out the data integration. The structure was solved by a direct method and refined on F² using SHELXTL suite of program. All non-hydrogen atoms were anisotropically refined by full-matrix least squares methods. All hydrogen atoms were geometrically generated and isotropically refined using a riding model. The details of the X-ray data collection, structure solution and structure refinements are given in Table S1.

Compound	3ga	4 a	6s
Formula	$C_{27}H_{22}N_2O_7$	C ₃₃ H ₂₆ ClNO ₅	$C_{30}H_{24}ClNO_2$
Formula weight	486.47	552.00	465.95
Temperature/K	273	273	293
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P21/c	P21	P21/n
<i>a</i> , Å	11.4226(11)	11.3905(2)	10.318(3)
b, Å	10.6852(11)	6.8267(2)	8.418(2)
<i>c</i> , Å	20.1313(18)	18.0192(4)	26.443(8)
α , deg	/	/	/
β , deg	104.995(5)	102.296(1)	93.828(4)
γ, deg	/	/	/
$V/\text{\AA}^3$	2511.0(5)	1369.02(6)	2291.6(11)
Ζ	4	2	4
μ , mm ⁻¹	0.828	1.595	0.196
θ range for data collection, deg	4.5 to 80.1	2.5 to 68.2	1.5 to 25.0
Reflections collected	36521	36346	18663
Unique reflections/R _{int}	5020 / R(int) = 0.129	4950 / R(int) = 0.068	3863 / R(int) = 0.063
Goodness-of-fit on F ²	1.02	1.10	1.13
R, R _w [I > 2σ (I)]	0.0659, 0.2020	0.0371, 0.0760	0.0711, 0.1505
Residual $\rho/(e \text{ Å}^{-3})$	0.19, -0.23	0.14, -0.24	0.35, -0.35
CCDC	1951589	1951590	1951591

Table S1 Crystallographic data and structural refinement details for compound 3ga, 4a and 6s.

Figure S1 X-ray structure (30 % probability ellipsoids) of 3ga, 4a and 6s.

II. Copies of NMR spectra for 3

Compound 3aa

¹H NMR 500 MHz, CDCl₃

S4

Compound 3aa

S6

Compound 3ba

Compound 3ca

¹H NMR

 $\overbrace{-1.1678}^{1.1963}$

Compound 3ca

Compound 3da

200-1000-1002	0.01010	2	0100	r~ ∞	7 2140670	
0000000000000000	522007	2	2.9	10 00	1040004 T	
2 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\mathcal{O} = \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$	2	9.6	88		
1	w w w i= i= i=	14	01 01			
	ပ်ပ်ပ်ပ်ပ်	LC .	ດ່ດ່	ਤਾਂ ਤਾਂ	ಶಕ್ಶಕ್ಶಣೆ ಣಿ	
		I	Y	$-\Sigma$		

¹H NMR 500 MHz, CDCl₃

 $\overbrace{-1.2048}^{1.2335}$

Compound 3da

.57	.86	. 56	$\begin{array}{c} 13\\ 76\\ 64\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15\\ 15$	05 004 004 19 19 19 19 19	87
165.	159.	153.	1135 1128 1129 1129 1129 1120 1120 1129 1120 1120	82. 77. 77. 77. 77. 77. 77. 77. 77. 77. 7	13.
			$ \leq $		

Compound 3ea

0594 0567 0567 0412 0416 0416 0416 1498 1498 1498 1498 1498 1253 1107 0333 0333	7517 7517 4438 4276	6932	2092 1964	8610 8443	$\begin{array}{c} 2358\\ 2191\\ 1973\\ 1830\\ 1686\\ 1472\\ 0799\\ 0656\\ 0513\\ 0513\\ 0299\end{array}$	3499	5771
8.8.8	000	.c.	0.01	44	+ + + + + + + + + + + +	ci.	
	\cup \cup	1	∇			1	1
	ר א		Ϋ́	Υ Y	THE ME		

¹H NMR 500 MHz, CDCl₃

 $\overbrace{}{\overset{1.2786}{\leftarrow}}^{1.2786}_{1.2643}$

Compound 3ea

Compound 3fa

Compound 3fa

171.82	165.46	153. 43	138, 08 137, 21 137, 21 134, 02 129, 54 129, 54 129, 34 125, 73 123, 27	114.42	82. 13 79. 13 77. 29 77. 04 76. 79	64. 41 62. 97	56.49	43. 97	13. 90
			<u>SEIZ SEEE</u>			17			

Compound 3ga

0689 0519	5838 5752 3126 2627 1841 1244 0940 0520 0520 0520	7277	1965 1832	6423 6256 6256 2276 11918 11918 11918 11372 11372 11372 11372 11372 11373 0001 0001 0001 0001 00686 0643 0653 0643 06686 0641 06686 00010000000000	5795	3018 2875 2732
യ്യ്	6. 7.7.7.7.7.	5.	ப்ப	ਚਾਂ		
\mathbf{Y}	$\forall \forall \forall \forall \forall \forall \forall$		\sim			\leq

Compound 3ga

Compound 3ha

0842 0822 0661 0293 9266	4883 4729 4577 1513 1513 1513 1513 09451 0451 7492 7346	7297	1942 1942 6548 6383	25566 2350 2350 2350 2350 2350 2350 11740 1156 11156 11156 11156 0040 00798 00727 00555 00727
.2 8 8.	6. 7.7.7.7.7	LC L		* * * * * * * * * * * * * * * * * * * *
<u> </u>			$\nabla = \nabla$	

¹H NMR 500 MHz, CDCl₃

 $\begin{array}{c} 1.3090\\ \hline 1.2947\\ 1.2804 \end{array}$

-1.5781

Compound 3ha

Compound 3ia

Compound 3ia

Compound 3ja

4387	2598	0707 9310 9151	6468 6307	7077	2266 2158	55500 1507 1507 1507 1220 1220 0592 0033 147 000000 147 000000000000000000000000	2418	6289	2517 2374 2231
2.	2.	6.			ப் ப	ಸ್ಥ್ ಸ್ ಸ್ಥ್ ಸ್ಥ್ ಸ್ಥ್ ಸ್ಥ್ ಸ್ಥ್ ಸ್ಥ್ ಸ	~		
			Y		\sim		I		\searrow

Compound 3ja

— 165. 62	— 153. 61	$\overbrace{\begin{tabular}{c} 138.80\\ 137.84\\ 135.59\\ 138.87\\ 128.29\\ 128.29\\ 128.29\\ 128.17\\ 128.17\\ 123.17\\$	— 114. 47		82. 10 $72. 06$ $777. 29$ $76. 79$				21. 05	
-----------	-----------	--	-----------	--	------------------------------------	--	--	--	--------	--

Compound 3ka

Compound 3ka

Compound 3la

4524	2468 0902 0376	6964 6918 6801 6801 6755 6755 3945 3945 2819 2819 2819 2787	7046	1943 1839	5490 5314	1358 1072 0374 0374 0161 9946	6792
7.	7.7.	රටරා රටරා රට	5.	ப்ப்	4.4.	444466	ri -
	171	$\searrow \lor \lor \lor$		Y	\sim		

 $\overbrace{}{}^{1.2316}_{1.2173}$

Compound 3la

66	49	37	45	16 75	10		76	$52 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 3$	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n 0	44
171.	165.	159.	153.	140. 138.	135.	128. 128. 125. 123.	117.	113. 111.	81.8 76.7 76.7	65. 2 62. 9	56.5
				17		\searrow				ĨĨ	\sim

¹³C NMR 125 MHz, CDCl₃ Ph EtO2C ----н 0= ÒМе δ (ppm)

Compound 3ma

Compound 3ma

172.45	165. 13	155.46 152.34	139.02	135.05	129. 10 128. 69 127. 16 125. 34 125. 34 122. 24 120. 11	114.77	110.24	78. 95 778. 36 77. 29 77. 04	66.41	62.65	55. 96 55. 43	40. 17	13.90
					$\leq 1 $						- Y		

Compound 3na

3965 3955 3955 2579 1433 1283 0838 0838 0559 0559	6329 7004	2488 2365	5419 5249	22249 2177 2107 2016 2016 2014 2009 11207 2016 2009 2017 2009 2017 2009 2014 2007 2006 2007 2007 2007 2007 2007 2007	6000 6000	3022	2879
6. 7.7.7 7. 7.		ட்ட்	4.4	ಕ್ಷತ್ತ ಕ್ಷತ್ತ ಕ್ಷತ್ತ ಕ್ಷತ್ತ ಕ್ಷತ್ತ ಕ್ಷತ್ತ ಕ್ಷಣ್ಣಣಣ	-		_i
VIII V		∇	∇				\mathbb{V}

Compound 3na

	-138.70 -138.70 -137.12 -135.09 -123.35 -123.35 -114.46	-64, 78			
--	---	---------	--	--	--

Compound 3oa

9840 9665	4189 2886 0715 8851 8851 8676	7264 3560 3437	5638 5469 22285 224555 22455 22455 22455 22455 22455 224555 224555 224555 224555 224555 224555 224555 2245555 224555 224555 2245555 22455555 22455555555	5846 3338 3052
\sim	6.		44 44444444444446666	

Compound 3oa

Compound 3pa

S35

Compound 3qa

Compound 3qa

Compound 3ra

Compound 3ra

Compound 3sa

5681 5525 4054 3172 3172 2603 22603 22603 22603 22603 172 1685 1685 1685 1685 1685 1685 1685 1685	8074	$\begin{array}{c} 3507\\ 3307\\ 1645\\ 1645\\ 8566\\ 8566\\ 8566\\ 8568\\$	5873
		ಕ್ರೇ ಕ್ರೇಪ್ರವರ್ಷ ಬೆಬ್ಬಬ	

¹H NMR

Compound 3sa

Compound 3ab

< $^{-0.0044}_{-0.0053}$

500 MHz, CDCl₃

Compound 3ab

Compound 3ac

Compound 3ac

0

Compound 3ad

Compound 3ad

. 96	. 28	.44	. 80 . 75 . 49	59 10 17	. 90	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
171	165	147.	$139 \\ 136 \\ 136 $	$128 \\ 127 \\ 127 \\ 125 $	114	13 43 556 22 62 13 13 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
	1	1	≤ 1	\leq	11	

¹³C NMR

Compound 3ae

Compound 3ae

Compound 3af

Compound 3af

171. 71	165.46	152. 78	138, 28 137, 61 137, 61 137, 61 128, 17 128, 15 128, 15 126, 65 125, 66 118, 76 118, 76 116, 01	82. 16 77. 32 76. 80	65. 06 63. 25	56.49	43. 88	13. 93
ţ					11			

¹³C NMR

Compound 3ag

Compound 3ag

78	45	28	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32057 1	2 5	2	Ξ	52	
171.	165.	155.	138. 134. 128. 128. 118. 118.	82. 1 77. 3 76. 7	65. 2 63. (56.4	43.0	13.	0.02
			V V //			ţ			

Compound 3ah

Compound 3ah

72	47	28	33 222 33 82 82 82 82 82	57	۶ و 0 5 0 0 <u>م</u> ا۲ ۵ ۵
		~i	നില് നിനിനിനി പ്രിനി	1.C	
2	39	50			್ ಬೆಂಗ ಬೆಂದ ಗ
	<u> </u>	-			
			\/ <u> </u>		

Compound 3ai

Compound 3ai

75	47	46	46	$^{+}_{-18}$	14 59 29	59 52	37 16	∞	4000	0 0	01	4	0
•		1	<u>~</u>	್ ನ ಸ್ಮಾರ್ ಮ	ladied in		• •	0	6 M O X	c;	4	9	
- 2		10 00	- 2		888 4		==	~i	x N N M	ić m	, ci	mi .	m.
-	Ĭ,	11	<u> </u>		122 -			ŏŏ	21112	6,6	2	4	
				$\forall \vdash $		-4	\forall						

Compound 3aj

Compound 3aj

Compound 3ak

Compound 3ak

III. Copies of NMR spectra for 4

Compound 4a

3821	6476 5580 5580 5580 5580 5580 5580 40 4204 4770 4770 4770 22345 22345 1770 22149 1990 1990 1990 1990 1990 1990 1990 1	6345 6263 5082	9643 9504 8218 8769 8627 5318 5234	5733	$0414 \\ 0272 \\ 0130 $. 0049
×.	2 2222222 22222222222222222	44	ಣಿಣಿಣಿಣಿಣಿ ಣಿಣಿ	_i		9
		\square			\checkmark	

¹H NMR 500 MHz, CDCl₃

Compound 4a

Compound 4b

С

WWWWWWWWWWW

170

Compound 4b				
— 197.64		$ \begin{array}{c} - 147.18 \\ \hline 147.18 \\ \hline 138.79 \\ 138.79 \\ 138.21 \\ 138.21 \\ - 132.01 \\ - 128.37 \\ - 125.48 \\ \hline - 125.48 \\ - 120.29 \end{array} $	 	
¹³ C NMR 125 MHz, CDCl ₃				
$EtO_2C \to O$	Me			

90

50

110 100 δ (ppm)

Compound 4c

3695	6492 5969 5672 5672 5672 5672 7681 7760 7760 7768 7768 7768 7768 7768 7768	6259 6170 9577 9537 9319 9537 9319 9537 53397 53397 53397 53397 53397	5698 0519 0233
×.		ಕ್ಕ್ ಈ	

Compound 4c

Compound 4d

Compound 4d

Compound 4e

3081	6422 5787 5649 5001 4226	1846 1343 0381 0297 0197 0115 0115	6365 6292	4601	9367	8766 8462 8482 8482 8482 8482 5352 5352 5352 5352	6171	0256 0113 9970	. 0029
×.	5 5 5 5 7 5 7	アアアアアア	4.4.	4	ŝ	ကိုကိုကိုကိုကိုကို	÷		- -
			Y		_			\searrow	

Compound 4e

197. 73	169. 58 165. 96	146.91 139.60 138.60	132. 13 128. 54 128. 27 125. 43 121. 72 121. 72 120. 52	87. 83	77. 30 77. 05 76. 80	64. 11 62. 58 56. 75	48.05	13.66
		1 51	$\langle \rangle$		\checkmark	17 1		

Compound 4f

Compound 4f

Compound 4g

Compound 4g

- 197. 74	- 169. 58 - 166. 10	- 147. 01 - 139. 04 - 138. 70	 133.42 133.42 139.19 128.22 128.22 125.58 120.39 120.39 	- 87. 67	$\frac{77.30}{17.05}$	- 62. 58 - 59. 36 - 56. 71	- 48. 13	0 7 7	on .et -
I	1 1		$\gamma \gamma $	I	\mathbb{A}	1 1 1	ł		1

¹³C NMR

Compound 4h

Compound 4h

Compound 4i

Compound 4i

197.98	169. 36 165. 78	147.58 146.60 133.47 133.47 137.56 137.56 137.56 137.56 132.33 132.33 122.34 122.34 122.34 122.34 122.34 122.34	87.67 77.30 76.80	64. 26 62. 70 56. 86	48. 09	13.65
			$ \qquad \forall \not\vdash$	11		

¹³C NMR

Compound 4j

197, 68 $166, 24$ $166, 24$ $166, 24$ $166, 24$ $138, 18$ $138, 18$ $138, 18$ $138, 18$ $138, 18$ $125, 36$ $125, 36$ $125, 36$	- 87.78 $- 87.70.30$ $- 77.30$ $- 77.30$ $- 64.51$ $- 62.51$ $- 56.58$ $- 47.92$ $- 13.70$	
---	--	--

¹³C NMR

Compound 4k

					Ģ
903	7798428 7778428 7778428 777981 77997 77977 779777 7797777777777	010 972 8332 972 065 065 065 065	984	708 565 423	003
с cc		444 a aaaa aa 664 a aaaa aa		1.01	-0 -
		$\forall \mid \neg \forall \forall$		\searrow	

Compound 4k

197. 70	169.82 166.25 159.45	147. 08 138. 78	133. 21 132. 01 132. 01 125. 66 125. 66 121. 25 120. 24	1113. 63 87 61	77. 30 77. 05 76. 79	64. 55 62. 54 62. 54 56. 67 55. 28	47.92	13. 77
			$\langle \rangle \rangle \langle \rangle$		\checkmark	$\{1, 1, 1\}$		

¹³C NMR

Compound 4l

3417	6513 595819 55819 55819 55657 5657 4148 4178 81926 6712 5304 66714 66714 66714 66730 66730	2909 2901	6227 6138 4957	9850 9491 9276 5292 5588 5588 5588 5588 5588 5588 5588	5868 5850	0621 0478 0335 0335
×.	666.66	5.5	4.4.4.	ಣಿಣಿಣಿಣಿಣಿ ಣಿಣಿ	_; _;	
1		Y	\mathbf{n}		Y	\searrow

Compound 4l

197.66	169. 67 166. 18 159. 49	147.19 141.72 138.74 138.74 133.83 132.05 132.05 123.47 121.47 121.47 121.47 121.47 121.47 113.97 111.43	$\begin{array}{c} 87.90\\ 77.30\\ 64.68\\ 62.56\\ 62.56\\ 62.55\\ 55.32\\ 47.93\\ 47.93\\ \end{array}$	13.69

¹³C NMR

Compound 4m

Compound 4m

Compound 4n

Compound 4n

Compound 4o

Compound 4o

Compound 4p

110 100 δ (ppm)

. gdaphyneit yr yddirhann ferlyd egnad yn degland generad yn generad ar yn generad y dy gan yn gal ar ferlyd yn y

. Non-superset for the second of the second second states and the second second second second second second secon

.

Million Allino Minipado Interio

.

.

Compound 4q

Compound 4q

Compound 4r

3367 1546 1546 1546 6552 5569 55149 4821 4821 4821 1482 14482 2559 22569 22569 22569 22569 1103 1103 1103 1103 5560 0955 1103 1103 1103 1103 1103 1103 1103 11	$\begin{array}{c} 66142\\ 4832\\ 9737\\ 93594\\ 55493\\ 55399\end{array}$	5927 0899 0614
8 88.2 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	ಕ್ರೇ ಕ್ರೇ ಕ್ರೇ ಸ್	-: -:-:-:
		$ $ \vee

Compound 4r

197.62	168. 76 165. 93	148, 20 146, 89 142, 80 133, 75 133, 75 133, 75 133, 75 133, 75 133, 75 123, 41 122, 41 122, 04 122, 04 120, 51	87.17 77.29 77.04	64. 80 62. 81 56. 39	47.48	13 75

Compound 4s

Compound 4s

Compound 4t

5000	6692 6553 6553 4396 5335 2622 22360 1240 8017 7862 7862	66717 5354 9404 8897 8855 5518 5553	6819	0271 0128 9985	0071
×.	66.6	ಕ್ರಕ್ ಈ ದೇವದೆಂದ್ರೆ ಬೆಂದ		0.11	O
				\searrow	

Compound 4t

198. 75	170.17 166.44	148.53 140.35 139.42	134. 21 131. 51 127. 95 123. 72 123. 72 119. 31 116. 70	88.17	77. 30 77. 05 76. 80	64. 56 62. 30 56. 83	48.09	13.64
					\checkmark			

IV. Copies of NMR spectra for 5s, 6s

Compound 5s

Compound 5s

¹H NMR 500 MHz, CDCl₃

S104

Compound 6s

V. HPLC traces for compound 1r, 3ra

S108
