Activating a silver lipoate nanocluster with a penicillin backbone induces a synergistic effect against *S*. *αureus* biofilm.

Humberto H. Lara,^{a,‡,*} David M. Black,^{b, ‡} Christine Moon,^c Elizabeth Orr,^c Priscilla Lopez,^b Marcos M. Alvarez,^{c,*} Glen Baghdasarian,^c Jose Lopez-Ribot,^a and Robert L. Whetten.^{d,*,#}

^a Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas, San Antonio TX 78249, USA

^b Department of Physics & Astronomy, University of Texas, San Antonio TX 78249, USA

^c Department of Chemistry, Los Angeles City College 855 N Vermont Ave, Los Angeles, CA 90029

^d Center for Materials Interfaces in Research & Applications (MIRA) Applied Physics and Material Science, Northern Arizona University, Flagstaff, AZ 86011

KEYWORDS silver clusters, lipoic acid, antimicrobial, electrospray ionization mass spectrometry, synergistic effect

Summary of Conjugation Reaction & Reaction Workup

Key mechanistic steps are summarized in Scheme S1.

Scheme S1: Key mechanistic steps of conjugation. The presence of the cluster has been omitted for clarity.

In the first step, carried out in pH 6 buffer, an EDC ester intermediate is formed but not isolated. Simultaneous addition of sNHS results in the formation of a sNHS ester that precipitates out of solution. The sNHS ester is cleaned and then allowed to react with 6-APA in pH 7 buffer, resulting in the formation of the conjugated cluster. Scheme S2, summarizes various reaction steps performed in a 2 mL microcentrifugation tube.

Scheme S2: Key steps in cluster conjugation.

Step 1. Start with 1,0 mL of 500 mM MES buffer solution.

Step 2: Add

a) 50 μL of cluster solution (1.4 mg Ag/mL concentration estimated to contain a maximum of 3 μmol RALA in total)

b) 20 mg free-base EDC (130 µmol)

c) 2 mg sNHS (13 µmol)

Step 3: React for 60 minutes

Step 4: Centrifuge at 2000 rpm for five minutes to precipitate less soluble sNHS- cluster. Discard supernatant.

Step 5: Wash precipitate twice with 500 μ L of distilled water.

Step 6: Dissolve precipitate in 1 mL of 1 M TEAA solution or 250 mM MES buffer

Step 7: React for 60 minutes.

Step 8: Centrifuge at 2000 rpm for five minutes to precipitate less soluble conjugated cluster. Discard supernatant. Wash precipitate four times with 500 μ L of distilled water.

Step 9: Dissolve conjugated product in 500 μ L 50 mM TEA solution for ESI-MS analysis or suitable buffer for antibiotic testing.

Ampicillin Conjugation

Results of conjugating the (*Ag₂₉LA₁₂*)^[3-] cluster to ampicillin are summarized in Figure S1. The conjugate was obtained by substituting molar equivalents of ampicillin for 6-APA in the synthetic protocol.

Figure S1: ESI-MS evidence of conjugation of Ampicillin to the $(Ag_{29}LA_{12})^{[3-]}$ Cluster. The spectrometer was operated in negative mode. In addition to the triply charged signals, fragmentation products (*) of the electro-spray ionization process are apparent.

m/z

Glycine ethyl ester Conjugation

Liquid chromatography (LC) experiments were performed on an Eksigent nanoLC 2D system coupled to a Bruker micrOTOF time-of-flight mass spectrometer (MS). All separations were carried out using an Ace 300Å C18 HPLC column (0.5 mm x 150 mm, 3 µm particle size)

(Advanced Chromatography Technologies Limited, Aberdeen, UK) maintained at ambient laboratory temperature. Mobile phases were prepared 400 mM hexfluoroisopropanol (HFIP) -

15 mM triethylamine (TEA) in ddH2O (mobile phase A) and neat methanol (mobile phase B). All solvents for direct infusion and LC-MS were obtained from Fisher Scientific (Fairlawn, NJ). The flow rate used for all experiments was ten microliters per minute (μ L/min). Injections – 5.0 μ L – were carried out by an Eksigent AS-1 autosampler configured with a 20- μ L sample loop.

All reaction mixture samples were diluted 20x in mobile phase A. Direct infusion was carried out by loop injection (i.e., no column between autosampler and mass spectrometer) using a mobile phase composition of 95% MP A: 5% MP B.HPLC experiments were carried out using twenty-minute linear gradient methods with varied starting and ending mobile phase conditions.

After completion of the twenty-minute gradient, 100% methanol was rinsed through the column to remove any non-polar components for five minutes. This was then followed by a twenty minute reequilibration at initial method conditions. Mass spectrometer acquisition settings were identical for both direct infusion and LC-MS experiments. Data was acquired from m/z 100 -

6,000. Ten-thousand spectra were summed per spectrum acquired. Nebulizer pressure was set to 4.0 bar. Nitrogen sheath gas was set to zero L/min. The endplate offset and capillary potentials were held at -1000 V and 3500 V, respectively. Capillary exit and skimmer voltage settings were -100 V and -33 V respectively. Lens 1 pre-pulse storage and transfer times were 35 μ s and 140 μ s, respectively. MCP detector voltage was increased to 2350 V (from 2100 V standard) for improved detection.

Figure S2: Overlaid LC-MS Base Peak Chromatogram Traces – Analysis of the Ag29LA12 reaction mixture. Red Trace= Ag29(LA)12. Blue Trace = Ag29(Lipoic Acid)11(Lipoic Acid-Glycine)1. Black Trace = Ag29(Lipoic Acid)10(Lipoic Acid-Glycine)2

Figure S3: Averaged mass spectrum from under Ag29(Lipoic Acid)10(Lipoic Acid-Glycine)2 chromatographic peak (black trace in Figure S2)

Figure S4: Averaged mass spectrum from under Ag29(Lipoic Acid)11(Lipoic Acid-Glycine)1 chromatographic peak (blue trace in Figure S2)

Figure S5: Averaged mass spectrum from under Ag29(LA)12chromatographic peak (red trace in Figure S2)

Summary of Synergy Evaluation

Table S1. Synergistic or antagonistic effect based on the dose effect curves.

Dose	Biofilm	Dose	Biofilm	Dose	Biofilm	Fa	CI ^b
	Inhibition		Inhibition	μΜ	Inhibition		
6-APA	6-APA	Ag29	Ag29	6-APA + Ag29 = Conjugate	Conjugate		
μΜ	(%)*	μΜ	(%)*	μΜ	(%)*		
93	0	0.6	0	0.023 + 0.0086 =			
				0.032	3	0.03	4.43E-04
185	0.1	1.6	0	0.047 + 0.0173 =			
				0.064	6	0.06	5.89E-04
370	2	3.2	0	0.117 + 0.0432 =			
				0.160	13	0.13	9.15E-04
741	9	6.4	1	0.233 + 0.0864 =			
				0.320	17	0.17	0.00153
1481	11	12.8	1	0.466 + 0.1727 =			
				0.639	22	0.22	0.00257
3009	16	25.6	4	0.933 + 0.3455 =			
				1.278	33	0.33	0.00376
6019	28	51.1	15	1.866 + 0.6910 =			
				2.557	40	0.40	0.00635
12037	54	102.3	43	3.731 + 1.3820 =			
				5.113	61	0.61	0.00788
24074	75	207.7	74	7.463 + 2.7639 =			
				10.227	81	0.81	0.00904
48148	87	415.5	81	15.158 + 5.6143			
				=20.773	90	0.90	0.01213

^a The data of the dose–effect inhibition (%) was obtained from a phenotypic luciferase assay and were generated by the Origin software. Data are presented as the mean of three independent assays in duplicates. ^bFraction affected CI (Fa-CI) plots was generated using CompuSyn software. CI=1 means additive effect, CI >1 is antagonistic effect, and CI <1 means synergy (red numbers).

Table S2. Median dose (IC50) and other parameters reported by curve-fitting the phenotypic assay results (by the CompuSyn program)

Drug/Combo	Median Dose	Kinetic Parameter,	Quality of Fit
	μΜ	m	\mathbf{R}^2
6-APA	9989	1.8	0.99
Ag29	142	1.4	0.96
Conjugated Cluster	2.31	0.81	0.99