Supporting Information

Zinc-Catalyzed Hydroxyl-Directed Regioselective Ring Opening of Aziridines in S_N2 Reaction Pathway

Jiawei Liu, and Chuan Wang *

Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Sciences and Technology of China, Hefei, Anhui, 230026 (China).

E-mail: chuanw@ustc.edu.cn

Table of Contents

General Methods and Materials	S2
Optimization of the Reaction Conditions ^[a]	S3
Procedures for Synthesis of 2,3-Aziridinyl Alcohols	S4
General Procedure for the Hydroxyl-Directed Zinc Catalyzed Regioselective Nucleophilic	Ring Opening of
Aziridines	
Procedure for Derivatizations of the Ring Opening Product	
Proposed Model for the C-3 Selectivity	
References	
NMR Spectra	

General Methods and Materials

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance 400M NMR spectrometers at ambient temperature in CDCl₃, DMSO-d₆ at 400 and 101 MHz. The chemical shifts are given in ppm relative to tetramethylsilane [¹H: δ = (SiMe₄)= 0.00 ppm] as an internal standard or relative to the resonance of the solvent [¹H: δ =(CDCl₃)= 7.26, ¹³C: δ = (CDCl₃)= 77.16 ppm, ¹H: δ = (DMSO-d₆)= 2.05, ¹³C: δ = (DMSO-d₆)= 29.84, 206.26 ppm]. Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets), etc. Coupling constants are reported as *J* values in Hz. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. HPLC was performed on Thermo UltiMate 3000. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system.

Optimization of the Reaction Conditions^[a]

			OMe			
	,Ts ∧ ∧ ∧ +	NH ₂	Cat. (20 mol%)	MeO		
H ₃ C		MeO	Solvent (0.2M) 70 °C, 12 h			
				⊓₃⊂ <u>-</u> ŇH	Ts	
1a		2a		3a		
Entry	Catalyst	Solvent	T (°C)	Yield (%) ^[b]	C3:C2 ^[c]	
1	Fe(BF ₄) ₂	THF	60	65	88:12	
2	AgBF ₄	THF	60	41	81:19	
3	AgClO ₄	THF	60	38	85:15	
4	VO(acac) ₂	THF	60	0	-	
5	Sc(OTf) ₃	THF	60	65	83:17	
6	Bi(OTf) ₃	THF	60	36	90:10	
7	In(OTf) ₃	THF	60	60	91:9	
8	Hf(OTf) ₄	THF	60	45	87:13	
9	Zn(OTf) ₂	THF	60	53	95:5	
10	Y(OTf) ₃	THF	60	31	82:18	
11	Yb(OTf) ₃	THF	60	38	86:14	
12	Pr(OTf) ₃	THF	60	41	91:9	
13	Er(OTf) ₃	THF	60	45	88:12	
14	Tb(OTf) ₃	THF	60	53	89:11	
15	Ho(OTf) ₃	THF	60	21	92:8	
16	Eu(OTf) ₃	THF	60	55	89:11	
17	Zn(OTf) ₂	THF	60	53	95:5	
18	Zn(OTf) ₂	MeCN	60	66	>98:2	
19	Zn(OTf) ₂	toluene	60	89	97:3	
20	Zn(OTf) ₂	DCE	60	66	97:3	
21	Zn(OTf) ₂	HFIP	60	45	94:6	
22	Zn(OTf) ₂	EtOAc	60	85	>98:2	
23	Zn(OTf) ₂	monoglyme	60	38	95:5	
24	Zn(OTf) ₂	chloroform	60	65	96:4	
25	Zn(OTf) ₂	1,4-dioxane	60	66	97:3	
26	Zn(OTf) ₂	t-BuOH	60	0	-	
27	Zn(OTf) ₂	EtOAc	70	98	>98:2	
28	Zn(OTf) ₂	EtOAc	50	75	>98:2	
29	Zn(OTf) ₂	EtOAc	rt	trace	n.d.	

[a] Reactions were performed on a 0.2 mmol scale of the aziridinyl alcohol **1a** using 1.5 equiv 3,5-dimethoxy aniline (**2a**), 20 mol% catalyst in 1.0 mL solvent for 12 h. [b] Yields of the isolated product after flash chromatography. [c] Determined by ¹H-spectrocopy.

Procedures for Synthesis of 2,3-Aziridinyl Alcohols

The aziridines **1a**, **1b**, **1g** and **1i** are known compounds, and their NMR-data are consistent with these reported in the literature.^{[1],[2]}

Procedure for Synthesis of the Aziridines 1c-f, 1h, 1j and 1k

To a stirred suspension of chloroamine-T (3.4 g, 15 mmol, 1.5 equiv) and phenyltrimethylammonium tribromide (PTAB) (367 mg, 1 mmol, 0.1 equiv) in MeCN (40 mL) were added the allylic alcohols (10 mmol, 1 equiv) at room temperature. The mixture was stirred for 12 h, filtered and concentrated under reduced pressure. Purification of the residue through column chromatography (petroleum ether/ethyl acetate) gave the corresponding aziridines.

trans-(3-(3-Methoxyphenyl)-1-tosylaziridin-2-yl)methanol (1c) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a colorless syrup (1.72 g, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.84 (d, *J*= 8.0 Hz, 2H), 7.31 (d, *J*= 8.0 Hz, 2H), 7.18 (t, *J*= 7.9 Hz, 1H), 6.86-6.71 (m, 2H), 6.65 (dd, *J*= 2.5, 1.7 Hz, 1H), 4.39-4.28 (m, 1H), 4.21-4.13 (m, 1H), 4.00 (d, *J*= 4.3 Hz, 1H), 3.72 (s, 3H),

3.20-3.15 (m, 1H), 3.14-3.10 (m, 1H), 2.41 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 159.8, 144.4, 137.0, 136.2, 129.7 (3C), 127.2 (2C), 118.7, 114.1, 111.7, 60.7, 55.2, 54.8, 46.4, 21.6 ppm. HRMS (ESI): calcd. for C₁₇H₂₀NO₄S [M+H]⁺:356.0932, found: 356.0920.

trans-(3-(3-Chlorophenyl)-1-tosylaziridin-2-yl)methanol (1d) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a colorless syrup (1.45 g, 83%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.84 (d, *J*= 8.0 Hz, 2H), 7.31 (d, J= 8.0 Hz, 2H), 7.26-7.16 (m, 2H), 7.12-7.09 (m, 1H), 7.08-7.02 (m, 1H), 4.36-4.30 (m, 1H), 4.22-4.15 (m, 1H), 3.99 (d, *J*= 4.3 Hz, 1H), 3.19-3.11 (m, 1H), 3.10

(dd, J= 9.7, 5.0 Hz, 1H). 2.42 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 144.7, 136.8, 136.7, 134.6, 129.9, 129.8 (2C), 128.6, 127.2 (2C), 126.5, 124.7, 60.4, 54.8, 45.4, 21.6 ppm. HRMS (ESI): calcd. for C₁₆H₁₇ClNO₃S [M+Na]⁺:360.0437, found: 360.0437.

trans-(3-(4-Fluorophenyl)-1-tosylaziridin-2-yl)methanol (**1e**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a brown syrup (1.25 g, 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.82 (d, *J*= 8.0 Hz, 2H), 7.30 (d, *J*= 8.0 Hz, 2H), 7.16-7.10 (m, 2H), 7.00-6.92 (m, 2H), 4.35-4.26 (m, 1H),

4.10-4.13 (m, 1H), 4.00 (d, J= 4.4 Hz, 1H), 3.20-3.15 (m, 1H), 3.14-3.09 (m, 1H), 2.41 (s, 3H) ppm.¹³C

NMR (101 MHz, Chloroform-*d*) δ = 162.7 (d, *J*= 247.5 Hz), 144.5, 137.0, 130.3 (d, *J*= 3.2 Hz), 129.7 (2C), 128.2 (d, *J*= 8.3 Hz) (2C), 127.1 (2C), 115.6 (d, *J* = 21.8 Hz) (2C), 60.5, 54.6, 45.7, 21.6 ppm. HRMS (ESI): calcd. for C₁₆H₁₇FNO₃S [M+H]⁺:322.0913, found: 322.0913.

trans-(3-(4-Bromophenyl)-1-tosylaziridin-2-yl)methanol (**1f**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a white solid (1.35 g, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.81 (d, *J*= 8.0 Hz, 2H), 7.39 (d, *J*= 8.0 Hz), 7.33-7.27 (m, 2H), 7.09-6.95 (m, 2H), 4.36-4.27 (m, 1H),

4.21-4.13 (m, 1H), 3.97 (d, J= 4.3 Hz, 1H), 3.20-3.13 (m, 1H), 3.13-3.05 (m, 1H), 2.42 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 144.6, 136.9, 133.7, 131.8 (2C), 129.8 (2C), 128.1 (2C), 127.1 (2C), 122.4, 60.4, 54.7, 45.6, 21.7 ppm. HRMS (ESI): calcd. for C₁₆H₁₇BrNO₃S [M+Na]⁺:403.9932, found: 403.9936.

Me

ŌН

Ts

Et

trans-(3-Phenethyl-1-tosylaziridin-2-yl)methanol (**1h**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a colorless syrup (1.32 g, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.86 (d, *J*= 8.0 Hz, 2H), 7.49 (dd, *J*= 8.0, 1.3 Hz, 1H), 7.33 (d, *J*= 8.0 Hz, 2H), 7.19-7.24 (m, 1H), 7.13 (dd, *J*= 7.7, 1.8 Hz, 1H), 7.09-7.02 (m, 1H), 4.05-3.07 (m, 1H), 3.97-3.79 (m,

1H), 3.05-2.95 (m, 1H), 2.91-2.85 (m, 1H), 2.77-2.69 (m, 1H), 2.69-2.62 (m, 1H), 2.43 (s, 3H), 2.06-1.94 (m, 1H), 1.93-1.82 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 144.4, 139.7, 137.1, 132.9, 130.3, 129.7 (2C) , 128.1, 127.6, 127.4 (2C), 124.3, 60.9, 51.5, 45.7, 33.6, 30.4, 21.6 ppm. HRMS (ESI): calcd. for C₁₈H₂₁BrNO₃S [M+H]⁺:410.0426, found: 410.0426.

1,2-anti-2,3-trans-3-Ethyl-1-tosylaziridin-2-yl)ethan-1-ol (**1j**) was isolated through preparative TLC on silica gel (petroleum ether/ethyl acetate= 2:1) as a colorless syrup (215 mg, 40%, 2 mmol the corresponding allylic alcohol used as precursor). ¹H NMR (500 MHz, Chloroform-*d*) δ = 7.76 (d, *J*= 8.1 Hz, 2H), 7.26 (d, *J*= 7.9 Hz, 2H), 3.92-3.80 (m, 1H)

2.81-2.72 (m, 2H), 2.37 (s, 3H), 1.97-1.87 (m, 1H), 1.87-1.75 (m, 1H), 1.11 (d, J= 6.4 Hz, 3H), 0.96 (t, J= 7.4 Hz, 3H) ppm. ¹³C NMR (126 MHz, Chloroform-d) δ = 144.3, 137.4, 129.7 (2C), 127.4 (2C), 64.2, 52.5, 48.0, 21.9, 21.6, 20.2, 12.1. ppm. HRMS (ESI): calcd. for C₁₃H₂₀NO₃S [M+Na]⁺:292.0983, found: 292.0987.

Ts $trans-(3-((Benzyloxy)methyl)-1-tosylaziridin-2-yl)methanol (1k) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a colorless syrup (1.16 g, 67%). ¹H NMR (400 MHz, Chloroform-d) <math>\delta$ = 7.85 (d, *J*= 8.0 Hz, 2H), 7.34-7.25 (m, 5H), 7.20-7.14 (m, 2H), 4.50-4.37 (m, 2H), 4.19-4.05 (m, 1H), 4.01-3.90 (m, 1H), 3.69 (dd, *J*= 11.0, 4.4 Hz, 1H), 3.50 (dd, *J*= 11.0, 6.6 Hz, 1H), 3.30-2.95(m, 1H), 3.09-3.01 (m, 1H), 2.82 (dd, *J*= 9.2, 5.1 Hz, 1H), 2.42 (s, 3H) ppm.¹³C NMR (101 MHz, Chloroform-*d*) δ = 144.4 , 137.6, 136.9, 129.6 (2C) , 128.4 (2C), 127.8, 127.5 (2C) , 127.4 (2C), 73.1, 68.4, 60.6, 48.9, 44.6, 21.6 ppm. HRMS (ESI): calcd. for C₁₈H₂₂NO₄S [M+Na]⁺: 370.1089, found: 370.1086.

Procedure for Synthesis of the Aziridines 11

To a solution of **1a** (2.69 g, 10 mmol, 1.0 equiv) in anhydrous CH₃OH (40 mL) was added Mg powder (1.2 g, 50 mmol, 5.0 equiv), and the mixture was sonicated under N₂ at room temperature for 1.5 h. After the reaction was quenched with saturated aq. NH₄Cl solution (40 mL), the organic layer was separated, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (petroleum ether: EtOAc= 1:1-EtOAc), to afford *trans-(3-propylaziridin-2-yl)methanol* (**1**) as a colorless syrup (115 mg, 10%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 3.82 (dd, *J*= 11.9, 3.3 Hz, 1H), 3.37 (dd, *J*= 11.9, 6.1 Hz, 1H), 2.03-1.93 (m, 1H), 1.89-1.77 (m, 1H), 1.52-1.36 (m, 4H), 0.95 (t, *J*= 8.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 63.0, 38.6, 35.8, 34.9, 20.8, 13.9 ppm. HRMS (ESI): calcd. for C₆H₁₄NO [M+H]⁺:116.1075, found: 116.1074.

Procedure for Synthesis of the Aziridines 1m and 1n

To a stirred solution of **1a** (2.7 g, 10 mmol, 1 equiv) in DMF was added imidazole (748 mg, 11 mmol, 1.1 equiv), and the resulting mixture was stirred for 2 h. Then the reaction was diluted with ethyl acetate and washed with saturated aq. NaCl solution for 3 times. The organic layer was dried over MgSO₄, filtered, and reduced crude trans-2-(((tert-butyldiphenylconcentrated under pressure to afford the silyl)oxy)methyl)-3-propyl-1-tosylaziridine (S1) without further purification. To a solution of the crude S1 in anhydrous CH₃OH (40 ml) was added magnesium powder (1.2 g, 50 mmol, 5 equiv) and the resulting mixture was sonicated under N₂ for 1.5 hour. The reaction was quenched with saturated aq. NH₄Cl solution (100 mL), and the aqueous layer was extracted with ethyl acetate for 3 times. The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified through column chromatography (petroleum ether/ethyl acetate= 5:1) to afford trans-2-(((tert-butyldiphenylsilvl)oxy)methyl)-3-propylaziridine (S2) as a colorless syrup (1.06 g, 30%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.68-7.63 (m, 4H), 7.45-7.33 (m, 6H), 3.79-3.67 (m, 2H), 1.88-1.79 (m, 2H), 1.49-.39 (m, 2H), 1.32-1.23 (m, 2H), 1.05 (s, 9H), 0.93 (t, J= 8.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-d) δ = 135.5 (4C), 133.4 (2C), 129.8 (2C), 127.7 (4C), 38.1, 35.5, 34.0, 29.3, 26.8 (3C), 20.7, 19.3, 13.9 ppm. HRMS (ESI): calcd. for C₂₂H₃₂NOSi [M+H]⁺: 354.2253, found: 354.2255.

To a stirred solution of S2 (3 mmol, 1.06 g, 1 equiv) in DCM were added Et₃N (6 mmol, 612 mg, 2 equiv) and (Boc)₂O (6 mmol, 1.3 g, 2 eq) at 0 °C. The resulting mixture was stirred for 2 h and diluted with

saturated aq. NaHCO₃ solution. The organic layer was separated, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified through column chromatography (petroleum ether/ethyl acetate= 10:1) to afford *trans-tert-butyl* 2-(((*tert-butyldiphenylsilyl*)*oxy*)*methyl*)-*3-propylaziridine-* 1-carboxylate (**S3**) as a colorless syrup (1.8 g, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.69-7.63 (m, 4H), 7.43-7.37 (m, 5H), 3.96 (dd, *J*= 11.2, 4.2 Hz, 1H), 3.55 (dd, *J*= 11.2, 5.7 Hz, 1H), 2.43-2.37 (m, 1H), 2.36-2.27 (m, 1H), 1.73-1.62 (m, 1H), 1.54-1.43 (m, 1H), 1.42 (s, 9H), 1.30-.25 (m, 1H), 1.22-1.12 (m, 1H), 1.05 (s, 9H), 0.96 (t, *J*= 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 160.6, 135.4 (2C), 135.6 (2C), 133.4, 133.2, 129.8 (4C), 127.7 (2C), 80.8, 63.3, 43.7, 41.7, 32.8, 28.0 (3C), 26.8 (3C), 20.4, 19.2, 13.8 ppm. HRMS (ESI): calcd. for C₂₇H₄₀NO₃Si [M+H]⁺: 454.2777, found: 454.2778.

To a stirred solution of **S3** (2 mmol, 900 mg, 1 equiv) in anhydrous THF was added TBAF (1M in THF) (4 mmol, 4 mL, 2 equiv), and the resulting mixture was stirred for 2 h. The reaction was quenched with saturated aq. NaHCO₃ solution, and the organic layer was separated, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified through column chromatography (petroleum ether/ethyl acetate= 4:1) to afford *trans-tert-butyl 2-(hydroxymethyl)-3-propylaziridine-1-carboxylate* (**1m**) as a colorless syrup (301 mg, 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 4.06-3.96 (m, 1H), 3.50-3.40 (m, 1H), 2.74 (dd, *J*= 9.1, 4.3 Hz, 1H), 2.54-2.42 (m, 1H), 2.34 (brs, 1H), 1.58-1.50 (m, 3H), 1.48 (s, 9H), 1.43-1.35 (m, 1H), 0.97 (t, *J*= 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.7, 81.6, 62.8, 44.4, 40.8, 33.1, 28.0 (3C), 20.2, 13.7 ppm. HRMS (ESI): calcd. for C₁₁H₁₂NO₃ [M+Na]⁺: 238.1419, found: 238.1411.

To a stirred solution of **S2** (3 mmol, 1.06 g, 1 equiv) in DCM were added Et₃N (6 mmol, 612 mg, 2 equiv), DMAP (0.3 mmol, 40.5 mg, 0.1 equiv) and benzoyl chloride (6 mmol, 1.3 g, 2 equiv) at 0 °C. The resulting mixture was stirred for 2 hours at rt and diluted with saturated aq. NaHCO₃ solution. The organic layer was separated, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified through column chromatography (petroleum ether/ethyl acetate= 10:1) to afford *trans-(2-(((tert-butyl-diphenylsilyl)oxy)methyl)-3-propylaziridin-1-yl)(phenyl)methanone* (**S4**) as a colorless syrup (1.2 g, 90%).¹H NMR (400 MHz, Chloroform-*d*) δ = 8.02 (dd, *J*= 8.2, 1.4 Hz, 2H), 7.59-7.52 (m, 3H), 7.47-7.39 (m, 4H), 7.39-7.32 (m, 4H), 7.31-7.25 (m, 2H), 3.86 (dd, *J*= 11.6, 3.4 Hz, 1H), 3.72 (dd, *J*= 11.6, 3.7 Hz, 1H), 2.83-2.76 (m, 1H), 2.74-2.69 (m, 1H), 1.82-1.66 (m, 1H), 1.56-1.41 (m, 2H), 1.25-1.11 (m, 1H), 0.97 (s, 9H), 0.94 (t, *J*= 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 176.9, 135.5 (2C), 135.4 (2C), 134.3, 132.9, 132.2 (2C), 129.7, 129.6, 128.9 (2C), 128.3 (2C), 127.7 (2C), 127.6 (2C), 61.5, 45.1, 39.8, 33.2, 26.6 (3C), 20.4, 19.1, 13.8 ppm. HRMS (ESI): calcd. for C₂₉H₃₆NO₂Si [M+H]⁺: 458.2515, found: 458.2513.

To a stirred solution of **S4** (2 mmol, 914 mg, 1 equiv) in anhydrous THF was added TBAF (1M in THF) (2 4mmol, 4 mL, 2eq), and the resulting mixture was stirred for 2 h. The reaction was quenched with saturated aq. NaHCO₃ solution, and the organic layer was separated, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified through column chromatography (petroleum ether/ethyl acetate= 2:1) to afford *trans-(2-(hydroxymethyl)-3-propylaziridin-1-yl)(phenyl)methanone* (**1n**) as a colorless syrup (337 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 8.08-8.03 (m, 2H), 7.60-7.52 (m, 1H), 7.44 (dd, *J*= 8.3, 7.0 Hz, 2H), 4.50-4.33 (m, 1H), 4.17 (dd, *J*= 11.7, 6.9 Hz, 2H), 2.18-2.07 (m, 2H), 1.98-1.82 (m, 2H), 1.50-1.46 (m, 3H), 1.46-1.40 (m, 1H), 0.96 (t, *J*= 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 166.5, 133.0, 130.0, 129.6 (2C), 128.3 (2C), 67.6, 35.7 (2C), 35.1, 20.8, 13.8 ppm.HRMS (ESI): calcd. for C₁₃H₁₈NO₂ [M+H]⁺: 220.1338, found: 220.1331.

General Procedure for the Hydroxyl-Directed Zinc Catalyzed Regioselective Nucleophilic Ring Opening of Aziridines

To a suspension of $Zn(OTf)_2$ (5 or 20 mol%, see below)^[a] in ethyl acetate (1 mL) were added the aziridines **1** (0.2 mmol, 1 equiv) and amines **2** or thiophenols **4** (0.3 mmol, 1.5 equiv) at room temperature. The resulting mixture was heated to 70 °C and stirred at this temperature for 12 h. Then the reaction was cooled to room temperature, and the solvent was removed in vacuum. The residue was purified through column chromatography on silica gel (petroleum ether/ethyl acetate) affording the corresponding products **3** or **5**.

^[a] Catalyst loading: 20 mol% for **3a-3o**, **3r-3t**, **3x-3ac**, **5a-5l**; 5 mol% for **3o-3q**, **3u**, **3w**.

(±)-*erythro-N-3-((3,5-Dimethoxyphenyl)amino)-1-hydroxyhexan-2-yl)-4-methylbe nzenesulfonamide* (**3a**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a brown syrup (83 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.72 (d, *J*= 8.0 Hz, 2H), 7.27 (d, *J*= 8.0 Hz, 2H), 5.85 (d, *J*= 2.1 Hz, 1H), 5.60 (d, *J*= 2.2 Hz, 2H), 5.44 (d, *J*= 8.3 Hz, 1H),4.00-3.85 (brs, 1H), 3.78 (dd, *J*= 11.5, 3.8 Hz, 1H), 3.72 (s, 6H), 3.66 (dd, *J*= 11.5, 3.5 Hz, 1H), 3.38-3.32 (m, 1H), 3.30-3.20 (m, 1H), 2.43 (s, 3H), 2.40-2.28 (brs, 1H), 1.50-1.37 (m, 2H), 1.32-1.16 (m, 2H), 0.80 (t, *J*= 7.3 Hz, 3H) ppm. ¹³C NMR

(101 MHz, Chloroform-*d*) δ = 161.7 (2C), 149.5, 143.7, 137.3, 129.9 (2C), 127.0 (2C), 92.2 (2C), 90.0, 62.5, 56.2, 55.2 (2C), 55.1, 34.4, 21.5, 19.4, 13.9 ppm. HRMS (ESI): calcd. for C₂₁H₃₁N₂O₅S [M+H]⁺: 423.1948, found: 423.1948.

(±)-*erythro-N-(1-Hydroxy-3-(phenylamino)hexan-2-yl)-4-methylbenzenesulfonamide* (**3b**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (70 mg, 96%).¹H NMR (400 MHz, Chloroform-*d*) δ = 7.71 (d, *J*= 8.3 Hz, 2H), 7.25 (d, *J*= 8.1 Hz, 2H), 7.18-7.02 (m, 2H), 6.69-6.64 (m,

1H), 6.46-6.29 (m, 2H), 5.57 (d, J= 7.4 Hz, 1H), 3.78 (dd, J= 11.5, 4.1 Hz, 1H), 3.66 (dd, J= 11.5, 3.7 Hz, 1H), 3.41-3.35 (m, 1H), 3.35-3.26 (m, 1H), 2.42 (s, 3H), 1.49-1.35 (m, 2H), 1.29-1.16 (m, 2H), 0.79 (t, J= 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-d) δ = 147.5, 143.6, 137.4, 129.8 (2C), 129.3 (2C), 127.1 (2C), 117.8, 113.4 (2C), 62.6, 56.2, 55.1, 34.2, 21.6, 19.4, 13.9 ppm. HRMS (ESI): calcd. for C₁₉H₂₇N₂O₃S [M+H]⁺: 363.1737, found: 363.1737.

(±)-*erythro-N-(1-Hydroxy-3-((2-methoxyphenyl)amino)hexan-2-yl)-4-methylbenzene sulfonamide* (**3c**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (67 mg, 86%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.72 (d, *J*= 8.3 Hz, 2H), 7.25 (d, *J*= 8.0 Hz, 2H), 6.78-6.70 (m, 2H), 6.64 (m, 1H), 6.32 (dd, *J*= 8.0, 1.7 Hz, 1H), 5.44 (d, *J*= 8.2 Hz, 1H), 3.80 (s, 3H), 3.80-3.72 (m, 1H), 3.63 (dd, *J*= 11.4, 3.5 Hz, 1H), 3.42-3.35 (m, 1H), 3.36-3.30 (m, 1H), 2.41 (s, 3H), 1.58-1.31 (m, 2H), 1.27-1.17 (m, 2H), 0.79 (t, *J*= 7.3 Hz, 3H)

ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 147.0, 143.5, 137.4, 137.3, 129.7 (2C), 127.1 (2C), 121.1, 117.1, 110.3, 109.8, 62.2, 56.7, 55.5, 55.0, 34.5, 21.6, 19.3, 13.9. HRMS (ESI): calcd. for C₂₀H₂₉N₂O₄S [M+H]⁺:393.1843, found: 363.1848.

(±)-*erythro-N*-(1-Hydroxy-3-((3-methoxyphenyl)amino)hexan-2-yl)-4-methylbenzene sulfonamide (**3d**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (71 mg, 90%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.75-7.67 (m, 2H), 7.28-7.22 (m, 2H), 6.98 (t, *J*= 8.1 Hz, 1H), 6.24 (m, 1H), 6.00 (m, 1H), 5.95 (t, *J*= 2.3 Hz, 1H), 5.54 (d, *J*= 8.2 Hz, 1H), 3.77 (dd, *J*= 11.7, 4.1 Hz, 1H), 3.73 (s, 3H), 3.66 (dd, *J*= 11.5, 3.7 Hz, 1H), 3.36 (dd, *J*= 8.2, 4.2 Hz, 1H), 3.28 (d, *J*= 6.1 Hz, 1H), 2.42 (s, 3H), 1.49-1.37 (m, 2H), 1.27-1.14 (m, 2H), 0.79 (t, *J*= 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 160.8,

148.9, 143.7, 137.3, 130.0, 129.8, 127.0 (2C), 106.4 (2C), 102.8, 99.4, 62.5, 56.2 (2C), 55.1, 34.3, 21.6, 19.4, 13.8 ppm. HRMS (ESI): calcd. for C₂₀H₂₉N₂O₄S [M+H]⁺:393.1843, found: 363.1848.

(±)-*erythro-N*-(*1*-Hydroxy-3-((4-methoxyphenyl)amino)hexan-2-yl)-4-methylbenz enesulfonamide (**3e**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (77 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.73 (d, *J*= 8.3 Hz, 2H), 7.27 (d, *J*= 7.9 Hz, 2H), 6.68 (d, *J*= 8.9 Hz, 1H), 6.36 (d, *J*= 8.9 Hz, 1H), 5.65 (d, *J*= 8.1 Hz, 1H), 3.76 (dd, *J*= 11.5, 4.2 Hz, 1H), 3.73 (s, 3H), 3.65 (dd, *J*= 11.5, 3.7 Hz, 1H), 3.40-3.32 (m, 1H), 3.25-3.15 (m, 1H), 2.42 (s, 3H), 1.48-1.38 (m, 2H), 1.28-1.19 (m, 2H), 0.78 (t, *J*=

7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 152.4, 143.6, 141.5, 137.6, 129.8 (2C), 127.1 (2C), 115.1 (2C), 114.8 (2C), 62.5, 56.7, 56.1, 55.7, 34.2, 21.6, 19.4, 13.8 ppm. HRMS (ESI): calcd. for C₂₀H₂₉N₂O₄S [M+H]⁺:393.1843, found: 363.1848.

(±)-*erythro-N-(3-((4-Fluorophenyl)amino)-1-hydroxyhexan-2-yl)-4-methylbenzenesu lfonamide* (**3f**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (67 mg, 88%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.75-7.66 (m, 2H), 7.25 (d, *J*= 8.6 Hz, 2H), 6.85-6.69 (m, 2H), 6.37-6.21 (m, 2H), 5.62 (d, *J*= 8.3 Hz, 1H), 3.78 (dd, *J*= 11.5, 4.1 Hz, 1H), 3.66 (dd, *J*= 11.5, 3.8 Hz, 1H), 3.42-3.34 (m, 1H), 3.30-3.22 (m,1H), 2.42 (s, 3H), 1.47-1.35 (m, 2H), 1.27-1.16 (m, 2H), 0.79 (t, *J*= 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz,

Chloroform-*d*) δ = 155.9 (d, *J*= 235.5 Hz), 143.8 (d, *J*= 2.1 Hz), 143.7 , 137.3, 129.8 (2C), 127.0 (2C), 115.6 (d, *J*= 22.2 Hz, 2C), 114.3 (d, *J*= 7.4 Hz, 2C), 62.6, 56.0 (2C), 34.0, 21.5, 19.4, 13.8 ppm. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ = -127.68 (s, 1F) ppm; HRMS (ESI): calcd. for C₁₉H₂₆FN₂O₃S [M+H]⁺:381.1643, found: 381.1647.

(±)-*erythro-N*-(3-((4-Chlorophenyl)amino)-1-hydroxyhexan-2-yl)-4-methylbenzenes ulfonamide (**3g**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (63 mg, 79%) ¹H NMR (400 MHz, Chloroform-*d*) 7.68 (d, J= 8.3 Hz, 2H), 7.23 (d, J= 8.0 Hz, 2H), 6.99 (d, J= 8.8 Hz, 2H), 6.27 (d, J= 8.9 Hz, 2H). 5.64 (d, J= 8.3 Hz, 1H),4.01-3.88 (brs, 1H), 3.78 (dd, J= 11.5, 4.1 Hz, 1H), 3.66 (dd, J= 11.5, 3.8 Hz, 1H), 3.42-3.34 (m, 1H), 3.26 (m, 1H), 2.73-2.58)brs, 1H), 2.42 (s, 3H), 1.46-1.34 (m, 2H), 1.28-1.18 (m, 2H), 0.79 (t,

J= 7.3 Hz, 3H) ppm. 13C NMR (101 MHz, Chloroform-*d*) δ = 146.1, 143.8, 137.2, 129.8 (2C), 129.0 (2C), 127.0 (2C), 122.0, 114.3 (2C), 62.6, 56.1, 55.2, 33.8, 21.6, 19.4, 13.8 ppm. HRMS (ESI): calcd. for C₁₉H₂₆ClN₂O₃S [M+H]⁺:397.1347, found: 397.1355.

(±)-erythro-N-(3-((4-Bromophenyl)amino)-1-hydroxyhexan-2-yl)-4-methylbenzenes ulfonamide (**3h**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (74 mg, 84%). ¹H NMR (400 MHz, Chloroform-d) δ = 7.68 (d, J= 8.4 Hz, 2H), 7.23 (d, J= 8.1 Hz, 2H), 7.11 (d, J= 8.8 Hz, 2H), 6.22 (d, J= 8.9 Hz, 2H). 5.65 (d, J= 8.3 Hz, 1H), 4.02-3.94 (brs, 1H), 3.78 (dd, J= 11.5, 4.0 Hz, 1H), 3.66 (dd, J= 11.5, 3.8 Hz, 1H), 3.41-3.33 (m, 1H), 3.30-3.26 (m, 1H), 2.74-2.60 (brs, 1H), 2.42 (s, 3H), 1.47-1.32 (m, 2H),

1.31-1.15 (m, 2H), 0.79 (t, J= 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 146.5, 143.8, 137.1, 131.8 (2C), 129.8 (2C), 127.0 (2C), 114.7 (2C), 108.8, 62.6, 56.1, 54.9, 33.8, 21.6, 19.4, 13.8 ppm. HRMS (ESI): calcd. for C₁₉H₂₆BrN₂O₃S [M+H]⁺:441.0842, found: 441.0842.

(±)-*erythro-N-(1-Hydroxy-3-((2-iodophenyl)amino)hexan-2-yl)-4-methylbenzenesulf onamide* (**3i**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (79 mg, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.63 (d, *J*= 8.3 Hz, 2H), 7.60 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.21 (d, *J*= 8.0 Hz, 2H), 7.07 (m, 1H), 6.40 (m, 1H), 6.27 (dd, *J*= 8.3, 1.4 Hz, 1H), 5.46 (d, *J*= 8.0 Hz, 1H), 3.90-3.82 (m, 1H), 3.75-3.63 (m, 1H), 3.48-3.36 (m, 2H), 2.39 (s, 3H), 1.57-1.37 (m, 2H), 1.29-1.21 (m, 2H), 0.81 (t, *J*= 7.3 Hz, 3H) ppm. ¹³C NMR (101

MHz, Chloroform-*d*) δ = 146.6, 143.6, 139.2, 137.1, 129.8 (2C), 129.30, 127.0 (2C), 118.9, 110.8, 86.3, 62.4, 56.0, 55.3, 34.0, 21.6, 19.4, 13.9 ppm. HRMS (ESI): calcd. for C₁₉H₂₆IN₂O₃S [M+H]⁺:489.0703, found: 441.0712.

(±)-erythro-N-(1-Hydroxy-3-((4-(trifluoromethyl)phenyl)amino)hexan-2-yl)-4-met hylbenzenesulfonamide (**3**j) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (73 mg, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.66 (m, 2H), 7.29-7.25 (m, 2H), 7.21 (d, *J*= 8.0 Hz, 2H), 6.35 (d, *J*= 8.5 Hz, 2H), 5.63 (d, *J*= 7.9 Hz, 1H), 3.88-3.76 (m, 1H), 3.75-3.65 (m, 1H), 3.44-3.32 (m, 2H), 2.41 (s, 3H), 1.52-1.37 (m, 2H), 1.25-1.18 (m, 2H), 0.81 (t, *J*= 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ =

150.1, 143.9, 137.0, 129.8 (2C), 127.0 (2C), 126.5 (q, J= 3.8 Hz, 2C), 124.9 (q, J= 270.3 Hz), 118.7 (q, J= 32.5 Hz), 112.0 (2C), 62.6, 55.9, 54.4, 33.8, 21.5, 19.4, 13.8 ppm. ¹⁹F NMR (376 MHz, Chloroform-d) δ= -61.03 (s, 3F) ppm; HRMS (ESI): calcd. for C₂₀H₂₆F₃N₂O₃S [M+H]⁺:431.1611, found: 431.1612.

(±)-*erythro-N*-(*1*-Hydroxy-3-(*indolin-1-yl*)*hexan-2-yl*)-4-*methylbenzenesulfonamide* (**3k**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (65 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.81-7.75 (m, 2H), 7.31 (d, *J*= 8.0 Hz, 2H), 7.01-6.92 (m, 2H), 6.54 (m, 1H), 6.18 (d, *J*= 7.8 Hz, 1H), 5.35 (d, *J* = 9.1 Hz, 1H) 3.56 (dd, *J*= 11.0, 3.8 Hz, 1H), 3.53-3.38 (m, 2H), 3.34 (dd, *J*= 10.9, 8.0 Hz, 2H), 3.29-3.20 (m, 1H), 3.01-2.83 (m, 2H), 2.43 (s, 3H), 1.65 (m, 1H), 1.43 (m, 1H), 1.15 (m, 2H), 0.78 (t, *J*= 7.3 Hz, 3H). ppm. ¹³C

NMR (101 MHz, Chloroform-*d*) δ = 151.5, 143.7, 137.9, 129.8 (2C), 128.4, 127.4, 127.1 (2C), 124.8, 116.7, 105.1, 61.6, 57.2, 54.8, 46.1, 30.2, 28.1, 21.6, 20.1, 13.9 ppm. HRMS (ESI): calcd. for C₂₁H₂₉N₂O₃S [M+H]⁺:389.1893, found: 389.1893.

(±)-*erythro-N*-(3-(2,3-*Dihydro-4H-benzo[b]*[1,4]*oxazin-4-yl*)-1-*hydroxyhexan-2-yl*)-4-*methylbenzenesulfonamide* (**3**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (55 mg, 68%).¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.67 (d, *J*= 8.0 Hz, 2H), 7.51 (d, *J*= 9.4 Hz, 1H), 7.34 (d, *J*= 8.0 Hz, 2H), 6.75 (d, *J*= 8.2 Hz, 1H), 6.73-6.67 (m, 1H), 6.64 (dd, *J*= 7.8, 1.4 Hz, 1H), 6.43 (t, *J*= 8.0 Hz 1H), 4.12-3.98 (m, 2H), 3.96-3.90 (1H), 3.45-3.40 (m, 1H), 3.35-3.28 (m, 1H), 3.25-3.20 (m, 1H), 3.13 (dd, *J*= 10.7, 7.2 Hz, 1H), 2.98 (dd, *J*=

10.7, 4.4 Hz, 1H), 2.37 (s, 3H), 1.59-1.49 (m, 2H), 1.24-1.17 (m, 1H), 1.12- 1.00 (m, 1H), 0.80 (t, J= 7.3 Hz, 3H).¹³C NMR (101 MHz, DMSO- d_6) δ = 143.5, 142.8, 139.9, 134.0, 129.9 (2C), 126.8 (2C), 121.7, 116.4, 115.9, 111.3, 64.5, 61.0, 56.9, 53.9 (2C), 28.3, 21.4, 19.8, 14.4 ppm. HRMS (ESI): calcd. for C₂₁H₂₉N₂O₄S [M+H]⁺:405.1843, found: 405.1844.

(±)-*erythro-N-(3-((4-(3-Ethyl-2,6-dioxopiperidin-3-yl)phenyl)amino)-1-hydr* oxyhexan-2-yl)-4-methylbenzenesulfonamide (**3m**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a white solid (78 mg, 76%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.71 (dd, *J*= 8.2, 1.5 Hz, 2H), 7.28-7.23 (m, 2H), 7.00-6.92 (m, 2H), 6.43-6.30 (m, 2H), 3.77 (dd, *J*= 11.0, 3.1 Hz, 1H), 3.69-3.56 (m, 1H), 3.42-3.3.29 (m, 2H), 2.62-2.46 (m, 2H), 2.42 (s, 3H), 2.32-2.24 (m, 1H), 2.22-2.10 (m, 1H), 2.06-1.92 (m, 1H), 1.90-1.80 (m, 1H), 1.52-1.38 (m, 2H), 1.32-1.18 (m, 2H),

0.85 (t, J= 8.0, 3H), 0.80 (t, J= 8.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-d) δ = 175.7, 172.8, 146.8, 143.7, 137.5, 129.8 (2C), 127.1 (2C), 127.0 (3C), 113.5 (2C), 62.4, 56.1, 55.2, 50.2, 34.2, 32.9, 29.4, 26.9, 21.6, 19.4, 13.8, 9.0 ppm. HRMS (ESI): calcd. for C₂₆H₃₆N₃O₅S [M+H]⁺:502.2370, found: 502.2372...

(±)-*erythro-N*-(*1*-Hydroxy-3-(((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11, 12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)amino)he xan-2-yl)-4-methylbenzenesulfonamide (**3n**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a white solid (78 mg, 92%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.79-7.70 (m, 2H), 7.30 (d, *J*= 8.0 Hz, 2H), 7.03 (d, *J*= 8.4 Hz, 1H), 6.24 (dt, *J*= 8.4, 2.8 Hz, 1H), 6.18 (dd, *J*= 10.9, 2.5 Hz, 1H), 5.45 (d, *J*= 8.3 Hz, 1H), 3.78 (dd, *J*= 11.5, 3.9 Hz, 1H), 3.67 (dd, *J*= 11.5, 1.0 Hz, 1H), 3.41-3.34 (m, 1H),

3.29-3.20 (m, 1H), 2.89-2.69 (m, 2H), 2.50 (dd, *J*= 18.8, 8.5 Hz, 1H), 2.45 (s, 3H), 2.39-2.30 (m, 1H), 2.20 (d, *J*= 14.6 Hz, 1H), 2.17-2.07 (m, 1H), 2.07-1.90 (m, 2H), 1.68-1.54 (m, 2H), 1.54-1.34 (m, 8H), 1.30-1.14

(m, 2H), 0.91 (s, 3H), 0.80 (t, J= 8.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-d) δ = 221, 145.4, 143.6, 137.6, 137.4, 129.8 (2C), 129.6, 127.1 (2C), 126.2, 113.7, 111.4, 62.5, 56.2, 55.6, 55.5, 50.4, 48.1, 44.0, 38.5, 35.9, 34.5, 31.6, 29.7, 26.7, 25.9, 21.6, 19.4, 13.9 (2C) ppm. HRMS (ESI): calcd. for C₃₁H₄₃N₂O₄S [M+H]⁺:539.2938, found: 529.2947.

(±)-*erythro-N-*(*1-((3,5-Dimethoxyphenyl)amino)-3-hydroxy-1-phenylpropan-2-yl)* -*4-methylbenzenesulfonamide* (**30**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a white solid (82 mg, 89%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.82-7.75 (m, 2H), 7.29-7.22 (m, 5H), 7.22-7.14 (m, 2H), 5.77 (t, *J*= 2.1 Hz, 1H), 5.59 (d, *J*= 8.8 Hz, 1H), 5.49 (d, *J*= 2.1 Hz, 1H), 4.34 (dd, *J*= 7.8, 4.1 Hz, 1H), 3.62 (s, 6H), 3.61-3.57 (m, 1H), 3.52-3.48 (m, 2H), 2.41 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.4 (2C), 148.4, 144.0, 138.9, 137.2 (2C), 130.0 (2C), 128.9, 127.7 (2C), 127.0 (2C), 126.8 (2C), 92.3, 89.9, 62.1, 59.2, 57.7, 55.0 (2C), 21.6 ppm. HRMS (ESI):

calcd. for $C_{24}H_{29}N_2O_5S$ [M+H]⁺:457.1792, found: 457.1789.

(±)-*erythro-N-(3-Hydroxy-1-((2-(hydroxymethyl)phenyl)(methyl)amino)-1-phenylpropa n-2-yl)-4-methylbenzenesulfonamide* (**3p**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a white solid (70 mg, 88%).¹H NMR (400 MHz, DMSO-*d*6) δ = 7.65-7.58 (m, 2H), 7.51 (d, *J*= 8.6 Hz, 1H), 7.32-7.22 (m, 6H), 7.22-7.13 (m, 1H), 6.88 (t, *J*= 7.9 Hz, 1H), 6.43 (dd, *J*= 5.0, 1.9 Hz, 2H), 6.20-6.08 (m, 1H), 5.80 (d, *J*= 7.6 Hz, 1H), 4.50 (dd, *J*= 7.6, 4.9 Hz, 1H), 4.30 (d, *J*= 5.4 Hz, 2H), 3.53-3.42 (m, 1H), 3.29-3.17 (m, 1H), 3.19-3.11 (m, 1H), 2.34 (s, 3H)

ppm. ¹³C NMR (101 MHz, DMSO- d_6) δ = 147.6, 143.5, 142.9, 140.6, 138.9, 129.9 (2C), 128.9, 128.4 (2C), 128.2 (2C), 127.3, 126.9 (2C), 114.9, 111.6, 111.2, 63.6, 60.0, 59.5, 57.3, 21.4 ppm. HRMS (ESI): calcd. for C₂₃H₂₇N₂O₄S [M+H]⁺:427.1686, found: 427.1689.

(±)-*erythro-N-(3-Hydroxy-1-phenyl-1-(quinolin-8-ylamino)propan-2-yl)-4-methylbenze nesulfonamide* (**3q**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a white solid (77 mg, 86%). ¹H NMR (400 MHz, DMSO- d_6) δ = 8.81 (dd, *J*= 4.2, 1.7 Hz, 1H), 8.18 (dd, *J*= 8.3, 1.8 Hz, 1H), 7.77-7.69 (m, 2H), 7.67 (d, *J*= 7.8 Hz, 1H), 7.57 (d, *J*= 8.4 Hz, 1H), 7.51 (dd, *J*= 8.3, 4.2 Hz, 1H), 7.38-7.32 (m, 2H), 7.31-7.25 (m, 4H), 7.23-7.17 (m, 1H), 7.15 (t, *J*= 7.9 Hz, 1H), 7.00 (dd, *J*= 8.2, 1.2 Hz, 1H), 6.21 (dd, *J*= 7.9, 1.2 Hz, 1H), 5.06 (brs, 1H), 4.83 (dd, *J*= 7.7, 3.9 Hz, 1H), 3.72-3.62 (m, 1H), 3.25-3.10 (m, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ = 147.6, 143.8, 142.9, 139.7, 139.0, 138.2, 136.3, 129.9 (2C), 128.7, 128.6

(2C), 128.1 (2C), 127.9, 127.6 , 127.1 (2C), 122.2, 113.9, 105.8, 60.1, 58.9, 57.5, 21.4 ppm. HRMS (ESI): calcd. for $C_{25}H_{26}N_3O_3S$ [M+H]⁺: 448.1695, found: 448.1703.

(±)-*erythro-N-(3-Hydroxy-1-(methyl(phenyl)amino)-1-phenylpropan-2-yl)-4-methylbenz enesulfonamide* (**3r**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (66 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.62-7.56 (m, 2H), 7.27-7.21 (m, 4H), 7.21-7.16 (m, 1H), 7.13-7.07 (m, 2H), 6.93-6.84 (m, 4H), 6.83-6.80 (m, 1H), 4.98 (d, *J*= 10.8 Hz, 1H), 4.79-4.61 (m, 1H), 4.06 (m, 1H), 3.86 (m, 2H), 2.44 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 150.1, 143.6, 137.1, 134.7, 129.7 (2C), 129.3 (2C), 128.3 (2C), 128.3 (2C), 127.7, 127.2 (2C), 118.90, 115.5 (2C), 64.5, 61.8, 54.4, 32.3, 21.6. HRMS (ESI):

(±)-*erythro-N-(1-(3,4-Dihydroquinolin-1(2H)-yl)-3-hydroxy-1-phenylpropan-2-yl)-4-me thylbenzenesulfonamide* was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (67 mg, 77%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.62-7.56 (m, 2H), 7.25-7.21 (m, 2H), 7.19-7.16 (m, 1H), 7.14-7.10 (m, 2H), 7.08-7.03 (m, 4H), 6.91-6.87 (m, 1H), 6.66-6.52 (m, 1H), 5.13 (d, *J*= 10.7 Hz, 1H), 4.85 (d, *J*= 7.4 Hz, 1H), 4.10 (td, *J*= 7.5, 3.7 Hz, 1H), 3.85-3.74 (m, 2H), 3.05-2.95 (m, 1H), 2.85-2.74 (m, 1H), 2.64-2.55 (m, 2H), 2.43 (s, 3H), 1.75-1.62 (m, 1H),

1.55-1.45 (m, 1H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 145.0, 143.6, 137.3, 135.9, 129.9, 129.7 (2C), 128.5 (2C), 128.4 (2C), 127.7, 127.3, 127.2 (2C), 123.5, 117.0, 112.3, 61.6, 60.6, 54.4, 43.0, 28.1, 21.6, 21.5 ppm. HRMS (ESI): calcd. for C₂₅H₂₉N₂O₃S [M+H]⁺:437.1893, found: 437.1893.

(±)-*erythro-N-(1-((3,5-Dimethoxyphenyl)amino)-3-hydroxy-1-(3-methoxyphenyl) propan-2-yl)-4-methylbenzenesulfonamide* (**3t**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (82 mg, 84%). ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.61-7.55 (m, 2H), 7.54 (d, *J*= 8.7 Hz, 1H), 7.27-7.22 (m, 2H), 7.17 (t, *J*= 7.9 Hz, 1H), 6.86 (dt, *J*= 7.7, 1.2 Hz, 1H), 6.80 (dd, *J*= 2.6, 1.5 Hz, 1H), 6.75 (ddd, *J*= 8.2, 2.6, 0.9 Hz, 1H), 5.68 (t, *J*= 2.1 Hz, 1H), 5.54 (d, *J*= 2.2 Hz, 2H), 4.38 (m, 1H), 3.68 (s, 3H), 3.57 (s, 6H), 3.45-3.36 (m, 1H), 3.27 (dd, *J*= 10.9, 4.7 Hz, 1H), 3.23-3.14 (m, 1H), 2.33 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 161.3 (2C), 159.5, 149.6, 142.8, 142.4, 138.9, 129.8 (2C), 129.4, 126.9 (2C), 120.5, 113.9, 112.3, 92.1 (2C), 89.1, 60.2,

59.4, 57.5, 55.2, 55.1 (2C), 21.4. HRMS (ESI): calcd. for C₂₅H₃₁N₂O₆S [M+H]⁺:487.1897, found: 487.1902.

(±)-*erythro-N-(1-(3-Chlorophenyl)-1-((3,5-dimethoxyphenyl)amino)-3-hydroxypr opan-2-yl)-4-methylbenzenesulfonamide* (**3u**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a yellow syrup (78 mg, 80%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.77-7.72 (m, 2H), 7.29-7.24 (m, 2H), 7.20-7.15 (m, 2H), 7.14-7.11 (m, 1H), 7.09-7.03 (m, 1H), 5.80 (t, *J*= 2.1 Hz, 1H), 5.64 (d, *J*= 8.6 Hz, 1H), 5.48 (d, *J*= 2.2 Hz, 2H), 4.35-4.28 (m, 1H), 3.64 (s, 6H), 3.61-3.55 (m, 1H), 3.55-3.49 (m, 2H), 2.41 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.5 (2C), 148.1, 144.0, 141.5, 137.1, 134.8, 130.1, 130.0 (2C), 127.9, 127.0 (2C), 126.9, 125.1, 92.3 (2C), 90.1, 62.0, 59.1, 57.6, 55.1 (2C), 21.5 ppm. HRMS (ESI): calcd. for C₂₄H₂₈ClN₂O₅S

(±)-*erythro-N-(1-((3,5-Dimethoxyphenyl)amino)-1-(4-fluorophenyl)-3-hydroxypro pan-2-yl)-4-methylbenzenesulfonamide* (**3v**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a yellow syrup (84 mg, 89%). ¹H NMR (400 MHz, DMSO-d6) δ = 7.57-7.48 (m, 2H), 7.35-7.21 (m, 4H), 7.09-6.93 (m, 2H), 5.91 (d, *J*= 7.7 Hz, 1H), 5.67 (t, *J*= 2.1 Hz, 1H), 5.52 (d, *J*= 2.2 Hz, 2H), 4.86 (t, *J*= 5.0 Hz, 1H), 4.42 (dd, *J*= 7.7, 5.7 Hz, 1H), 3.57 (s, 6H), 3.48-3.37 (m, 1H), 3.32-3.22 (m, 1H), 3.22-3.09 (m, 1H), 2.35 (s, 3H) ppm. ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 161.7 (d, *J*= 242.4 Hz), 161.4 (2C), 149.3,

142.8 138.9, 136.7 (d, J= 2.9 Hz), 129.9 (d, J= 6.8 Hz, 2C), 129.9 (2C), 126.8 (2C), 115.1 (d, J= 21.2 Hz, 2C), 92.1 (2C), 89.2, 60.3, 59.3, 56.5, 55.1 (2C), 21.4. ¹⁹F NMR (376 MHz, DMSO-d6) δ = -113.09 (s, 1F)

ppm; HRMS (ESI): calcd. for C₂₄H₂₈FN₂O₅S [M+H]⁺:475.1697, found: 475.1699.

(±)-erythro-N-(1-(4-Bromophenyl)-1-((3,5-dimethoxyphenyl)amino)-3-hydroxypr opan-2-yl)-4-methylbenzenesulfonamide (**3w**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a yellow syrup (89 mg, 84%).¹H NMR (400 MHz, CDCl₃) δ = 7.74 (d, *J*= 8.2 Hz, 2H), 7.37 (d, *J*= 8.4 Hz, 2H) 7.28 (d, *J*= 8.2 Hz, 2H), 7.05 (d, *J*= 8.4 Hz, 2H), 5.80 (t, *J*= 2.1 Hz, 1H), 5.48 (d, *J*= 2.1 Hz, 2H), 5.31 (d, *J*= 8.0 Hz, 1H), 4.31 (dd, *J*= 7.7, 4.2 Hz, 1H), 3.65 (s, 6H), 3.57 (dd, *J*= 8.6, 4.1 Hz, 2H), 3.55-3.45 (m, 1H), 2.43 (s, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ =161.5 (2C), 148.1, 144.0, 138.0, 137.2, 132.0 (2C), 130.0 (2C), 128.6 (2C), 127.0 (2C), 121.6, 92.4 (2C), 90.1, 62.1, 58.8, HBMS (ESD); colod, for C: Happine Cas IM + H1+525 0807, found: 525 0805

57.5, 55.1 (2C), 21.6 ppm. HRMS (ESI): calcd. for C₂₄H₂₈BrN₂O₅S [M+H]⁺:535.0897, found: 535.0895.

(±)-*erythro-N*-(3-((3,5-Dimethoxyphenyl)amino)-1-hydroxyundecan-2-yl)-4-meth ylbenzenesulfonamide (**3x**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:2) as a yellow syrup (97 mg, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.75-7.70 (m, 2H), 7.30-7.26 (m, 2H), 5.85 (t, *J*= 2.1 Hz, 1H), 5.59 (d, *J*= 2.1 Hz, 2H), 5.45 (d, *J*= 8.3 Hz, 1H), 3.83-3.76 (m, 1H), 3.72 (s, 6H), 3.71-3.63 (m, 1H), 3.40-3.30 (m, 1H), 3.25-3.15 (m, 1H), 2.43 (s, 3H), 1.43 (dd, *J*= 8.7, 5.1 Hz, 2H), 1.32-1.04 (m, 12H), 0.87 (t, *J*= 7.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.7 (2C), 149.4, 143.7, 137.3,

129.9 (2C), 127.1 (2C), 92.2 (2C), 90.0, 62.5, 56.0, 55.3, 55.1 (2C), 32.0, 31.8, 29.4, 29.3, 29.2, 26.1, 22.7, 21.6, 14.1 ppm. HRMS (ESI): calcd. for C₂₆H₄₁N₂O₅S [M+H]⁺:493.2731, found: 493.2725.

 (\pm) -erythro-N-(3-((3,5-Dimethoxyphenyl)amino)-1-hydroxy-5-phenylpentan-2-yl)-4-methylbenzenesulfonamide was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (73 mg, 75%) ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.71 (d, *J*= 8.0 Hz, 2H), 7.48 (d, *J*= 7.9 Hz, 1H), 7.24 (d, *J*= 8.0 Hz, 2H), 7.16 (t, *J*= 7.4 Hz, 1H), 7.11-7.00 (m, 2H), 5.86 (t, *J*= 2.1 Hz, 1H), 5.64 (d, *J*= 2.0 Hz, 2H), 5.47 (d, *J*= 8.3 Hz, 1H), 3.81 (dd, *J*= 11.5, 3.7 Hz, 1H), 3.71 (s, 6H), 3.65 (dd, *J*= 11.5, 3.7 Hz, 1H), 3.41 (dd, *J*= 8.4, 4.3 Hz, 1H), 3.40-3.30 (m, 1H), 2.68 (dd, *J*= 10.2, 5.0 Hz, 1H), 2.66-2.58 (m, 1H), 2.40 (s, 3H), 1.89-1.80 (m, 1H), 1.67 (dd, *J*= 9.3, 4.6 Hz, 1H) ppm. ¹³C NMR

 $(101 \text{ MHz}, \text{Chloroform-}d) \delta = 161.7 (2C), 149.3, 143.7, 140.4, 137.2, 132.8, 130.4, 129.9 (2C), 127.8, 127.6, 127.1 (2C), 124.2, 92.3 (2C), 90.3, 62.5, 56.4 (2C), 55.2, 33.1, 32.4, 21.6 ppm. HRMS (ESI): calcd. for C₂₆H₃₂BrN₂O₅S [M+H]⁺:563.1215, found: 563.1215.$

(±)-*N*-(*1*-((*3*,5-*Dimethoxyphenyl*)*amino*)-*3*-*hydroxypropan*-2-*yl*)-*4*-*methylbenze nesulfonamide* (**3z**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (66 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J*= 8.3 Hz, 2H), 7.24 (d, *J*= 8.0 Hz, 2H), 5.86 (t, *J*= 2.1 Hz, 1H), 5.64 (d, *J*= 2.1 Hz, 2H), 5.50 (d, *J*= 7.1 Hz, 1H), 3.71 (s, 6H), 3.63 (d, *J*= 3.8 Hz, 2H), 3.52-3.37 (m, 1H), 3.23-3.10 (m, 2H), 2.40 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.7 (2C), 149.3, 143.8, 136.8, 129.8 (2C), 127.1 (2C) , 91.8 (2C), 90.4, 63.1, 55.2 (2C), 53.7, 44.9, 21.5 ppm. HRMS

(ESI): calcd. for C₁₈H₂₅N₂O₅S [M+H]⁺:381.1479, found: 381.1488..

(±)-1,2-anti-2,3-anti-N-(1-((3,5-Dimethoxyphenyl)amino)-3-hydroxypropan-2-yl)-4-methylbenzenesulfonamide (**3aa**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (71 mg, 85%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.80-7.62 (m, 2H), 7.37-7.21 (m, 2H), 5.84 (t, *J*= 2.1 Hz, 1H), 5.51 (d, *J*= 2.2 Hz, 2H), 5.42 (d, *J*= 8.9 Hz, 1H), 4.15-4.09 (m, 1H), 3.72 (s, 6H), 3.24-3.16 (m, 1H), 3.00-2.92 (m, 1H), 2.45 (s, 3H), 1.52 (td, *J*= 13.8, 13.3, 6.5 Hz, 1H), 1.43 (dd, *J*= 14.3, 7.2 Hz, 1H), 1.19 (d, *J*= 6.3 Hz, 3H), 0.78 (t, *J*= 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.6 (2C),

149.5, 143.6, 137.8, 129.9 (2C), 127.0 (2C), 92.4 (2C), 89.9, 66.4, 58.0, 57.9, 55.1 (2C), 25.2, 21.6, 21.5, 10.9 ppm. HRMS (ESI): calcd. for $C_{21}H_{31}N_2O_5S$ [M+H]⁺:423.1948, found: 423.1958.

(±)-*erythro-N*-(4-(*Benzyloxy*)-3-((3,5-*dimethoxyphenyl*)*amino*)-1-*hydroxybutan*-2yl)-4-*methylbenzenesulfonamide* (**3ab**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (98 mg, 98%).¹H NMR (400 MHz, Chloroform-*d*) δ = 7.73-7.67 (m, 2H), 7.39-7.32 (m, 3H), 7.30-7.21 (m, 4H), 5.85 (t, *J*= 2.1 Hz, 1H), 5.62 (d, *J*= 2.1 Hz, 2H), 4.57-4.38 (m, 2H), 3.71 (s, 6H), 3.72-3.62 (m, 2H), 3.59-3.50 (m, 3H), 3.40-3.30 (m, 1H), 2.40 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.8

(2C), 148.1, 143.7, 137.1, 136.9, 129.8 (2C), 128.7 (2C), 128.3, 128.0 (2C), 127.1 (2C), 92.1 (2C), 90.2, 73.8, 68.4, 62.9, 56.1, 55.2 (2C), 54.0, 21.5 ppm. HRMS (ESI): calcd. for $C_{26}H_{33}N_2O_6S$ [M+H]⁺:501.2054, found: 501.2051.

(±)-tert-butyl((2R,3R)-3-((3,5-dimethoxyphenyl)amino)-1-hydroxyhexan-2-yl)carb amate (**3ad**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (33mg, 45%).¹H NMR (400 MHz, Chloroform-*d*) δ = 5.86 (t, *J*= 2.1 Hz, 1H), 5.82 (d, *J*= 2.1 Hz, 2H), 5.24 (d, *J*= 8.7 Hz, 1H), 3.88-3.77 (m, 2H), 3.74 (s, 6H), 3.72-3.66 (m, 1H), 3.62-3.51 (m, 1H), 1.64-1.49 (m, 2H), 1.44 (s, 9H), 1.39-1.25 (m, 2H), 0.90 (t, *J*= 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 161.8 (2C), 156.0, 150.2, 92.0 (2C), 89.7, 79.7, 62.5, 55.4, 55.1, 54.0, 35.2, 28.3 (3C), 19.5, 14.1 ppm. HRMS (ESI):

calcd. for $C_{19}H_{33}N_2O_5$ [M+H]⁺:369.2389, found: 369.2383.

(±)-erythro-N-(1-Hydroxy-3-(phenylthio)hexan-2-yl)-4-methylbenzenesulfonamide (**5a**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (51 mg, 68%).¹H NMR (400 MHz, CDCl₃) δ = 7 .71 (dd, *J*= 8.5, 1.9 Hz, 2H), 7.32-7.16 (m, 5H), 7.03-6.82 (m, 2H), 3.81-3.69 (m, 1H), 3.62-3.54 (m, 1H), 3.50-3.40 (m, 1H), 3.02-2.94 (m, 1H), 2.42 (s, 3H), 1.66-1.57 (m, 1H), 1.53-1.21 (m, 3H), 0.81 (t, *J*= 7.1 Hz, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ = 147.5, 143.6, 137.4, 129.8 (2C), 129.3 (2C), 127.1 (2C), 117.8, 113.4 (2C), 62.6,

56.2, 55.1, 34.2, 21.6, 19.4, 13.9 ppm. HRMS (ESI): calcd. for $C_{19}H_{25}NNaO_3S_2$ [M+H]⁺:402.1168, found: 402.1169.

(\pm)-*N*-(*1*-Hydroxy-3-((4-methoxyphenyl)thio)hexan-2-yl)-4-methylbenzenesulfona mide (**5b**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (45 mg, 55%). ¹H NMR (400 MHz, CDCl₃)

δ= 7.69 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 7.18 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.8 Hz, 2H), 5.39 (d, J= 8.4 Hz, 1H), 3.80 (s, 3H), 3.78-3.73 (m, 1H), 3.60-3.50 (m, 1H), 3.48-3.39 (m, 1H), 2.85-2.79 (m, 1H), 2.41 (s, 3H), 1.62-1.51 (m, 1H), 1.47-1.26 (m, 3H), 0.79 (t, J= 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ= 159.6, 143.6, 137.4, 134.8 (2C), 129.7 (2C), 127.2 (2C), 124.8 (2C), 114.8, 62.1, 58.2, 55.4, 54.1, 34.4, 21.6, 20.5, 13.6 ppm. HRMS (ESI): calcd. for C₂₀H₂₇NNaO₄S₂ [M+H]⁺:432.1274, found: 432.1280.

(±)-*N*-(*1*-Hydroxy-3-((2-methoxyphenyl)thio)hexan-2-yl)-4-methylbenzenesulfonami de (**5c**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (54 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ = 7.50 (d, *J*= 8.3 Hz, 2H), 7.39-7.25 (m, 2H), 7.16-7.10 (m, 2H), 6.96 (d, *J*= 8.2 Hz, 1H), 6.91 (td, *J*= 7.5, 0.8 Hz, 1H), 3.99 (s, 3H), 3.90-3.72 (m, 1H), 3.62-3.52 (m, 1H), 3.36 (m, 1H), 2.65-2.55 (m, 1H), 2.36 (s, 3H), 1.56-1.45 (m, 2H), 1.44-1.18 (m, 2H), 0.73 (t, *J*= 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 158.9, 143.4, 137.2,

136.5, 130.4, 129.7 (2C), 127.0 (2C), 122.5, 121.5, 111.4, 61.8, 58.1, 56.2, 54.0, 35.8, 21.5, 20.3, 13.4 ppm. HRMS (ESI): calcd. for $C_{20}H_{27}NNaO_4S_2$ [M+H]⁺:432.1274, found: 432.1280.

(±)-*N*-(3-((4-Chlorophenyl)thio)-1-hydroxyhexan-2-yl)-4-methylbenzenesulfonamid e (**5d**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (37 mg, 45%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.65-7.60 (m, 2H), 7.18 (d, *J*= 7.8 Hz, 2H), 7.14-7.08 (m, 2H), 7.08-7.03 (m, 2H), 3.69 (dd, *J*= 11.6, 5.8 Hz, 1H), 3.51 (dd, *J*= 11.6, 4.0 Hz, 1H), 3.40 (m, 1H), 3.03-2.91 (m, 1H), 2.36 (s, 3H), 1.62-1.50 (m, 1H), 1.45-1.31 (m, 2H), 1.31-1.16 (m, 1H), 0.75 (t, *J*= 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 143.8,

137.3, 133.5, 133.3, 132.6 (2C), 129.8 (2C), 129.2 (2C), 127.1 (2C), 62.0, 57.8, 53.1, 34.5, 21.6, 20.5, 13.6 ppm. HRMS (ESI): calcd. for $C_{19}H_{24}CINNaO_3S_2$ [M+Na]⁺:436.0778, found: 436.0780.

(±)-*N*-(*3*-((*4*-*Bromophenyl*)*thio*)-*1*-*hydroxyhexan*-2-*yl*)-*4*-*methylbenzenesulfonamid e* (**5e**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (72 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.74-7.64 (m, 2H), 7.37-7.30 (m, 2H), 7.30-7.18 (m, 2H), 7.12-6.98 (m, 2H), 5.48 (d, *J*= 8.3 Hz, 1H), 3.84-3.74 (m, 1H), 3.63-3.55 (m, 1H), 3.52-3.44 (m, 1H), 3.05 (dt, *J*= 8.4, 5.2 Hz, 1H), 2.42 (s, 3H), 1.69-1.58 (m, 1H), 1.50-1.40 (m, 2H), 1.38-1.25 (m, 1H), 0.81 (t, *J*= 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz,

Chloroform-*d*) δ = 143.7, 137.3, 134.4, 132.7 (2C), 132.1 (2C), 129.8 (2C), 127.1 (2C), 121.1, 62.0, 57.8, 52.8, 34.4, 21.6, 20.5, 13.7 ppm. HRMS (ESI): calcd. for C₁₉H₂₄BrNNaO₃S₂ [M+Na]⁺:480.0273, found: 480.0287.

(±)-*N*-(*3*-((*4*-*Fluorophenyl*)*thio*)-*1*-*hydroxyhexan*-2-*yl*)-*4*-*methylbenzenesulfonamide* (**5f**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (72 mg, 84%).¹H NMR (400 MHz, Chloroform-*d*) δ = 7.73-7.66 (m, 2H), 7.26 (dd, *J*= 8.5, 0.8 Hz, 2H), 7.25-7.15 (m, 1H), 7.0-6.97 (m, 1H), 6.94-6.86 (m, 1H), 6.92-6.76 (m, 1H), 5.37 (d, *J*= 8.4 Hz, 1H), 3.79-3.69 (m, 1H), 3.65-3.55 (m, 1H), 3.56-3.46 (m, 1H), 3.09 (dt, *J*= 8.5, 5.2 Hz, 1H), 2.42 (s, 3H), 1.70-1.60 (m, 1H), 1.49-1.40 (m, 2H), 1.38-1.30 (m, 1H), 0.82 (t, *J*= 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ = 162.7 (d, *J*= 249.0 Hz), 143.9, 137.5 (d,

J = 7.3 Hz), 137.2, 130.4 (d, J = 8.6 Hz), 129.8 (2C), 127.1 (2C), 126.2 (d, J = 3.0 Hz), 117.3 (d, J = 22.7 Hz), 114.0 (d, J = 21.1 Hz), 62.1, 57.8, 52.2, 34.4, 21.5, 20.5, 13.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -111.59$

(±)-*N*-(1-Hydroxy-3-((3-(trifluoromethyl)phenyl)thio)hexan-2-yl)-4-methylbenzene sulfonamide (**5f**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (59 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ = 7.74-7.65 (m, 2H), 7.47-7.39 (m, 2H), 7.27-7.18 (m, 4H), 3.78 (dd, *J*= 11.4, 5.7 Hz, 1H), 3.67-3.56 (m, 1H), 3.54 (d, *J*= 4.6 Hz, 1H), 3.31-3.18 (m, 1H), 2.40 (s, 3H), 1.72-1.64 (m, 1H), 1.53-1.41 (m, 2H), 1.41-1.31 (m, 1H), 0.84 (t, *J*= 7.2 Hz, 3H) ppm. 13C NMR (101 MHz, Chloroform-*d*) δ = 143.8, 140.8,

137.2, 129.8 (2C), 129.5 (2C), 127.1 (2C), 125.9 (q, J= 111.1), 125.8 (q, J= 33.3 Hz), 122.6 (2C), 62.0, 57.6, 51.4, 34.4, 21.5, 20.5, 13.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ = -62.57 (s, 3F) ppm; HRMS (ESI): calcd. for C₂₀H₂₄F₃NNaO₃S₂ [M+Na]⁺:470.1042, found: 470.1048.

(±)-*N*-(*1*-Hydroxy-3-(naphthalen-2-ylthio)hexan-2-yl)-4-methylbenzenesulfonamide (**5h**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (72 mg, 84%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.82-7.77 (m, 1H), 7.72-7.66 (m, 3H), 7.65-7.60 (m, 2H), 7.5-7.44 (m, 2H), 7.29-7.24 (m, 1H), 7.17-7.05 (m, 2H), 5.38 (d, *J*= 8.4 Hz, 1H), 3.86-3.76 (m, 1H), 3.66-3.58 (m, 1H), 3.58-3.50 (m, 1H), 3.19-3.12 (m, 1H), 2.32 (s, 3H), 1.72-1.63 (m, 1H), 1.59-1.47 (m, 2H), 1.43-1.34 (m, 1H), 0.83 (t, *J*= 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 143.6, 137.2, 133.6, 132.3, 132.2, 129.9, 129.7 (2C), 128.8, 128.6, 127.7, 127.3, 127.0 (2C), 126.7, 126.4, 62.1, 58.0, 52.6, 34.6, 21.5,

20.6, 13.7 ppm. HRMS (ESI): calcd. for C₂₃H₂₈NO₃S₂ [M+H]⁺:430.1505, found: 430.1508.

(±)-*N*-(3-((4-Bromophenyl)thio)-1-hydroxyundecan-2-yl)-4-methylbenzenesulfonam ide (**5i**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (59mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ = 7.72-7.63 (m, 2H), 7.27-7.23 (m, 2H), 7.21-7.16 (m, 2H), 7.16-7.09 (m, 2H), 5.35 (d, *J*= 8.3 Hz, 1H), 3.86-3.66 (m, 1H), 3.65-3.55 (m, 1H), 3.52-3.39 (m, 1H), 3.13-2.89 (m, 1H), 2.43 (s, 3H), 1.70-1.59 (m, 1H), 1.48-1.36 (m, 1H), 1.36-1.05 (m, 12H), 0.88 (t, *J*= 7.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 143.8,

137.3, 133.6, 133.3, 132.7 (2C), 129.8 (2C), 129.2 (2C), 127.1 (2C), 62.1, 57.8, 53.3, 32.3, 31.8, 29.3, 29.2, 29.1, 27.2, 22.7, 21.6, 14.1 ppm. HRMS (ESI): calcd. for $C_{24}H_{34}BrNNaO_3S_2$ [M+H]⁺:550.1056, found: 430.1508.

(±)-*N*-(*1*-(*4*-*Chlorophenyl*)-*1*-((*4*-*chlorophenyl*)*thio*)-*3*-*hydroxypropan*-2-*yl*)-*4*-*meth ylbenzenesulfonamide* (**5j**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a white solid (46 mg, 48%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.60-7.55 (m, 2H), 7.21-7.16 (m, 2H), 7.14-7.11 (m, 2H), 7.10-7.07 (m, 3H), 7.03-6.97 (m, 3H), 4.19 (d, *J*= 7.0 Hz, 1H), 3.88 (d, *J*= 11.5 Hz, 1H), 3.77-3.60 (m, 2H), 2.40 (s, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 143.8, 140.4, 136.8, 134.5, 133.7, 133.0 (2C), 132.2, 129.8, 129.7 (2C), 129.1 (2C),

128.4, 128.0, 126.9 (2C), 126.8, 62.0, 59.0, 55.1, 21.6 ppm. HRMS (ESI): calcd. for $C_{22}H_{22}Cl_2NO_3S_2$ [M+H]⁺:482.0413, found: 482.0413.

(±)-*N*-(*1*-((*4*-*Bromophenyl*)*amino*)-*3*-*hydroxypropan*-2-*yl*)-*4*-*methylbenzenesulfona mide* (**5k**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a white solid (44 mg, 56%). ¹H NMR (400 MHz, CDCl3) δ = 7.68-7.64 (m, 2H), 7.24 (d, *J*= 8.0 Hz, 2H), 7.20-7.15 (m, 2H), 7.13-7.04 (m, 2H), 3.87-3.56 (m, 2H), 3.34-3.21 (m, 1H), 3.04-2.91 (m, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ = 143.9, 136.7, 133.2, 132.6, 130.7 (2C), 129.8 (2C), 129.2 (2C), 127.2 (2C), 62.8, 53.8, 35.1, 21.6. ppm. HRMS (ESI): calcd. for 1⁺:415.9984, found: 415.9984..

 $C_{16}H_{19}BrNO_{3}S_{2}\;[M{+}H]^{+}{:}415.9984,\;found{:}\;415.9984..$

(±)-1,2-anti-2,3-anti-N-(4-((4-Chlorophenyl)thio)-2-hydroxyhexan-3-yl)-4-methylbe nzenesulfonamide (**5**I) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (58mg, 71%). ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.70-7.61 (m, 2H), 7.27-7.22 (m, 3H), 7.19 (m, 4H), 5.37 (d, *J*= 8.7 Hz, 1H), 4.23-4.09 (m, 1H), 3.41-3.56 (m, 1H), 3.04-2.98 (m, 1H), 2.42 (s, 3H), 1.76-1.64 (m, 1H), 1.62-1.47 (m, 1H), 1.01 (d, *J*= 6.4 Hz, 3H), 0.98 (t, *J*= 7.3 Hz, 3H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*) δ = 143.5, 138.1, 134.1, 133.2, 132.6

(2C), 129.7 (2C), 129.2 (2C), 126.9 (2C), 65.9, 60.0, 56.8, 26.5, 21.6, 21.0, 12.2 ppm. HRMS (ESI): calcd. for $C_{19}H_{24}CINNaO_3S_2$ [M+Na]⁺:436.0778, found: 436.0779.

Unsuccessful Aziridines for the Zn-Catalyzed Ring Opening Reaction

Procedure for Derivatizations of the Ring Opening Product

Procedure for Synthesis of Compound 6

To the mixture of **3a** (840 mg, 2 mmol, 1 equiv) in THF (8 mL) at 0°C was added a solution of MsCl (252 mg, 2.2 mmol, 1.1 equiv) in THF (2 mL) dropwise, and the mixture was stirred at 0°C for 2h. The reaction was quenched by adding 20 mL saturated aq. NaCl solution, and the organic layer was separated, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was dissolved in THF/saturated aq. K₂CO₃=10:1 (10 mL), and then refluxed overnight, before the reaction was quenched with saturated aq. NH₄Cl solution. The organic layer was separated, dried over MgSO₄, filtered and concentrated under

reduced pressure. The residue was purified through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) to afford (\pm)-*3*,5-dimethoxy-N-(-1-1-tosylaziridin-2-yl)butyl)aniline **6** as a yellow syrup (790 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ = 7.77 (d, *J*= 8.4 Hz, 2H), 7.42-7.28 (m, 2H), 5.86 (t, *J*= 2.1 Hz, 1H), 5.71 (d, *J*= 2.1 Hz, 2H), 3.75 (s, 6H), 3.78-3.69 (m, 1H), 2.81 (dd, *J* = 11.8, 5.2 Hz, 1H), 2.59 (d, *J*= 7.0 Hz, 1H), 2.45 (s, 3H), 2.31 (d, *J*= 4.6 Hz, 1H), 1.51-1.38 (m, 2H), 1.38-1.24 (m, 2H), 0.84 (t, *J*= 6.9 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.7 (2C), 149.2, 144.7, 134.7, 129.7 (2C), 128.2 (2C), 92.2 (2C), 90.0, 55.2 (2C), 53.0, 42.7, 35.0, 32.4, 21.6, 18.9, 13.9 ppm. HRMS (ESI): calcd. for C₂₁H₂₉N₂O₄S [M+H]⁺:405.1843, found: 405.1843.

Procedure for Synthesis of Compounds 7 and 8

NuH: $PhNH_2$ or 3,4-(MeO)₂C₆H₃SH.

To a suspension of $Zn(OTf)_2$ (14.5 mg, 0.04 mmol, 20 mol%) in ethyl acetate (1 mL) were added **6** (80 mg, 0.2 mmol, 1 equiv) and aniline (27.9 mg, 0.3 mmol, 1.5 equiv) or 3,4-dimethoxy thiophenol (51 mg, 0.3 mmol, 1.5 equiv) at room temperature. The resulting mixture was heated to 70 °C and stirred at this temperature for 12 h. Then the reaction was cooled to room temperature, and the solvent was removed in vacuum. The residue was purified through column chromatography on silica gel (petroleum ether/ethyl acetate), affording the corresponding products **7** or **8**.

(±)-*N*-(*3*-((*3*,*5*-*Dimethoxyphenyl*)*amino*)-*1*-(*phenylamino*)*hexan*-2-*yl*)-4-*m ethylbenzenesulfonamide* was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (80 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ = 7.59 (d, *J*= 8.1 Hz, 2H), 7.17 (d, *J*= 7.9 Hz, 2H), 7.01 (t, *J*= 7.7 Hz, 2H), 6.59 (t, *J*= 7.2 Hz, 1H), 6.43 (d, *J*= 8.0 Hz, 2H), 5.81 (s, 1H), 5.59 (t, *J*= 3.7 Hz, 2H), 3.59 (s, 6H), 3.50-3.40 (m, 2H), 3.21-3.11 (m, 1H), 2.94-2.82 (m, 1H), 2.34 (s, 3H), 1.47-1.27 (m, 3H), 1.27-1.12 (m, 1H), 0.76 (t, *J*= 7.1 Hz, 2H) ppm. ¹³C NMR (101 MHz,

CDCl₃) δ = 161.8 (2C), 149.0, 148.3, 143.6, 136.6, 129.9 (2C), 129.5 (2C), 127.1 (2C), 117.9, 113.5 (2C), 92.7 (2C), 90.9, 55.9 (2C), 55.8, 55.2, 43.3, 35.1, 21.5, 19.7, 14.0 ppm. HRMS (ESI): calcd. for C₂₇H₃₆N₃O₄S [M+H]⁺:498.2421, found: 498.2422.

 (\pm) -N-(3-((3,5-Dimethoxyphenyl)amino)-1-((3,4-dimethoxyphenyl)thio)hexan-2-yl)-4-methylbenzenesulfona

mide (8) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 1:1) as a yellow syrup (95 mg, 83%). ¹H NMR (400 MHz, CDCl₃) δ = 7.73 (d, *J*= 7.6 Hz, 2H), 7.30 (d, *J*= 5.8 Hz, 2H), 6.93-6.87 (m, 1H), 6.76-6.65 (m, 2H), 5.86 (t, *J*= 2.0 Hz, 1H) 5.56 (d, *J*= 1.9 Hz, 2H), 3.95-3.85 (m, 1H), 3.84 (s, 3H), 3.76-3.65 (s, 6H), 3.63 (s, 3H), 3.40-3.30 (m, 1H), 3.25-3.15 (m, 1H), 3.04-2.89 (m, 1H), 2.44 (s, 3H), 1.56-1.48 (m, 2H), 1.40-1.22 (m, 2H), 0.86 (t, *J*= 6.7 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.8 (2C), 149.3,

148.9, 148.5, 143.6, 136.9, 129.8 (2C), 127.1 (2C), 126.0, 125.6, 115.7, 111.4, 93.0 (2C), 90.9 56.5, 55.9, 55.7, 55.1 (2C), 53.8, 43.4, 35.4, 21.5, 20.8, 13.8 ppm. HRMS (ESI): calcd. for $C_{29}H_{39}N_2O_6S_2$ [M+H]⁺:575.2244, found: 575.2246.

Procedure for Synthesis of Compound 9^[3]

To a stirred solution of **6** (80 mg, 0.2 mmol, 1 equiv) in anhydrous THF (1 mL) was added TBAF (1 M in THF) (0.4 mmol, 0.4 mL, 2 equiv) dropwise. Subsequently, TMSCN (39.6 mg, 0.4 mmol, 2 equiv) was added to the mixture. The mixture was refluxed for 4 h and quenched with saturated aq. NH₄Cl solution. The organic layer was separated, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (petroleum ether: EtOAc= 4:1) to afford (\pm)-*N*-(*1*-*cyano-3*-((*3*,5-*dimethoxyphenyl*)*amino*)*hexan*-2-*yl*)-4-*methylbenzenesulfonamide* (**9**) as a yellow syrup (77 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ = 7.71 (d, *J*= 8.3 Hz, 2H), 7.24 (d, *J*= 8.1 Hz, 2H), 5.86 (t, *J*= 2.0 Hz, 1H), 5.66 (d, *J*= 2.0 Hz, 2H), 5.53 (d, *J*= 7.5 Hz, 1H), 3.72 (s, 6H), 3.55-3.46 (m, 2H). 2.74 (dd, *J* = 17.0, 5.0 Hz, 1H), 2.55 (dd, *J*= 17.0, 7.2 Hz, 1H), 2.40 (s, 3H), 1.57-1.40 (m, 1H), 1.40-1.31 (m, 1H), 1.31-1.14 (m, 2H), 0.81 (t, *J*= 7.0 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.8 (2C), 148.8, 144.1, 136.4, 129.9 (2C), 127.1 (2C), 117.4, 92.0 (2C), 90.6, 55.2, 52.6 (3C), 33.2, 21.5, 20.8, 19.3, 13.8 ppm. HRMS (ESI): calcd. for C₂₂H₃₀N₃O₄S [M+H]⁺:432.1952, found: 432.1957.

Procedure for Synthesis of Compound 10 and 11^[4]

CuBr·SMe₂ (0.02 mmol, 6.1 mg, 0.1 equiv) was added to a solution of **6** (0.2 mmol, 80 mg, 1 equiv) in anhydrous THF (1 mL) under N₂. The mixture was then cooled to -30 °C, then the Grignard reagent (0.4 mmol, 2 equiv) was added. The reaction was stirred for 1.5 h and then allowed to warm to -10 °C for another 2 h. Next, the reaction mixture was quenched with saturated aq. NH₄Cl solution. The organic layer was separated, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the residue by column chromatography (petroleum ether: EtOAc) gave the corresponding products **10** and **11**.

(±)-*N*-(*3*-((*3*,5-Dimethoxyphenyl)amino)-1-phenylhexan-2-yl)-4-methylbenzenes ulfonamide (**10**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (84 mg, 87%).¹H NMR (400 MHz, CDCl₃) δ = 7.39 (d, *J*= 8.3 Hz, 2H), 7.13-7.06 (m, 3H), 7.00 (d, *J*= 8.0 Hz, 2H), 6.98-6.87 (m, 2H), 5.75 (t, *J*= 2.1 Hz, 1H), 5.47 (d, *J*= 2.1 Hz, 2H), 4.85 (d, *J*= 8.2 Hz, 1H), 3.59 (s, 6H), 3.53-3.42 (m, 2H), 2.70-2.57 (m, 2H), 2.28 (s, 3H), 1.52-1.44 (m, 1H), 1.41-1.30 (m, 2H), 1.27-1.16 (m, 1H), 0.80 (t, *J*= 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.6 (2C), 149.6, 143.1, 137.3, 136.7, 129.5 (2C), 129.1 (2C), 128.6 (2C), 127.0 (2C), 126.6, 91.8 (2C), 90.4, 57.9, 55.2 (2C), 54.9, 37.7, 33.1, 21.5, 19.7, 14.0 ppm. HRMS (ESI): calcd. for C₂₇H₃₅N₂O₄S [M+H]⁺:483.2312, found: 483.2310.

(±)-*N*-(4-((3,5-Dimethoxyphenyl)amino)nonan-5-yl)-4-methylbenzenesulfonamid e (**11**) was isolated through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) as a yellow syrup (79 mg, 88%).¹H NMR (400 MHz, CDCl₃) δ = 7.70 (d, *J*= 8.3 Hz, 2H), 7.26 (d, *J*= 8.0 Hz, 2H), 5.86 (t, *J*= 2.1 Hz, 1H), 5.65 (d, *J*= 2.1 Hz, 2H), 4.77 (d, *J*= 9.1 Hz, 1H), 3.75 (s, 6H), 3.35-3.25 (m, 2H), 2.42 (s, 3H), 1.43-1.29 (m, 4H), 1.32-1.26 (m, 4H), 1.20-1.10 (m, 2H), 0.84 (t, *J*= 6.6 Hz, 3H), 0.77 (t, *J*= 7.1 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.7 (2C), 149.9, 143.3, 137.9, 129.7 (2C), 127.2 (2C), 92.3 (2C), 90.0, 56.6, 56.2,

55.2 (2C), 34.0, 30.2, 28.0, 22.4, 21.5, 19.7, 14.0, 13.9. HRMS (ESI): calcd. for $C_{24}H_{37}N_2O_4S$ [M+H]⁺:449.2469, found: 449.2471.

Procedure for Synthesis of Compound 12

To a stirred solution of **6** (80 mg, 0.2 mmol, 1 equiv) in anhydrous THF (1 mL) was added *n*-BuLi (2.5 M in hexane) (0.3 mmol, 0.12 mL, 1.5 equiv) dropwise under N₂ at -78° C. After stirring for 5 h, the reaction was quenched with saturated aq. NH4Cl solution. The organic layer was separated, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified through column chromatography on silica gel (petroleum ether: EtOAc= 2:1) to afford (±)-*N*-(*1*-(*3*, *5*-*dimethoxyphenyl*)-*2-propylazetidin-3-yl*)-*4-methylbenzenesulfonamide* (**12**) as a yellow syrup (63 mg, 78%). ¹H NMR (400 MHz, CDCl₃) δ = 7.72 (d, *J*= 8.3 Hz, 2H), 7.30 (d, *J*= 8.0 Hz, 2H). 6.11 (t, *J*= 2.2 Hz, 1H), 6.04 (d, *J*= 2.2 Hz, 2H), 3.75 (s, 6H), 3.35-3.25 (m, 1H), 3.00-2.86 (m, 1H), 2.41 (s, 3H), 2.27-2.16 (m, 2H), 1.66-1.56 (m, 2H), 1.54-1.33 (m, 2H), 0.88 (t, *J*= 7.4 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.2 (2C), 151.1, 143.5, 136.8, 129.8 (2C), 127.1 (2C), 99.4 (2C), 94.8, 55.3 (2C), 44.6, 43.2, 42.9, 31.1, 21.5, 20.7, 13.9 ppm. HRMS (ESI): calcd. for C₂₁H₂₉N₂O₄S [M+H]⁺:405.1843, found: 405.1840.

Proposed Model for the C-3 Selectivity

In the proposed transition state relying on the Sharpless hypothesis for regioselective ring opening of 2,3-epoxy alcohols,^[5] both the hydroxyl and amino group coordinate to the sp²-hybridized Zn-center in rigid manner, to form a bicyclic complex, in which the bond between the C3 atom and the nitrogen of the aziridine is better oriented to overlap with the empty p-orbital of the Zn^{2+} than the bond between the C2 and the nitrogen atom, leading to the favored C3-N bond cleavage.

References

[1] Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B. Bromine-Catalyzed Aziridination of Olefins. A Rare Example of Atom-Transfer Redox Catalysis by a Main Group Element. *J. Am. Chem. Soc.* **1998**, *120*, 6844–6845.

[2] Zhang, Y.-Q.; Bohle, F.; Bleith, R.; Schnakenburg, G.; Grimme, S.; Gansäuer, A. Synthesis of 1,3-Amino Alcohols by Hydroxy-Directed Aziridination and Aziridine Hydrosilylation. *Angew. Chem. Int. Ed.* **2018**, *57*, 13528–13532.

[3] Wu, J.; Hou, X.-L.; Dai, L.-X. Effective Ring-Opening Reaction of Aziridines with Trimethylsilyl Compounds: A Facile Access to β -Amino Acids and 1,2-Diamine Derivatives. *J. Org. Chem.* **2000**, *65*, 1344–1348

[4] Pattenden, L. C.; Wybrow, R. A. J.; Smith, S. A.; Harrity, J. P. A. A [3+3] Annelation Approach to Tetrahydropyridines. *Org. Lett.* **2006**. *8*, 3089–3091.

[5] Caron, M.; Sharpless, K. B. Titanium Isopropoxide-Mediated Nucleophilic Openings of 2,3-Epoxy Alcohols. A Mild Procedure for Regioselective Ring-Opening. *J. Org. Chem.* **1985**, *50*, 1557–1560.

0 –i

S33

S36

0

COSY of 3a

fl (ppm)

8	8	8	858	- E	8	2	5	II 23	8	58	85
147	5	137	129	117	113	62.		ස්ස්	37	19.	13
								17			

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

20 22	12	288	8	N	te ug	5-	900 0	24
					0-		. v v v	20
	b	0.00 1-	_					
44	00	01 01 01	C1	8		00		<i>.</i>
	-		-	<u>ن</u>	0.0	00	CN	-
		- 177			V			

28	1212333	14	6	ø		9	0.01	4
				- C		v	00	
00	F 4 0 0 0 F	_						
.	00 00 00 00 04 04	01	01	1	01	4	- 0	00
-		-		0	10	c0	C1 C1	-
1	151277		T	T	T	Ĩ	17	

·								' '	' '						· · ·	' '	' '	' '						-
10	0	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	

8.92	88	28 4 4 4 4 4 4 4 5 5 8 4 4 4 4 5 5 8 5 4 4 5 4 5	14 03 38 60 14 03 38	38
48	135	129 127 128 127 128 128 129 129 129 129	8 9 5 6 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	21.
17	17			Y

— 161.45	128,900 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,0000 128,000000000000000000000000000000000000		/ / / 55.02 / 57.06 / 57.06	21.54
----------	--	--	-----------------------------------	-------

20

COSY of 3z

COSY of 3ac

147.48	143.63	137.35	129.80 129.27 127.06	117.711	113.36	2 2	10.30	55.11	34.23	21.57 19.42	13.85
			¥77					17			

22	64	8 8	815178	28	SI 12 88	5	5 9 3
123	8	137	123 123	114	12 13 13 13	77	12 82.1
	1		Y77		7555	Ĩ	17 T

COSY of 5b

S119

(mqq)

-158.88 -158.68 -141.33.36 -1239.64 -1239.64 -121.55 -121	23:2:2: 2:2:2:2: 2:2:2:2:2:2:2:2:2:2:2:2		Z21.54 28.33 8.33	
--	--	--	-------------------------	--

5c

74	8212333	2	-	64	6-	4	o -	LO LO
				00		4	0.0	
00	F 7 0 0 0 F	-		-				
	PO PO PO PO PI PI	C1	C 1	- C	CN	v	- 0	· · · ·
-		_			LC	00	01.01	-
	159771						- 17	

					· ·		' '	' '		· ·		· ·		' '	' '	· ·	· ·					· · · ·	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	

		22.31 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 23.33 24.13 27.23 21.58
--	--	---

00	- 2 2		E- LO 00		-			_			_
2	0 1 0		0 7 0	- C	6	7 92	22 C2 F-	8	<u></u>	X 22 2	2
		-				r= 00	0.00 -	0.0	- C		-
	88 8	8	8885	22	22		i di di d				÷
=	22 2		222	-	-	88	6666	¥	85	NH 2	A
1	U I		())	1		11	117	1	1	111	1
	- Y - I		× (11	X			1/ 1	

161.74	149.23 148.86 148.48 143.54	136.91	129.81 127.08 125.54	115.66	111.42	93.01 92.99 90.89	55.50 55.69 55.10 53.71	43.37	35, 36	21.52	13.84
			152			¥2	SV//				

QМе

9

MeO

H₃C²

•	10	00	6-1 C	N 10			
6	00	00	00		0 4	000	004 000 -0
-		-	-			LO 01	0-0 070 08
		22	- E			2.2.2	
	<u>×</u>	<u>×</u>		<u> </u>	22	888	X 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-	7	-	-	1.1	9.9.		
	1			1.1			
					1.1	11 (())) ()

S154

