# Supporting Information

# Pd(II)-Catalyzed Regioselective Multiple C–H Arylations of 1-Naphthamides with Cyclic Diaryliodonium Salts: One-Step Access

## to [4]- and [5]Carbohelicenes

Menglei Wang, Min Zhang, Yuanyuan Luo, Zheng Liu, Chengyong Yang, Jingbo Lan,\* Di Wu,

Jingsong You\*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R. China

# Table of contents

| I. General remarks                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------|
| II. Synthesis of 1-naphthamide derivatives                                                                              |
| III. Optimization of the multiple C–H arylation of 1-naphthamide <b>1a</b> with cyclic diaryliodonium salt <b>2a</b>    |
| IV. General procedure for the double C-H arylations of 1-naphthamides with cyclic diaryliodonium salts                  |
| V. General procedure for the quadruple C–H arylations of naphthalene-1,4-dicarboxamide with cyclic diaryliodonium salts |
| VI. Preparation of phenoxazine-modified [4]carbohelicene <b>5a</b>                                                      |
| VII. 2 mmol scale synthesis of <b>3a</b>                                                                                |
| VIII. Photophysical properties                                                                                          |
| IX. References                                                                                                          |
| X. Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectra                                                             |

#### I. General remarks

NMR spectra were recorded on an Agilent 400-MR DD2 spectrometer. The <sup>1</sup>H NMR (400 MHz) chemical shifts were measured relative to CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub> as the internal reference (CDCl<sub>3</sub>:  $\delta$  = 7.26 ppm; DMSO-*d*<sub>6</sub>:  $\delta$  = 2.50 ppm). The <sup>13</sup>C NMR (100 MHz) chemical shifts were given using CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub> as the internal standard (CDCl<sub>3</sub>:  $\delta$  = 77.16 ppm; DMSO-*d*<sub>6</sub>:  $\delta$  = 39.52 ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-ITTOF (ESI). X-Ray single-crystal diffraction data were collected on an Agilent Technologies Gemini single-crystal diffractometer. Melting points were determined with XRC-1 and are uncorrected. Absorption spectra were obtained on a HITACHI U-2910 spectrometer. Fluorescence spectra and absolute quantum yields were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system. To reduce the fluctuation in the excitation intensity, the xenon lamp was kept on for 1 hour prior to the experiments. The excited state lifetimes were obtained using an HORIBA TEMPRO-01 instrument.

All reagents were obtained from commercial suppliers and used without further purification unless otherwise stated. 1,2-Dichlorobenzene [98%, extra dry, with molecular sieves, water  $\leq$  50 ppm (by K.F.), Energy Seal] was purchased from Shanghai Energy Chemical CO., Ltd.

N-(*tert*-butyl)-1-naphthamide (1a), N-(*tert*-butyl)-4-methyl-1-naphthamide (1b), N4-bromo-*N*-(*tert*-butyl)-1-naphthamide (1c),<sup>1</sup> *N*-(*tert*-butyl)-4-fluoro-1-naphthamide (1d),<sup>1</sup> N-(*tert*-butyl)-4-methoxy-1-naphthamide (1e),<sup>1</sup> methyl 4-(*tert*-butylcarbamoyl)-1-naphthoate (1f),<sup>1</sup> N-(tert-butyl)-4-phenyl-naphthamide (1g),<sup>1,2</sup> N-(tert-butyl)-4-(*p*-tolyl)-1-naphthamide (1h),<sup>1,2</sup> *N*-(*tert*-butyl)-4-(4-methoxyphenyl)-1-naphthamide (1i),<sup>1,2</sup> 4-(benzofuran-2-yl)-N-(tert-butyl)-1-naphthamide (1j),<sup>1,2</sup> (1k)<sup>1,2</sup> 4-(benzo[b]thiophen-2-yl)-N-(tert-butyl)-1-naphthamide *N*-(*tert*-butyl)phenanthrene-9-carboxamide (11),<sup>1,3</sup> *N*-(*tert*-butyl)pyrene-1-carboxamide (1m),<sup>1,3</sup>  $N^{1}$ ,  $N^{4}$ -di-*tert*-butylnaphthalene-1, 4-dicarboxamidedibenzo  $(1n)^{1}$ dibenzo[b,d]iodol-5-ium  $(2a),^4$ trifluoromethanesulfonate

| 3,7-difluorodibenzo[b,d]iodol-5-ium                   | trifluoromethanesulfonate | ( <b>2b</b> ), <sup>4</sup> |
|-------------------------------------------------------|---------------------------|-----------------------------|
| 3,7-dichlorodibenzo[ <i>b</i> , <i>d</i> ]iodol-5-ium | trifluoromethanesulfonate | ( <b>2c</b> ), <sup>4</sup> |
| 2,8-difluorodibenzo[ <i>b</i> , <i>d</i> ]iodol-5-ium | trifluoromethanesulfonate | $(2d),^4$                   |
| 2,8-dichlorodibenzo[ <i>b</i> , <i>d</i> ]iodol-5-ium | trifluoromethanesulfonate | ( <b>2e</b> ), <sup>4</sup> |

2,8-dimethoxydibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (**2f**),<sup>4</sup> were prepared according to the corresponding literatures.

#### **II.** Synthesis of 1-naphthamide derivatives

#### i) General procedure for the synthesis of 1-naphthamides<sup>1</sup>

A Schlenk tube with a magnetic stir bar was charged with corresponding 1-naphthoic acid derivatives (10 mmol), SOCl<sub>2</sub> (20.0 mL) and DMF (2 drop) were added. The mixture was stirred for 1 h at room temperature. After removing the volatiles in vacuo, the solids are dissolved with  $CH_2Cl_2$  (20 mL) and then 2-methylpropan-2-amine (12 mmol) and triethylamine (15 mmol) were added at 0 °C. The resulting mixture was stirred at room temperature for 24 h and then washed with water, dried over MgSO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 4/1) to provide the desired product.<sup>1</sup>



#### N-(tert-butyl)-4-methyl-1-naphthamide (1b)

Purification via silica gel column chromatography (hexane/EtOAc = 4/1, v/v) afforded the desired product **1b** as a white solid (2.26 g, 94% yield). M.p.: 134-135 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.53 (s, 9H), 2.70 (s, 3H), 5.80 (br, 1H), 7.26-7.28 (m, 1H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.53-7.57 (m, 2H), 8.00-8.04 (m, 1H), 8.28-8.32 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 19.9, 29.1, 52.1, 124.3, 124.4, 125.5, 126.0, 126.3, 126.7, 130.2, 132.8, 134.6, 136.8, 169.5 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>16</sub>H<sub>20</sub>NO: [M+H]<sup>+</sup>, 242.1539; found: 242.1548.



#### Methyl-4-(*tert*-butylcarbamoyl)-1-naphthoate (1f)

Purification via silica gel column chromatography (hexane/EtOAc = 4/1, v/v) afforded the desired product **1f** as a white solid (2.19 g, 77% yield). M.p.: 182-183 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  =1.53 (s, 9H), 4.00 (s, 3H), 5.86 (br, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.56-7.65 (m, 2H), 8.08 (d, *J* = 7.6 Hz, 1H), 8.21 (dd, *J* = 8.0 Hz, *J* = 0.8 Hz, 1H), 8.87 (d, *J* = 8.4 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 29.0, 52.5, 122.9, 125.8, 126.1, 127.3, 128.1, 128.8, 129.1, 130.5, 131.6, 140.5, 167.7, 168.7 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>17</sub>H<sub>19</sub>NNaO<sub>3</sub>: [M+Na]<sup>+</sup>, 308.1257; found: 308.1256.

### ii) General procedure for the synthesis of 4-aryl-1-naphthamides<sup>1,2</sup>

In a 100 mL flask, arylboronic acid (12 mmol),  $K_2CO_3$  (24.0 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.2 mmol) and 4-bromo-1-naphthoic acid (10 mmol) were dissolved into the mixed solution of dioxane/water (30/5 mL) under a N<sub>2</sub> atmosphere, and the mixture was stirred magnetically at 100 °C in oil bath for 16 h. The reaction mixture was filtered, and the filtrate was adjusted to pH 2-3 with 2 N hydrochloric acid solutions. A lot of white solid precipitation was filtered and evaporated under reduced pressure to give 4-aryl-1-naphthoic acid as a white solid.<sup>2</sup>

A Schlenk tube with a magnetic stir bar was charged with 4-aryl-1-naphthoic acid, SOCl<sub>2</sub> (20.0 mL) and DMF (2 drop) were added. The mixture was stirred for 1 h at room temperature. After removing the volatiles in vacuo, the solids are dissolved with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and then 2-methylpropan-2-amine (12 mmol) and triethylamine (15 mmol) were added at 0 °C. The resulting mixture was stirred at room temperature for 24 h and then washed with water, dried over MgSO<sub>4</sub> and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 4/1) to provide the desired product.<sup>1</sup>



#### *N-(tert-*butyl)-4-phenyl-1-naphthamide (1g)

Purification via silica gel column chromatography (hexane/EtOAc = 4/1, v/v) afforded the desired product **1g** as a white solid (2.43 g, 80% yield). M.p.: 173-174 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.56 (s, 9H), 5.88 (br, 1H), 7.38 (d, *J* = 7.2 Hz, 1H), 7.45-7.52 (m, 6H), 7.54-7.60 (m, 2H), 7.90 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 29.1, 55.2, 124.0, 125.7, 125.9, 126.54, 126.56, 126.9, 127.7, 128.5, 130.1, 130.5, 132.0, 135.6, 140.4, 142.4, 169.4 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>21</sub>H<sub>22</sub>NO: [M+H]<sup>+</sup>, 304.1696; found: 304.1703.



#### *N*-(*tert*-butyl)-4-(*p*-tolyl)-1-naphthamide (1h)

Purification via silica gel column chromatography (hexane/EtOAc = 4/1, v/v) afforded the desired product **1h** as a white solid (2.38 g, 75% yield). M.p.: 162-163 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.56 (s, 9H), 2.46 (s, 3H), 5.87 (br, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.34-7.38 (m, 3H), 7.43-7.47 (m, 1H), 7.53-7.56 (m, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ = 21.4, 29.1, 52.2, 124.0, 125.7, 125.9, 126.4, 126.6, 126.9, 129.2, 130.0, 130.5, 132.1, 135.4, 137.4, 142.4, 169.4 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>22</sub>H<sub>24</sub>NO: [M+H]<sup>+</sup>, 318.1852; found: 318.1853.



#### *N-(tert-*butyl)-4-(4-methoxyphenyl)-1-naphthamide (1i)

Purification via silica gel column chromatography (hexane/EtOAc = 4/1, v/v) afforded the desired product **1i** as a white solid (2.23 g, 67% yield). M.p.: 137-138 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 1.55 (s, 9H), 3.90 (s, 3H), 5.86 (br, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 7.35-7.40 (m, 3H), 7.43-7.48 (m, 1H), 7.53-7.58 (m, 2H), 7.93 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 29.1, 52.2, 55.5, 113.9, 124.0, 125.7, 125.9, 126.4, 126.6, 126.9, 130.5, 131.2, 132.2, 132.7, 135.3, 142.1, 159.3, 169.4 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>2</sub>: [M+H]<sup>+</sup>, 334.1802; found: 334.1805.

# III. Optimization of the multiple C-H arylation of 1-naphthamides 1 with cyclic diaryliodonium salt 2a

A Schlenk tube with a magnetic stir bar was charged with palladium catalyst (10 mol %), NaOAc (82.0 mg, 5.0 equiv), 1-naphthamides **1** (0.2 mmol, 1.0 equiv), dibenzo[*b*,*d*]iodol-5-ium trifluoromethanesulfonate **2a** (0.6 mmol, 3 equiv), and solvent (3.0 mL). The resulting mixture was stirred at corresponding reaction temperature and reaction time, and then removed solvent under vacuum. The solution was filtered through a celite pad and washed with 10-25 mL of CH<sub>2</sub>Cl<sub>2</sub>. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to provide the desired product.





Reaction conditions: 1-naphthamides 1 (0.2 mmol), dibenzo[*b*,*d*]iodol-5-ium trifluoromethanesulfonate **2a** (256.8 mg, 3 equiv), Pd(OAc)<sub>2</sub> (10 mol %), NaOAc (5.0 equiv) and ODCB (not dry) (3.0 mL) at 150 °C for 12 h under a N<sub>2</sub> atmosphere. <sup>*a*</sup>Yield of isolated products. ODCB = 1,2-dichlorobenzene. OTf = trifluoromethanesulfonate. N.D. = not detected.





dibenzo[*b*,*d*]iodol-5-ium trifluoromethanesulfonate **2a** (256.8 mg, 3 equiv), catalyst (10 mol %), NaOAc (5.0 equiv) and ODCB (not dry) (3.0 mL) at 150 °C for 12 h under a N<sub>2</sub> atmosphere. <sup>*a*</sup>Yield of isolated products. ODCB = 1,2-dichlorobenzene. OTf = trifluoromethanesulfonate. dba = dibenzylideneacetone. TFA = 2,2,2-trifluoroacetate. acac = acetylacetone. N.D. = not detected.

| <sup>t</sup> BuHN O + | ⊖<br>OTf<br>so | <sup>t</sup> Bu⊢<br>d(acac) <sub>2</sub> , NaOAc<br>→<br>Ivent, 150 °C, 12 h |                              |
|-----------------------|----------------|------------------------------------------------------------------------------|------------------------------|
| 1a                    | 2a             |                                                                              | 3a                           |
| Entry                 | Solvent        | Volume(mL)                                                                   | $\operatorname{Yield}(\%)^a$ |
| 1                     | 1,4-dioxane    | 3                                                                            | 19                           |
| 2                     | toluene        | 3                                                                            | 5                            |
| 3                     | ODCB           | 4                                                                            | 37                           |
| 4                     | ODCB (not dry) | 3                                                                            | 35                           |
| 5                     | ODCB           | 3                                                                            | 42                           |
| 6                     | ODCB           | 1.5                                                                          | 28                           |

Table S3. Screening of solvent

Reaction conditions: *N*-(*tert*-butyl)-1-naphthamide **1a** (45.4 mg, 0.2 mmol), dibenzo[*b*,*d*]iodol-5-ium trifluoromethanesulfonate **2a** (256.8 mg, 3 equiv), Pd(acac)<sub>2</sub> (10 mol %), NaOAc (5.0 equiv) and solvent (3.0 mL) at 150 °C for 12 h under a N<sub>2</sub> atmosphere. <sup>*a*</sup>Yield of isolated products. ODCB = 1,2-dichlorobenzene. OTf = trifluoromethanesulfonate. acac = acetylacetone.

Table S4. Screening of reaction time, temperature and atmosphere



| Entry | Reaction time | Temperature | Atmosphere | Yield(%) <sup>a</sup> |
|-------|---------------|-------------|------------|-----------------------|
| 1     | 12 h          | 150 °C      | $N_2$      | 42                    |
| 2     | 24 h          | 150 °C      | $N_2$      | 58                    |
| 3     | 24 h          | 100 °C      | $N_2$      | trace                 |
| 4     | 24 h          | 160 °C      | $N_2$      | 73                    |
| 5     | 24 h          | 160 °C      | Air        | 25                    |

Reaction conditions: *N*-(*tert*-butyl)-1-naphthamide **1a** (45.4 mg, 0.2 mmol), dibenzo[*b*,*d*]iodol-5-ium trifluoromethanesulfonate **2a** (256.8 mg, 3 equiv), Pd(acac)<sub>2</sub> (10 mol %), NaOAc (5.0 equiv) and ODCB (3.0 mL). <sup>*a*</sup>Yield of isolated products. ODCB = 1,2-dichlorobenzene. acac = acetylacetone. OTf = trifluoromethanesulfonate.

# IV. General procedure for the double C–H arylations of 1-naphthamides with cyclic diaryliodonium salts

A Schlenk tube with a magnetic stir bar was charged with  $Pd(acac)_2$  (6.1 mg, 10 mol %), NaOAc (82.0 mg, 5.0 equiv), 1-naphthamides (1, 0.2 mmol, 1.0 equiv), cyclic diaryliodonium salts (2, 0.6 mmol, 3 equiv), and ODCB (3.0 mL) under a N<sub>2</sub> atmosphere. The resulting mixture was stirred at 160 °C in oil bath for 24 h or 48 h and then removed solvent under vacuum. The solution was filtered through a celite pad and washed with 10-25 mL of CH<sub>2</sub>Cl<sub>2</sub>. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to provide the desired product.



#### *N-(tert-Butyl)-7-methylbenzo[g]chrysene-10-carboxamide (3a)*

Purification via silica gel column chromatography (hexane/EtOAc = 8/1, v/v) afforded the desired product **3a** as a yellow solid (54.8 mg, 73% yield). M.p.: 180-181 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 0.66$  (s, 9H), 4.77 (br, 1H), 7.57-7.65 (m, 2H), 7.67-7.71 (m, 1H), 7.73-7.76 (m, 2H), 8.02-8.11 (m, 3H), 8.49 (d, J = 8.0 Hz, 1H), 8.58-8.65 (m, 3H), 8.69-8.73 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 27.9$ , 51.1, 121.5, 123.3, 123.4, 124.0, 125.5, 126.3, 126.5, 127.3, 127.6, 127.7, 128.1, 128.9, 129.0, 129.2, 129.4, 129.5, 130.0, 130.5, 131.3, 134.1, 137.5, 168.0 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>23</sub>NNaO: [M+Na]<sup>+</sup>, 400.1672; found: 400.1672.



#### N-(tert-Butyl)-7-methylbenzo[g]chrysene-10-carboxamide (3b)

Purification via silica gel column chromatography (hexane/EtOAc = 8/1, v/v) afforded the desired product **3b** as a yellow solid (51.3 mg, 66% yield). M.p.: 171-172 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.64 (s, 9H), 2.85 (s, 3H), 4.73 (br, 1H), 7.53-7.55 (m, 1H), 7.56-7.64 (m, 2H), 7.72-7.76 (m, 2H), 7.99 (d, *J* = 7.2 Hz, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 8.44-8.47 (m, 1H), 8.60-8.66 (m, 3H), 8.69-8.73 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 20.2, 27.8, 51.0, 121.3, 123.3, 123.4, 124.0, 124.1, 125.8, 126.9, 127.2, 127.3, 127.6, 127.7, 128.8, 129.0, 129.10, 129.14, 129.3, 130.5, 131.6, 133.1, 135.7, 136.7, 168.1 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>28</sub>H<sub>26</sub>NO: [M+H]<sup>+</sup>, 392.2009; found: 392.2012.



#### *N*-(*tert*-Butyl)-7-fluorobenzo[g]chrysene-10-carboxamide (3c)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3c** as a yellow solid (47.3 mg, 60% yield). M.p.: 98-99 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.67 (s, 9H), 4.73 (br, 1H), 7.36 (dd, *J* = 9.2 Hz, *J* = 8.4 Hz, 1H), 7.57-7.66 (m, 2H), 7.73-7.78 (m, 2H), 8.06 (dd, *J* = 8.0 Hz, *J* = 6.2 Hz, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.43-8.45 (m, 1H), 8.60-8.66 (m, 3H), 8.69-8.73 (m, 1H)

ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 27.9$ , 51.1, 110.3 (d,  $J_{CF} = 20.4$  Hz), 120.16, 120.23, 122.1 (d,  $J_{CF} = 2.0$  Hz), 123.4, 123.9 (d,  $J_{CF} = 16.1$  Hz), 124.1, 126.3(d,  $J_{CF} = 2.7$  Hz), 127.3 (d,  $J_{CF} = 3.9$  Hz), 127.5, 127.77, 127.77(d,  $J_{CF} = 5.7$  Hz), 128.1, 128.9, 129.1 (d,  $J_{CF} = 7.0$  Hz), 129.8 (d,  $J_{CF} = 9.2$  Hz), 130.2, 130.6, 131.1, 133.6 (d,  $J_{CF} = 3.9$  Hz), 159.9 (d,  $J_{CF} = 255.3$  Hz), 167.4 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>23</sub>FNO: [M+H]<sup>+</sup>, 396.1758; found: 396.1755.



#### 7-Bromo-N-(tert-butyl)benzo[g]chrysene-10-carboxamide (3d)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3d** as a yellow solid (45.8 mg, 50% yield). M.p.: 109-110 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.64 (s, 9H), 4.69 (br, 1H), 7.56-7.67 (m, 2H), 7.75-7.78 (m, 2H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.47 (d, *J* = 9.2 Hz, 1H), 8.59-8.65 (m, 2H), 8.67-8.72 (m, 2H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.8, 51.2, 122.9, 123.4, 124.1, 125.2, 126.6, 127.0, 127.1, 127.6, 127.80, 127.84, 128.2, 128.9, 129.1, 129.2, 129.3, 129.9, 130.3, 130.7, 131.2, 132.5, 137.2, 167.3 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>23</sub>BrNO: [M+H]<sup>+</sup>, 456.0958 (100.0%), 458.0937 (97.3%); found: 456.0958 (100.0 %), 458.0942 (97.3%).



#### *N-(tert-Butyl)-7-methoxybenzo[g]chrysene-10-carboxamide (3e)*

Purification via silica gel column chromatography (hexane/EtOAc = 8/1, v/v) afforded the desired product **3e** as a yellow solid (37.7 mg, 46% yield). M.p.: 240-241 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.66 (s, 9H), 4.12 (s, 3H), 4.74 (br, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 7.55-7.63 (m, 2H), 7.71-7.75 (m, 2H), 8.07 (d, J = 8.0 Hz, 1H), 8.46-8.51 (m, 2H), 8.56-8.64 (m, 3H), 8.68-8.70 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 27.9$ , 50.9, 56.1, 104.6, 120.8, 121.9, 123.3, 124.1, 125.8, 126.2, 126.8, 127.1, 127.5, 127.66, 127.74, 128.9, 129.0, 129.4, 129.8, 129.9, 130.2, 130.5, 131.6, 157.0, 167.9 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>28</sub>H<sub>26</sub>NO<sub>2</sub>: [M+H]<sup>+</sup>, 408.1958; found: 408.1957.



#### Methyl-10-(tert-butylcarbamoyl)benzo[g]chrysene-7-carboxylate (3f)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3f** as a yellow solid (31.8 mg, 37% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.63 (s, 9H), 4.08 (s, 3H), 4.70 (br, 1H), 7.57-7.66 (m, 2H), 7.75-7.77 (m, 2H), 8.09 (d, *J* = 7.6 Hz, 1H), 8.29 (d, *J* = 7.6 Hz, 1H), 8.35 (dd, *J* = 8.0 Hz, *J* = 1.2 Hz, 1H), 8.61-8.73 (m, 4H), 9.03-9.07 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.7, 51.3, 52.7, 123.0, 123.4, 124.1, 125.3, 126.3, 126.5, 127.5, 127.6, 127.76, 127.79, 128.1, 128.8, 128.9, 129.1, 129.15, 129.19, 129.6, 130.6, 131.2, 132.4, 141.3, 167.3, 167.9 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>29</sub>H<sub>25</sub>NNaO<sub>3</sub>: [M+Na]<sup>+</sup>, 458.1727; found: 458.1726.



#### *N*-(*tert*-Butyl)-7-phenylbenzo[g]chrysene-10-carboxamide (3g)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3g** as a yellow solid (46.9 mg, 52% yield). M.p.: 165-166 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.67 (s, 9H), 4.82 (br, 1H), 7.50-7.67 (m, 8H),

7.73-7.75 (m, 2H), 8.07 (d, J = 8.8 Hz, 1H), 8.13 (d, J = 7.2 Hz, 1H), 8.48-8.54 (m, 2H), 8.58-8.65 (m, 2H), 8.71-8.73 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 27.8, 51.1, 121.3, 123.4, 123.9, 126.19, 126.24, 126.5, 127.3, 127.6, 127.8, 127.9, 128.5, 128.6, 128.9, 129.0, 129.1, 130.4, 130.5, 131.6, 132.2, 136.9, 140.3, 142.2, 168.0 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>33</sub>H<sub>28</sub>NO: [M+H]<sup>+</sup>, 454.2165; found: 454.2167.$ 



#### *N-(tert*-Butyl)-7-(*p*-tolyl)benzo[*g*]chrysene-10-carboxamide (3h)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3h** as a yellow solid (46.0 mg, 49% yield). M.p.: 156-157 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.67 (s, 9H), 2.50 (s, 3H), 4.81 (br, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.59-7.66 (m, 3H), 7.70-7.76 (m, 2H), 8.09-8.12 (m, 2H), 8.49 (d, J = 9.2 Hz, 1H), 8.51-8.54 (m, 1H), 8.58-8.64 (m, 2H), 8.71-8.73 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.5, 27.8, 51.0, 121.2, 123.3, 123.4, 124.0, 126.2, 126.3, 126.5, 127.2, 127.6, 127.7, 128.5, 128.9, 129.0, 129.1, 129.2, 129.4, 130.3, 130.5, 131.6, 132.3, 136.7, 137.4, 137.7, 142.2, 168.0 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>34</sub>H<sub>30</sub>NO: [M+H]<sup>+</sup>, 468.2322; found: 468.2320.



*N*-(*tert*-Butyl)-7-(4-methoxyphenyl)benzo[g]chrysene-10-carboxamide (3i) Purification via silica gel column chromatography (hexane/EtOAc = 8/1, v/v) afforded the desired product 3i as a yellow solid (56.7 mg, 59% yield). M.p.: 130-131 °C; <sup>1</sup>H

NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 0.67$  (s, 9H), 3.93 (s, 3H), 4.81 (br, 1H), 7.09 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8.8 Hz, 2H), 7.59-7.66 (m, 3H), 7.71-7.76 (m, 2H), 8.09-8.12 (m, 2H), 8.49 (d, J = 9.2 Hz, 1H), 8.51-8.54 (m, 1H), 8.57-8.66 (m, 2H), 8,70-8.73 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 27.8$ , 51.0, 55.6, 114.1, 121.2, 123.3, 123.4, 123.9, 126.27, 126.33, 126.5, 127.2, 127.3, 127.6, 127.7, 128.6, 128.9, 129.0, 129.1, 129.2, 130.5, 131.56, 131.58, 132.4, 132.6, 136.6, 141.8, 159.5, 168.0 ppm. HRMS (ESI): calcd for C<sub>34</sub>H<sub>30</sub>NO<sub>2</sub>: [M+H]<sup>+</sup>, 484.2271; found: 484.2273.



7-(Benzofuran-2-yl)-*N*-(*tert*-butyl)benzo[g]chrysene-10-carboxamide (3j)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3j** as a yellow solid (49.5 mg, 50% yield). M.p.: 158-159 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.66 (s, 9H), 4.77 (br, 1H), 7.21 (s, 1H), 7.34 (td, J = 7.6 Hz, J =1.2 Hz, 1H), 7.38-7.42 (m, 1H), 7.59-7.68 (m, 3H), 7.72-7.77 (m, 3H), 8.07 (d, J = 7.6 Hz, 1H), 8.15 (d, J = 7.6 Hz, 1H), 8.46-8.48 (m, 1H), 8.62-8.67 (m, 4H), 8.72-8.74 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.8, 51.2, 107.4, 111.6, 121.4, 122.2, 123.3, 123.36, 123.40, 124.0, 125.0, 125.5, 126.5, 126.7, 127.2, 127.4, 127.7, 127.8, 128.0, 128.5, 128.96, 129.04, 129.07, 129.1, 129.3, 130.0, 130.6, 131.4, 131.7, 138.4, 155.1, 155.4, 167.7 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>35</sub>H<sub>28</sub>NO<sub>2</sub>: [M+H]<sup>+</sup>, 494.2115; found: 494.2116.



**7-(Benzo[b]thiophen-2-yl)-***N*-(*tert*-butyl)benzo[g]chrysene-10-carboxamide (3k) Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3k** as a yellow solid (63.0 mg, 62% yield). M.p.: 160-161 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.67 (s, 9H), 4.79 (br, 1H), 7.42-7.47 (m, 2H), 7.55 (s, 1H), 7.60-7.68 (m, 2H), 7.74-7.76 (m, 2H), 7.85 (d, *J* = 7.2 Hz, 1H), 7.90 (dd, *J* = 7.2 Hz, *J* = 2.0 Hz, 1H), 7.93-7.96 (m, 1H), 8.13 (d, *J* = 7.2 Hz, 1H), 8.46-8.51 (m, 2H), 8.57 (d, *J* = 9.2 Hz, 1H), 8.61-8.65 (m, 2H), 8.72-8.74 (m, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.8, 51.1, 122.0, 122.3, 123.38, 123.39, 123.98, 123.99, 124.78, 124.84, 125.2, 125.8, 126.4, 126.5, 127.4, 127.7, 127.8, 127.9, 128.3, 128.6, 128.99, 129.01, 129.1, 129.4, 130.6, 131.4, 132.6, 134.3, 137.9, 140.3, 140.7, 141.5, 167.7 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>35</sub>H<sub>28</sub>NOS: [M+H]<sup>+</sup>, 510.1886; found: 510.1885.



#### *N-(tert-Butyl)*benzo[*f*]picene-9-carboxamide (31)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **31** as a yellow solid (46.4 mg, 54% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.66 (s, 9H), 4.80 (br, 1H), 7.57-7.68 (m, 2H), 7.70-7.79 (m, 4H), 8.08 (d, *J* = 7.6 Hz, 1H), 8.43 (s, 1H), 8.48 (d, *J* = 9.2 Hz, 1H), 8.61 (d, *J* = 7.6 Hz, 1H), 8.65-8.71 (m, 2H), 8.74-8.77 (m, 2H), 8.86 (d, *J* = 8.8 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.8, 51.1, 121.9, 122.4, 123.1, 123.39, 123.41, 123.8, 123.9, 127.5, 127.7, 127.8, 128.3, 129.2, 129.3, 129.4, 129.6, 130.2, 130.4, 130.8, 131.25, 131.28, 131.37, 131.40, 131.43, 135.1, 167.7 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>31</sub>H<sub>26</sub>NO: [M+H]<sup>+</sup>, 428.2009; found: 428.2010.



#### *N-(tert-*Butyl)tribenzo[*f,ij,no*]tetraphene-1-carboxamide (3m)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3m** as a yellow solid (50.6 mg, 56% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.61 (s, 9H), 4.92 (br, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.77 (t, *J* = 7.3 Hz, 1H), 8.05 (t, *J* = 8.0 Hz, 1H), 8.11-8.16 (m, 2H), 8.22 (d, *J* = 7.2 Hz, 1H), 8.27 (d, *J* = 7.6 Hz, 1H), 8.40 (d, *J* = 8.0 Hz, 1H), 8.45 (d, *J* = 8.0 Hz, 1H), 8.61 (d, *J* = 8.0 Hz, 1H), 8.75 (d, *J* = 8.0 Hz, 1H), 8.91 (d, *J* = 8.0 Hz, 1H), 9.07 (d, *J* = 8.0 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.7, 51.1, 123.2 123.8, 123.9, 124.4, 124.6, 125.37, 125.43, 126.3, 126.4, 126.8, 126.86, 126.94, 127.1, 127.4, 127.7, 128.0, 128.5, 128.7, 128.8, 128.9, 129.0, 129.1, 130.0, 131.5, 131.7, 132.3, 134.7, 168.4 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>33</sub>H<sub>26</sub>NO: [M+H]<sup>+</sup>, 452.2009; found: 452.2018.



#### *N-(tert-*Butyl)-3,12-difluorobenzo[g]chrysene-10-carboxamide (3n)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3n** as a yellow solid (46.6 mg, 56% yield). M.p.: 247-248 <sup>o</sup>C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.82 (s, 9H), 4.99 (br, 1H), 7.33-7.37 (m, 1H), 7.43-7.48 (m, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 8.02-8.07 (m, 3H), 8.12 (dd, *J* = 10.8 Hz, *J* = 2.4 Hz, 1H), 8.21 (dd, *J* = 10.8 Hz, *J* = 2.4 Hz, 1H), 8.42 (d, *J* = 8.8 Hz, 1H), 8.51 (dd, *J* = 8.8 Hz, 1H), 8.60 (dd, *J* = 8.8 Hz, *J* = 5.6 Hz, 1H) ppm. <sup>13</sup>C NMR

(100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.9, 51.3, 109.6 (d,  $J_{CF}$ = 22.6 Hz), 114.2 (d,  $J_{CF}$  = 23.4 Hz), 115.7 (d,  $J_{CF}$  = 23.0 Hz), 116.3 (d,  $J_{CF}$  = 23.1 Hz), 121.4, 125.2 (d,  $J_{CF}$  = 1.9 Hz), 125.4, 125.5, 125.7, 126.6, 126.8 (d,  $J_{CF}$  = 3.2 Hz), 128.8, 129.4 (d,  $J_{CF}$  = 3.5 Hz), 129.5, 130.2, 130.9 (d,  $J_{CF}$  = 8.1 Hz), 132.5 (d,  $J_{CF}$  = 8.6 Hz), 134.3, 137.3, 161.8 (d,  $J_{CF}$  = 245.2 Hz), 162.2 (d,  $J_{CF}$  = 244.1 Hz), 168.0 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>22</sub>F<sub>2</sub>NO: [M+H]<sup>+</sup>, 414.1664; found: 414.1662.



#### N-(tert-Butyl)-3,12-dichlorobenzo[g]chrysene-10-carboxamide (30)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **30** as a yellow solid (61.3 mg, 69% yield). M.p.: 111-112 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.84 (s, 9H), 4.99 (br, 1H), 7.55 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 1H), 7.64-7.67 (m, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 8.00-8.06 (m, 3H), 8.38 (d, *J* = 2.0 Hz, 1H), 8.42-8.46 (m, 2H), 8.52-8.54 (m, 2H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.9, 51.3, 121.2, 123.8, 124.8, 124.9, 125.5, 126.4, 126.6, 126.8, 127.6, 128.1, 128.2, 128.3, 128.88, 128.89, 129.4, 130.2, 130.8, 132.2, 133.7, 133.9, 134.4, 137.5, 168.0 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>22</sub>Cl<sub>2</sub>NO: [M+H]<sup>+</sup>, 446.1073 (100.0%), 448.1043 (63.9%); found: 446.1073 (100.0%), 448.1048 (63.9%).



#### *N-(tert-*Butyl)-2,13-difluorobenzo[g]chrysene-10-carboxamide (3p)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3p** as a yellow solid (47.8 mg, 58% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.73 (s, 9H), 4.74 (br, 1H), 7.33-7.38 (m, 1H), 7.47-7.52 (m, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 8.04-8.08 (m, 2H),

8.11 (dd, J = 10.4 Hz, J = 2.8 Hz, 1H), 8.19 (dd, J = 10.4 Hz, J = 2.4 Hz, 1H), 8.46-8.50 (m, 2H), 8.61 (dd, J = 9.2 Hz, J = 5.6 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 27.9$ , 51.2, 109.0 (t,  $J_{CF} = 21.6$  Hz), 116.6 (dd,  $J_{CF} = 22.9$  Hz,  $J_{CF} = 15.1$ Hz), 121.3, 125.4, 125.5, 126.3 (d,  $J_{CF} = 2.2$  Hz), 126.46, 126.52 (d,  $J_{CF} = 8.7$  Hz), 128.2, 128.4 (d,  $J_{CF} = 2.2$  Hz), 128.50, 129.4, 130.03 (d,  $J_{CF} = 3.6$  Hz), 130.10, 130.13, 131.48 (d,  $J_{CF} = 8.5$  Hz), 131.52 (d,  $J_{CF} = 8.0$  Hz), 134.0, 137.3, 162.0 (d,  $J_{CF} = 247.7$ Hz), 162.4 (d,  $J_{CF} = 247.6$  Hz), 168.1 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>22</sub>F<sub>2</sub>NO: [M+H]<sup>+</sup>, 414.1664; found: 414.1664.



#### *N-(tert-Butyl)-2,13-dichlorobenzo[g]chrysene-10-carboxamide (3q)*

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3q** as a yellow solid (58.5 mg, 66% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.73 (s, 9H), 4.72 (br, 1H), 7.56 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 1H), 7.68-7.72 (m, 2H), 8.02 (d, *J* = 8.8 Hz, 1H), 8.04-8.08 (m, 2H), 8.39 (d, *J* = 8.8 Hz, 1H), 8.46-8.49 (m, 2H), 8.53 (d, *J* = 8.8 Hz, 1H), 8.57 (d, *J* = 2.4 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.9, 51.3, 121.2, 122.9, 123.2, 125.3, 125.7, 125.9, 126.7, 128.2, 128.4, 128.5, 128.7, 128.8, 129.2, 129.5, 130.0, 130.2, 130.57, 130.59, 133.5, 134.16, 134.20, 137.4, 168.0 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>22</sub>Cl<sub>2</sub>NO: [M+H]<sup>+</sup>, 446.1073 (100.0%), 448.1043 (63.9%); found: 446.1073 (100.0%), 448.1048 (63.9%).



*N-(tert-*Butyl)-2,13-dimethoxybenzo[g]chrysene-10-carboxamide (3r)

Purification via silica gel column chromatography (hexane/EtOAc = 8/1, v/v) afforded the desired product **3r** as a yellow solid (44.3 mg, 51% yield). M.p.: 89-90 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.71 (s, 9H), 3.99 (s, 3H), 4.07 (s, 3H), 4.79 (br, 1H), 7.23 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 1H), 7.34 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.91-7.95 (m, 2H), 8.00-8.02 (m, 2H), 8.06 (d, *J* = 6.8 Hz, 1H), 8.42 (d, *J* = 9.2 Hz, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.52 (d, *J* = 9.2 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.9, 51.0, 55.7, 55.9, 105.8, 106.8, 115.4, 116.4, 121.4, 123.8, 125.0, 125.4, 125.7, 125.8, 126.2, 127.2, 128.3, 129.0, 130.0, 130.2, 130.6, 131.5, 133.7, 137.2, 158.9, 159.2, 168.3 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>29</sub>H<sub>28</sub>NO<sub>3</sub>: [M+H]<sup>+</sup>, 438.2064; found: 438.2062.



#### 7-Bromo-*N*-(*tert*-butyl)-2,13-difluorobenzo[g]chrysene-10-carboxamide (3s)

Purification via silica gel column chromatography (hexane/EtOAc = 10/1, v/v) afforded the desired product **3s** as a yellow solid (57.1mg, 58% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.70 (s, 9H), 4.65 (br, 1H), 7.33-7.38 (m, 1H), 7.49-7.54 (m, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 8.11 (dd, *J* = 10.4, 2.4 Hz, 1H), 8.19 (dd, *J* = 10.2 Hz, *J* = 2.2 Hz, 1H), 8.38 (dd, *J* = 9.2 Hz, *J* = 5.6 Hz, 1H), 8.45 (d, *J* = 9.2 Hz, 1H), 8.57 (d, *J* = 9.2 Hz, 1H), 8.61 (dd, *J* = 9.2 Hz, *J* = 5.6 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.9, 51.3, 109.1 (dd, *J*<sub>CF</sub> = 22.6 Hz, *J*<sub>CF</sub> = 13.4 Hz), 116.8 (dd, *J*<sub>CF</sub> = 24.9 Hz, *J*<sub>CF</sub> = 23.0 Hz), 122.7, 125.3, 125.6, 125.8 (d, *J*<sub>CF</sub> = 2.1 Hz), 126.7 (d, *J*<sub>CF</sub> = 8.9 Hz), 127.0, 127.1, 128.1 (d, *J*<sub>CF</sub> = 2.2 Hz), 128.8, 129.4, 130.26 (d, *J*<sub>CF</sub> = 3.6 Hz), 130.34 (d, *J*<sub>CF</sub> = 3.7 Hz), 130.5, 131.72 (d, *J*<sub>CF</sub> = 8.6 Hz), 131.74 (d, *J*<sub>CF</sub> = 8.2 Hz), 132.4, 137.0, 162.1 (d, *J*<sub>CF</sub> = 248.5 Hz), 162.7 (d, *J*<sub>CF</sub> = 248.3 Hz), 167.3 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>27</sub>H<sub>21</sub>BrF<sub>2</sub>NO: [M+H]<sup>+</sup>, 492.0769 (100.0%), 494.0749 (97.3%); found: 492.0767 (100.0%), 494.0753 (97.3%).

# V. General procedure for the quadruple C–H arylations of naphthalene-1,4-dicarboxamide with cyclic diaryliodonium salts

A Schlenk tube with a magnetic stir bar was charged with  $Pd(acac)_2$  (12.2 mg, 20 mol %), NaOAc (164.0 mg, 10.0 equiv),  $N^l$ ,  $N^d$ -di-*tert*-butylnaphthalene-1,4-dicarboxamide (**1n**, 0.2 mmol, 1.0 equiv), cyclic diaryliodonium salts (**2**, 1.2 mmol, 6 equiv), and ODCB (4.0 mL) under a N<sub>2</sub> atmosphere. The resulting mixture was stirred at 160 °C in oil bath for 48 h and then removes solvent under vacuum. The solution was filtered through a celite pad and washed with 10-25 mL of CH<sub>2</sub>Cl<sub>2</sub>. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on Al<sub>2</sub>O<sub>3</sub> (hexane/EtOAc = 3/1) to provide the desired product.



## $N^{17}$ , $N^{20}$ -Di-tert-butyltribenzo[f, j, s]picene-17, 20-dicarboxamide (4a)

Purification via Al<sub>2</sub>O<sub>3</sub> column chromatography (hexane/EtOAc = 3/1, v/v) afforded the desired product **4a** as a yellow solid (52.2 mg, 42% yield). M.p.: 237-238 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.61 (s, 18H), 4.77 (br, 2H), 7.22-7.26 (m, 2H), 7.57 (t, *J* = 7.6 Hz, 2H), 7.61–7.65 (m, 2H), 7.67–7.71 (m, 2H), 8.06 (d, *J* = 8.4 Hz, 2H), 8.09 (s, 2H), 8.35 (d, *J* = 8.0 Hz, 2H), 8.55 (d, *J* = 8.0 Hz, 2H), 8.60 (d, *J* = 8.0 Hz, 2H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.7, 51.4, 123.0, 123.4, 123.5, 126.08, 126.14, 127.6, 127.8, 128.0, 128.2, 128.8, 129.3, 130.0, 130.5, 131.0, 132.1, 138.6, 167.1 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>44</sub>H<sub>38</sub>N<sub>2</sub>NaO<sub>2</sub>: [M+Na]<sup>+</sup>, 649.2825; found: 649.2834



 $N^{17}$ , $N^{20}$ -Di-*tert*-butyl-3,6,11,14-tetrachlorotribenzo[f,j,s]picene-17,20-dicarboxamide (4b)

Purification via Al<sub>2</sub>O<sub>3</sub> column chromatography (hexane/EtOAc = 3/1, v/v) afforded the desired product **4b** as a yellow solid (41.1 mg, 27% yield). M.p.: 235-236 °C; <sup>1</sup>H NMR (400 MHz, DMSO):  $\delta$  = 0.83 (s, 18H), 7.41 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 2H), 7.60 (dd, *J* = 8.8 Hz, *J* = 2.0 Hz, 2H), 7.80 (s, 2H), 7.85 (br, 2H), 7.89 (d, *J* = 9.2 Hz, 2H), 8.22 (d, *J* = 8.4 Hz, 2H), 8.88 (d, *J* = 2.0 Hz, 4H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 27.8, 51.7, 123.2, 126.1, 126.8, 127.3, 128.2, 128.4, 128.8, 129.3, 129.5, 130.2, 130.5, 130.6, 131.6, 134.18, 134.20, 138.8, 166.9 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>44</sub>H<sub>34</sub>Cl<sub>4</sub>N<sub>2</sub>NaO<sub>2</sub>: [M+Na]<sup>+</sup>, 787.1237 (100.0%), 785.1267 (78.2%); found: 787.1233 (100.0%), 785.1275 (78.2%).



 $N^{17}$ , $N^{20}$ -Di-*tert*-butyl-2,7,10,15-tetramethyltribenzo[ $f_{xj}$ ,s]picene-17,20-dicarboxami -de (4c)

Purification via Al<sub>2</sub>O<sub>3</sub> column chromatography (hexane/EtOAc = 2/1, v/v) afforded the desired product **4c** as a yellow solid (51.0 mg, 34% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  = 0.65 (s, 18H), 4.01 (s, 6H), 4.02 (s, 6H), 4.80 (br, 2H), 6.87

(dd, J = 9.0 Hz, J = 2.2 Hz, 2H), 7.23-7.26 (m, 2H), 7.84 (s, 2H), 7.94 (s, 2H), 8.01-8.03 (m, 4H), 8.28 (d, J = 9.2 Hz, 2H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta =$ 27.8, 51.3, 55.6, 55.9, 105.5, 107.1, 114.7, 115.4, 125.66, 125.67, 125.9, 126.5, 127.0, 127.2, 130.3, 130.5, 131.2, 131.9, 138.2, 158.9, 159.1, 167.4 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>48</sub>H<sub>46</sub>N<sub>2</sub>NaO<sub>6</sub>: [M+Na]<sup>+</sup>, 769.3248; found: 769.3246.

#### VI. Preparation of phenoxazine-modified [4]carbohelicene 5a



A Schlenk tube with a magnetic stir bar was charged with Pd(PPh<sub>3</sub>)<sub>4</sub> (2.3 mg, 2 mol %), Na<sub>2</sub>CO<sub>3</sub> (33.8 mg, 3.2 equiv), **3s** (49.1 mg, 0.1 mmol, 1.0 equiv), 10-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10*H*-phenoxazine (42.4 mg, 0.11 mmol), DMF (1.4 mL) and H<sub>2</sub>O (0.7 mL) under a N<sub>2</sub> atmosphere. The resulting mixture was stirred at 120 °C in oil bath for 24 h and then removes solvent under vacuum. The solution was filtered through a celite pad and washed with 10-25 mL of CH<sub>2</sub>Cl<sub>2</sub>. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to provide the desired product.



7-(4-(10H-Phenoxazin-10-yl)phenyl)-N-(tert-butyl)-2,13-difluorobenzo[g]chrysene-

#### 10-carboxamide (5a)

The desired product **5a** was obtained as a yellow solid (51.7 mg, 77% yield). M.p.: >250 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 0.75$  (s, 9H), 4.80 (br, 1H), 6.11-6.13 (m, 2H), 6.69-6.76 (m, 6H), 7.38-7.43 (m, 1H), 7.49-7.55 (m, 3H), 7.73 (d, J = 7.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 2H), 8.11-8.17 (m, 3H), 8.22 (dd, J = 10.4 Hz, J = 2.4 Hz, 1H), 8.50-8.56 (m, 2H), 8.61 (dd, J = 9.2 Hz, J = 5.6 Hz, 1H) ppm. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 27.9$ , 51.3, 109.1 (dd,  $J_{CF} = 22.3$  Hz,  $J_{CF} = 15.4$  Hz), 113.4, 115.7, 116.7 (dd,  $J_{CF} = 18.6$  Hz,  $J_{CF} = 19.3$  Hz), 121.3, 121.5, 121.7, 123.4, 125.7, 126.00, 126.09 (d,  $J_{CF} = 12.2$  Hz), 126.5 (d,  $J_{CF} = 8.5$  Hz). 127.5, 128.2, 128.5 (d,  $J_{CF} = 8.3$  Hz), 131.65 (d,  $J_{CF} = 8.3$  Hz), 130.3 (d,  $J_{CF} = 4.8$  Hz), 131.1, 131.62 (d,  $J_{CF} = 8.3$  Hz), 132.0, 133.0, 134.4, 137.2, 138.8, 140.4, 141.1, 144.1, 162.0 (d,  $J_{CF} = 246.8$  Hz), 162.5 (d,  $J_{CF} = 247.6$  Hz), 167.9 ppm. HRMS (ESI<sup>+</sup>): calcd for C<sub>45</sub>H<sub>32</sub>F<sub>2</sub>N<sub>2</sub>NaO<sub>2</sub>: [M+Na]<sup>+</sup>, 693.2324; found: 693.2327.

#### VII. 2 mmol scale synthesis of 3a



A Schlenk tube with a magnetic stir bar was charged with  $Pd(acac)_2$  (61.0 mg, 10 mol %), NaOAc (820.0 mg, 5.0 equiv), 1-naphthamide (**1a**, 2.0 mmol, 1.0 equiv), cyclic diaryliodonium salt (**2a**, 6.0 mmol, 3 equiv), and ODCB (10.0 mL) under a N<sub>2</sub> atmosphere. The resulting mixture was stirred at 160 °C in oil bath for 24 h and then removed solvent under vacuum. The solution was filtered through a celite pad and washed with 10-25 mL of CH<sub>2</sub>Cl<sub>2</sub>. The filtrate was concentrated under vacuum and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to to provide **3a** in 53% yield (403.0 mg).

### **VIII. Photophysical properties**

### i) Photophysical data and spectra of 3a-3s, 4a-4c and 5a

| Compounds | $\lambda_{ m abs}{}^a$ | $\lambda_{ m em}{}^b$ | Stokes shift | $CIE^{c}$     | $\Phi^{d}$     |
|-----------|------------------------|-----------------------|--------------|---------------|----------------|
|           | (nm)                   | (nm)                  | $(cm^{-1})$  | CIE           | $arPsi_{ m F}$ |
| 3a        | 285, 296, 332          | 403                   | 5307         | (0.16, 0.01)  | 0.03           |
| 3b        | 287, 298, 335          | 394, 407              | 5281         | (0.16, 0.02)  | 0.04           |
| 3c        | 284, 296, 334          | 390, 405              | 5249         | (0.15, <0.01) | 0.04           |
| 3d        | 288, 301, 328, 343     | 412                   | 4883         | (0.14, 0.06)  | < 0.01         |
| 3e        | 289, 300, 334          | 388, 407              | 5370         | (0.16, 0.02)  | 0.10           |
| 3f        | 301, 336               | 448                   | 7440         | (0.14, 0.12)  | 0.08           |
| 3g        | 298, 336               | 413                   | 5549         | (0.15, 0.02)  | 0.08           |
| 3h        | 291, 301, 341          | 413                   | 5112         | (0.16, 0.03)  | 0.07           |
| 3i        | 301, 339               | 420                   | 5689         | (0.15, 0.04)  | 0.21           |
| 3ј        | 305, 364               | 441                   | 4797         | (0.15, 0.07)  | 0.44           |
| 3k        | 303, 331, 350          | 441                   | 5896         | (0.15, 0.07)  | 0.27           |
| 31        | 305                    | 419                   | 8921         | (0.16, 0.02)  | 0.06           |
| 3m        | 322, 392               | 425                   | 1981         | (0.15, 0.04)  | 0.23           |
| 3n        | 290, 334               | 385, 404              | 5188         | (0.16, 0.01)  | 0.06           |
| 30        | 287, 296, 335          | 389, 407              | 5281         | (0.48, <0.01) | 0.03           |
| 3р        | 283, 292, 329          | 388, 404              | 5643         | (0.16, 0.02)  | 0.05           |
| 3q        | 285, 298, 334          | 391, 415              | 5844         | (0.16, 0.02)  | 0.02           |
| 3r        | 304, 342               | 401, 415              | 5143         | (0.16, 0.03)  | 0.10           |
| 3s        | 287, 298, 338          | 394, 409              | 5136         | (0.14, 0.08)  | < 0.01         |
| <b>4a</b> | 336, 388               | 476                   | 4765         | (0.14, 0.28)  | 0.06           |
| 4b        | 340, 395               | 476                   | 4308         | (0.14, 0.27)  | 0.07           |
| 4c        | 353, 414               | 498                   | 4074         | (0.23, 0.51)  | 0.10           |
| 5a        | 298, 331               | 573                   | 12759        | (0.51, 0.50)  | 0.03           |

Table S5. Photophysical data of 3a-3s, 4a-4c and 5a in CH<sub>2</sub>Cl<sub>2</sub>

<sup>*a*</sup>Absorption maxima in CH<sub>2</sub>Cl<sub>2</sub> ( $1.0 \times 10^{-5}$  mol/L). <sup>*b*</sup>Emission maxima in CH<sub>2</sub>Cl<sub>2</sub> ( $1.0 \times 10^{-5}$  mol/L). <sup>*c*</sup>CIE coordinates measured in CH<sub>2</sub>Cl<sub>2</sub> ( $1.0 \times 10^{-5}$  mol/L). <sup>*d*</sup>Absolute quantum yield in CH<sub>2</sub>Cl<sub>2</sub> ( $1.0 \times 10^{-5}$  mol/L) determined with an integrating sphere system.





































*Figure S1.* Absorption and fluorescence emission spectra in  $CH_2Cl_2$  at  $1 \times 10^{-5}$  mol/L.

# ii) The room temperature transient decay data and spectra of 3a, 3j, 3k, 3l, 3m, 4c and 5a

| Table S6. | Photoluminescence | lifetime of 3a-39 | s, 4a-4c and 5a | a in neat fill | n |
|-----------|-------------------|-------------------|-----------------|----------------|---|
|           |                   |                   |                 |                | _ |

| Compounds  | τ <sub>1</sub><br>(ns) | τ <sub>2</sub><br>(ns) | χ2   |
|------------|------------------------|------------------------|------|
| <b>3</b> a | 1.74 (75%)             | 8.73 (25%)             | 0.97 |
| 3ј         | 0.85 (85%)             | 4.18 (15%)             | 1.06 |
| 3ј         | 0.69 (88%)             | 3.72 (12%)             | 0.91 |
| 31         | 3.28 (75%)             | 9.31 (25%)             | 0.98 |

| 3m | 2.41 (38%)  | 11.86 (62%)   | 1.03 |  |
|----|-------------|---------------|------|--|
| 4c | 0.85 (86%)  | 4.51 (14%)    | 1.08 |  |
| 5a | 89.33 (30%) | 7211.13 (70%) | 0.92 |  |





*Figure S2*. Photoluminescence transient decay curves of **3a**, **3j**, **3k**, **3l**, **3m** and **4c**, and **5a** in neat film.

#### **IX. References**

- Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S. J. Am. Chem. Soc. 2013, 135, 12861-12868.
- (2) Johnson, S. M.; Connelly, S.; Wilson, I. A.; Kelly, J. W. J. Med. Chem. 2008, 51, 6348-6358.
- (3) Das, R.; Chakraborty, D. Appl. Organometal. Chem. 2011, 25, 437–442.
- (4) Mathew, B. P.; Yang, H. J.; Kim, J.; Lee, J. B.; Kim, Y.-T.; Lee, S.; Lee, C. Y.;
  Choe, W.; Myung, K.; Park, J.-U.; Hong, S. Y. *Angew. Chem., Int. Ed.* 2017, 56, 5007–5011.

# X. Copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra













#### S33

<sup>1</sup>H NMR spectrum of **3a** in CDCl<sub>3</sub>







#### S36

 $^{1}$ H NMR spectrum of **3d** in CDCl<sub>3</sub>





<sup>1</sup>H NMR spectrum of **3f** in CDCl<sub>3</sub>











S43





0 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 50 50 40 30 20 10 0 -1 fl (ppm)









<sup>1</sup>H NMR spectrum of **3q** in CDCl<sub>3</sub>







S52

<sup>1</sup>H NMR spectrum of **4a** in CDCl<sub>3</sub>





<sup>1</sup>H NMR spectrum of **4b** in DMSO



<sup>1</sup>H NMR spectrum of **4c** in CDCl<sub>3</sub>





230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)