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S-1. Samples. 

(A) Sample collection 

The applied conditions, originally developed from proteomic studies but close to general biobanking 

SOPs, are quite strict concerning the collection, processing and conservation of samples. They meet the 

protocols reviewed in a white paper from the Metabolomics Society InitiativeS-1 as well as their 

guidelines concerning blood derived products. In brief, Venosafe (Terumo, NV, EU) 10 mL dry tubes 

were used for serum collection. Clotting time was set at 30 minutes at room temperature before a 

centrifugation step at 2,000 RCF for 10 minutes at 4 °C. Aliquoting of sera was performed in 

polypropylene cryotubes. The delay between sample intake and storage (-80 °C) was kept inferior to 2 

hours. All patients recruited for the proof of concept study were controlled for IBD or any other known 

digestive cancer by an endoscopic examination of the bowel (rectum, colon and, when possible, last part 

of the ileum) performed by a trained endoscopist. When applicable, the diagnosis was confirmed by an 

anatomopathological examination of the biopsies or specimen resected.  
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(B) Clinical and analytical metadata for the Crohn’s disease study 

 

  Healthy 
Controls  Low EA High EA Quiescent 

EA      Low EA High EA Quiescent 
EA  

Total Number 33 14 12 9   Number 14 12 9 

Male/Female (n/n) 14/19 5/9 6/6 3/6   Median CDEIS 
(range) 

1.3  
(0.5-2) 

9.1  
(6-28) 

0  
(0-0) 

Mean age at diagnosis 
(range) in years 44 (26-70) 39 (28-54) 38 (22-71) 51 (37-65)   Median CRP (range / 

NA, in mg/l) 
1  

(1-10 / 6) 
21.9  

(1-67 / 7) 
2  

(1-14 / 4) 

Mean BMI (range) in kg/m2 25 (16-37) 26 (22-42) 22 (15-26) 27 (24-39)   
Median Faecal 

calprotectin (range / 
NA, in µg/g) 

190 (38-
1282 / 8) 

474 (63-
1935 / 4) 

138 (25-538 / 
6) 

Current smoker (n) 6 6 5 2   Disease location       
Current alcohol consummers 

(n) 7 3 1 4   Ileal disease 3 2 5 

Medication for gastro-
oesophage reflux    9 4 4 2   Colonic disease 2 4 0 

L-Thyroxin   6 3 1 3   Ileocolonic disease 6 3 0 
CD specific treatments anti-

Anti-TNFα 0 10 6 2   Pancolitis 2 1 1 

Immunosuppressor 0 0 4 1   Montreal       
            A1 1 1 0 

Mean drying batch 4.5 4.3 5.3 5.7   A2 8 9 6 
Mean extraction batch 1.5 1.7 1.5 1.8   A3 3 0 3 

Mean injection order (range) 43 (3-94) 59 (16-93) 47 (8-92) 53 (9-91)   B1 8 7 7 
            B2 3 1 2 
            B3 2 3 1 
            L1 4 2 5 
            L2 1 2 2 
            L3 7 6 3 
            L4 0 1 0 
            p- 6 7 7 
            p+ 6 5   2   

Table S-1. Clinical metadata for the samples of the proof of concept study. Endoscopic activity (EA) indices 
include Montreal classification at diagnosis, Crohn’s disease endoscopic index score (CDEIS), C-reactive protein 
and faecal calprotectin. NA indicates the number of samples for which the information was not available. 
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S-2. Security precautions for the sample preparation. 

 

Working with serum samples represent a potential infection risk. In addition, some of the chemicals used 

are toxic, flammable, corrosive or irritant (methanol, hexane, pyridine, MSTFA and MeOX). Therefore, 

the staff was properly vaccinatedS-2 and all manipulations were conducted in a fume hood, with 

appropriate personal protection equipment including gloves and glassesS-3, in a laboratory with restricted 

access. 
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S-3. Box-Behnken design of experiment. 

 

Regarding the DoE, a Box-Behnken design was preferred to a central composite face-centered one 

because it considered the interactions between the variables as well as their quadratic variations and it 

required less experimental points. Moreover, the extreme regions were not crucial in the range testedS-

4. MSTFA and MeOX temperatures of 20, 40 and 60 °C were tested along with MSTFA volumes of 10, 

20 and 30 uL while the MeOX volume and duration of reaction remained constant at 10 µL and 30 min. 

The experimental plan consisted in 17 serum aliquot samples, including 5 center points. The m/z = 73, 

specific to TMS groups, was maximized for both the whole chromatogram (at the exclusion of the highly 

concentrated d-glucose and urea) and the most derivatized forms of amino acids that are representative 

of less reactive groups such as amines. Because the optimum was obtained for the lowest volume of 

MSTFA, a second DoE was conducted that tested the six combinations of MSTFA (5 and 10 µL) and 

MeOX volumes (5, 10 and 15 µL). Finally, four durations (0.5, 1, 2 and 4 hours) were evaluated at the 

optimized volumes and temperatures. Additional tests were made at low and high temperatures (4, 80 

and 100 °C).  
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S-4. List of the metabolites monitored in the internal QC samples. Intra and inter-batch 
variations. 
 
         

Intra-Batch Inter-Batch 
QC Samples         

  Mean Values RSD (%) RSD (%) 

Automatic ID Chemical class 
1tR 

(min) 
2tR (s) Normal. 

V 
1tR 2tR Normal. 

V 
1tR 2tR Normal. 

V 
/ / 16.8 2.9 1.1E+6 0.2 1.1 5.4 0.2 0.6 18.2 

Leucine Amino acid 16.8 1.0 1.5E+6 0.2 1.8 5.1 0.2 2.0 9.5 
Glycine* Amino acid 24.3 1.9 1.7E+6 0.2 3.3 0.0 0.2 1.7 0.0 

Pentanoic acid. 3-methyl Organic acid 19.9 2.1 4.1E+4 0.2 3.2 42.2 0.1 2.1 60.6 
Succinic acid* Organic acid 25.1 2.1 4.3E+6 0.1 1.6 0.0 0.1 1.0 0.0 

/ / 28.9 2.4 3.1E+5 0.1 2.0 19.0 0.1 0.8 54.2 
Benzoic acid Organic acid 33.2 3.0 5.9E+4 0.0 1.4 25.1 0.0 0.5 20.7 
Glutamic acid Organic acid 34.1 2.9 4.4E+5 0.1 1.7 8.3 0.1 0.7 13.3 

Cysteine Amino acid 35.1 1.6 2.7E+5 0.1 2.1 34.6 0.1 1.3 60.7 
/ / 38.5 1.8 4.0E+4 0.1 2.1 23.8 0.1 1.6 45.3 

4.4'-Dibromooctafluorobiphenyl* Injection 
standard 39.6 3.1 1.4E+7 0.1 1.1 0.0 0.1 2.6 0.0 

Ribitol Sugar alcohol 41.8 3.3 6.0E+5 0.1 1.2 3.0 0.1 1.3 10.6 
Tetradecanoic acid Fatty acid 45.1 2.1 1.4E+6 0.1 1.4 6.0 0.1 3.0 7.6 

Allofuranose Sugar 46.2 0.5 1.2E+5 0.1 1.0 10.1 0 2.4 22.2 
Tyrosine Amino acid 48.8 2.1 4.5E+6 0.1 1.6 11.1 0 1.7 14.2 
Gulose Sugar 52.2 0.7 3.8E+6 0.1 0.8 12.5 0 2.2 12.5 

Heptadecanoic acid Fatty acid 54.3 2.3 1.5E+5 0.1 2.3 9.2 0 1.1 13.9 
Linoleic acid Fatty acid 56.3 3.0 4.1E+6 0.1 0.8 3.7 0 1.0 5.9 
Tryptophan Amino acid 57.0 0.6 2.6E+6 0.1 0.9 33.5 0.1 1.7 32.2  

Table S-2. List of the 19 representative metabolites monitored in the internal QC samples. Intra and inter-batch 
variations (RSD) are given for the normalized peak volume and the retention time in both dimensions. The values 
with a natural variability > 30% are in bold. 
 

The monitored metabolites had various retention times in the two dimensions and various volumes. They 

also represented the main biological classesS-5: amino acids (5), organic acids (4), fatty acids (3), sugars 

(2) and sugar alcohols (1).  For both intra and inter-batch observations, all RSD1 were ≤ 0.2 %, which is 

equivalent to 2 times the PM, and even < 0.1 % for 15 out of 19 metabolites followed (Table S-2). All 

RSD2 were ≤ 5 %, even < 2 % for 14 metabolites out of the 19. This is in agreement with previously 

reported GC×GC performanceS-6,7. 
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S-5. List of the metabolites assessed in the NIST SRM 1950S-8. 

 

I m p a ct 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S-14 
  

 
Figure S-1. Extracts from the NIST SRM 1950 (Metabolites in Frozen Human Plasma) certificate. The metabolites 
evaluated at the validation step are framed in blue. 
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S-6. Method optimization. A. Sample preparation. B. Separation and detection. 

 

(A) Sample preparation 

 

As expected, the optimization led to consequential improvementsS-9. Methanol (3:1) extracted higher 

amounts of metabolites than the chloroform/methanol/water mixture (2:1:1:1) (Table S-5). Previously 

published results were mitigated about methanolS-10,S-11,S-12. Lyophilization, used in a some studiesS-13, 

was not tested, in order to limit the loss of the most volatile compoundsS-14 such as fatty acids. 

As mentioned in the manuscript, the moderate optimal derivatization conditions compromised between 

reaction completion and side-effects that lead to degradation (Figure S-2). This is supported by the 

incomplete reactions at 4, 80 and 100 °C, with respectively 64, 86 and 71 % of the maximum TIC 

obtained at 40°C (Table S-3). And 37, 92 and 86 % of the normalized volume of amino compounds at 

the same temperature. Another observation is that the less reactive groups logically required harder 

conditions. When derivatization duration went from 30 min to 1 hour, the m/z = 73 was increased, in the 

total chromatogram and for the less reactive amino-groups. After 2 and 4 hours, however, the gain 

became marginal. Because the response near the optimal values of temperature and duration was stable, 

small changes should not affect much the processS-11,S-15,S-16. BSTFA was confirmedS-17 to be less 

efficient than MSTFA, with a decreased global m/z 73 signal. On the contrary, MTBSTFA gave quite 

similar results and could therefore be appropriate in certain applications. Here, MSTFA was selected 

because, despite a reported lower stability of adductsS-12 and a lower efficiency for the amino groupsS-

18, the TMS groups are lighter and smaller and have lower steric hindrance that would limit the 

derivatization of carbohydratesS-16, S-18. In addition, MSTFA is the most reported in literature and mass 

spectral databasesS-19. Despite our attempts, and its reported advantagesS-20, methyl chloroformate 

alkylation could not be performed efficiently, thus it could not be compared. To avoid impurities and 

preserve the syringe, only 15 µL of the supernatant (out of 25, MeOX + MSTFA) were taken before 

injection. Regarding the stability of the samples, the storage at -80 °C produced only minor variations, 

probably because it never exceeded 4 weeks.  
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Figure S-2. DoE response surfaces for MSTFA and MeOX volumes and temperatures. 
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Derivatization Agent 
                  
    V. MTSFA  / 

V. 
MTBSTFA 

            
                

Putative ID 1tR 2tR     
MSTFA MTBSTFA BSTFA 

  
Propanoic acid 14.33 4.21 0.90   Derivatization 

Agent  
  

DL-3-Phenyllactic acid 14.97 0.83 0.53     
Butanoic acid 17.24 0.71 0.56   Total Volume 100 102 88   
Aspartic acid 19.70 2.78 1.96   N-groups 100 94 84   

Ethanedioic acid 25.71 2.14 2.35             
Aminomalonic acid 32.18 1.59 1.09             

/ 36.56 2.62 0.37             
Oxalic acid 37.49 1.23 0.39             

2-Piperidinecarb. acid 37.37 0.79 0.67             
D-Glucofuranose 39.77 0.63 2.21   

Temperature Total 
Norm. V N-groups 

    
2-Hexenedioic acid 40.47 1.03 1.23       

Undecanoic acid 43.09 1.19 0.52   4°C 64 37     
2-Butenoic acid 47.82 1.07 4.71   40°C 100 100     
Dodecanoic acid 48.40 1.55 2.40   80°C 86 92     
Cinnamic acid 49.97 2.70 1.03   100°C 71 86     

Hexadecanoic acid 51.78 1.98 1.07             
Uric acid 54.47 3.06 0.28   Duration 30 min 60 min 120 min 240 min 
Alanine 16.02 0.71 0.66   Total Norm V 100 110 112 108 

Isoleucine 24.60 0.87 0.83   N-groups 100 111 113 118 
Proline 24.60 1.39 1.30             
Glycine 25.01 0.87 0.76   

Extraction 
Agent MeOH 3:1 CCl4/MeOH 

(3:1:1) 

    
Serine 27.69 0.79 0.61       

threonine 28.86 0.67 2.83       
Proline 34.05 3.37 1.16   Total V 100 72     

Ethionine 53.42 2.30 1.55   N-groups 100 75     
Table S-3. Sample preparation optimization. MSTFA and MTBSTFA comparison (left). Derivatization reagents 
comparison (top right). Influence of the temperature and duration of methoxymation and silylation on the global 
derivatization (total normalized volume) as well as on less reactive amino groups (middle right). Extraction agents 
comparison (bottom right). To simplify the comparisons, the peak volumes were normalized to a reference value 
of 100. 
 

 
(B) Separation and detection 
 
 
To assess the column sets, in addition to the direct number of unique compounds resolved, parameters 

linked to resolution, peak shape and peak size (such as symmetry, kurtosis or spread) were measured for 

11 compounds representative for chemical classes, retention times and peak volumes (amino, organic 

and fatty acids, sugars). As a result, the non-polar/semi-polar (normal) set of columns gave the highest 

number of resolved metabolites (~500 peaks, Figure S-3). The alternative set worked equally well, with 

a different elution pattern that could be interesting in specific applicationsS-21. The reverse set (semi-

polar/non-polar) gave poor results. Possibly because of a retention of the metabolites in the column due 

to increased interactions. The two columns used the same diameter and film thickness in order to have 

an optimal flow in both. The values chosen, 0.25 mm - 0.25 µm, compromised between sample 
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loadability and peak capacity in the second dimension, to fit with the objective of an untargeted method. 

For the same reason, a linear temperature program was chosen. It also allowed the use of linear retention 

indices for compound identification. This parameter revealed to be much more influential than the flow 

rate, at the tested values (Figures S-4 and S-5). The best resolution was obtained at 1 mL/min, in 

accordance to the Van Deemter equation, and 3 °C/min, as explained in the manuscript. This low ramp 

increased the run time to 72 minutes (Table S-4), the price to pay to take full advantage of the 

instrumentation in an exploratory mode.  

 

 

Figure S-3. Examples of chromatograms produced by the three sets of columns. 
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Figure S-4. Separation parameters for various flow rates and temperature ramps. 3 °C/min, either with 1 or 1.5 
mL/min, provided the best separation, with higher resolution, selectivity and separation despite a higher spread of 
the peaks. 
 

 
 

 

D O E 
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Figure S-5. Chromatograms obtained at 3 and 5 °C/min. The first provided a better use of the separation space, 
especially in the second dimension, increasing the overall spatial resolution. 
 

 

Table S-4. Run times for the four temperature ramps evaluated, not including the cooling time of the oven and the 
columns. 
 

The best initial temperature was 50 °C (Figure S-6), in agreement to the good practice rule that suggests 

to start a run 20 °C below the boiling point of the solventS-22, here hexane (BP : 69 °C). Indeed, 90 and 

70 °C both led to badly focused first eluting compounds. 40 °C did not improve further the resolution. 
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Once the initial and ramp temperatures were known, the solvent delay was set at 8 minutes to preserve 

the detector. 

 

Figure S-6. Effect of the initial temperature on the early eluting compounds, that are broadened at 90°C. 
 

The configuration of the modulation system depends on the samples to analyze. Here, a modulation 

period (PM) of 3.5 seconds was found to maintain the separation of the peaks in the first dimension with 

minimal empty space and wraparound in the second dimension. Meanwhile, a 700 ms hot jet at 170 °C 

allowed an efficient reinjection, which is especially important for volatile compounds eluting at low 

temperatures, and a reduced breakthrough. 500 ms was found too short (Figure S-7), and a temperature 

of 100 °C too cold. There was no clear improvement at 900 ms and 200 °C.  
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Figure S-7. Effect of the hot jet duration (PM 3.5 s) on the resolution in the overloaded zones of urea (above) and 
glucose (below). 
 

The most effective injection temperature was 250 °C (Table S-5). 200 °C was too low to volatilize 

correctly the heaviest metabolites, especially in a biological matrixS-23. 280 °C was too destructive for 

the TMS adducts. 

Represent. Compounds Injection standard 
Injection 
Temp. 

Norm. 
Volume 

Injection 
Temp. 

Norm. 
Volume 

200 92 200 97 

250 100 250 100 

280 88 280 101 

Table S-5. Influence of the injection temperature on the normalized peak volume, here normalized to 100 at 250°C. 
 

Split mode injection has a reported beneficial effect on peak shape and quantitationS-24. However, 

negative effects on peak ratios and the stability of amino-groups adducts have also been observedS-25. 

Here, a split as low as 10 was found too dilutive for untargeted analysis, preventing the detection of 

trace metabolites, while a split less than 10 was too unstable to be reproducible. The opposite alternative, 



S-23 
  

i.e. injecting 2 µL instead of 1 µL, increased the signals of trace metabolites, but induced an overloading 

of highly concentrated compounds such as urea and glucose. This resulted in an overall decrease in the 

number and the chromatographic quality of the metabolites detected in wide areas around them (Figure 

S-8). Not mentioning the possible backflash that would make the chromatogram unrepresentative of the 

initial sample. Backflash that likely explained the lower signals detected with the ‘Gooseneck’ liner 

which, by design, gives a lower volume to the gas phase to expand (Figure S-9). 

 

Figure S-8. Impact of the injection volume on the chromatographic resolution in an area at risk of overloading 
(urea). 

 

 

Figure S-9. Effect of the liner design on the global chromatogram. Higher number of metabolites and signal 
intensity were detected with the ‘Precision’ liner. 
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Figure S-10. Summary of the optimized analytical conditions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXPERIMENTAL 
 

Sample Prep 
1. Extraction: methanol (3:1)  
2. Derivatization (30 µL serum):  

MeOX 15 µL - 40 °C - 1h  
MSTFA 10 µL - 40 °C - 1h  
 

Separation and detection 
Rxi-5 - 30 m / Rxi-17 - 2 m  
Both 0.25 mm, 0.25 µm 
 
   1 mL/min flow 50 °C initial T 
   3 °C/min ramp T 3.5 seconds PM 
   700 ms hot jet 250 °C injection T 
   Precision Sky liner  1 µL splitless  
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S-7. Accuracy and precision assessment in NIST SRM 1950. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Table S-6. Accuracy and precision assessment in NIST SRM 1950 through intra and inter-batch measurements. 
 

 

 

 

 

 

 

 

 

 

 

 

  Mean 
(umol/L) Precision - RSD (%) Accuracy - Z-score 

 
  NIST NIST Intra-Batch Inter-Batch Intra-Batch Inter-Batch 
  

Alanine 300 9 7.4 11.3 4.4 0.5 
Valine 182.2 6 2.5 8.1 1.9 6.3 

Leucine 100.4 6 4.2 8.7 1.0 2.5 
Isoleucine 55.5 6 11.6 7.1 34.8 11.2 

Proline 177 5 5.6 13.9 7.9 9.5 
Serine 95.9 4 4.5 6.3 4.3 6.6 

Threonine 119.5 5 9.8 10.4 0.5 24.4 
Phenylalanine 51 14 4.2 10.7 11.3 13.1 

Methionine 22.3 8 14.8 20.2 7.7 6.4 
Glycine 245 7 4.1 4.2 0.5 0.9 
Tyrosine 57.3 5 4.7 11.2 25.0 26.3 
Lysine 140 10 11.4 8.4 8.0 9.2 

Cystéine 44.3 16 14.4 26.4 5.6 5.7 
Ornithine 133.5 4 5.3 8.7 5.8 5.1 

Urea 3900 2 7.2 4.9 12.1 7.7 
Creatinine 60 2 6.0 5.3 13.0 4.6 
Histidine 72.6 5 9.0 7.7 17.8 16.2 

              
Glutamic acid 67 27 3.0 9.2 1.0 1.2 

Uric acid 254 2 2.8 16.2 27.9 26.2 
              

Dodecanoic acid 9.5 6 3.7 3.6 13.6 12.0 
Myristic acid 80.1 21 3.4 4.3 4.1 3.9 

Pentadecanoic acid 4.6 1 7.5 14.7 84.0 72.3 
Palmitic Acid 2364 3 7.3 7.7 29.2 28.9 

Heptadecanoic acid 17.6 4 9.4 7.8 23.9 23.3 
Linoelaidic acid 2838 5 5.1 4.5 19.3 19.7 
Oleic Acid. (Z)- 1614 10 3.4 9.9 9.6 9.5 

Stearic acid 644 6 3.5 7.1 14.4 14.0 
Linoleic Acid 54.6 7 5.7 12.7 14.6 14.4 
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S-8. Recovery assessment in NIST SRM 1950 and internal QC samples.  

 
Recovery (%) 

Sample Preparation 
1. Extraction 2. Drying & 

Derivatization Glycine Succinic acid 

QC Inter-batch 

73 57 63 -16 
74 60 69 -20 
73 60 66 -16 
75 59 66 -18 

Mean 74 59 66 -17 
RSD (%) 1.1 2.3 4.2 10.7 

NIST Intra-
batch 

65 53 76 -16 
61 50 74 -16 
63 50 73 -17 
61 50 67 -22 
61 47 68 -19 

Mean 62 50 72 -18 
RSD (%) 2.9 3.8 5.5 15.3 

NIST Inter-
batch 

65 46 59 -12 
61 41 57 -16 
57 40 55 -15 

Mean 61 43 57 -14 
RSD (%) 6.7 7.6 3.2 13.2 

     

Total Mean 66 51 66 -17 
Total RSD (%) 9.7 13.3 10.1 15.6 

Table S-7. Recovery assessment in NIST SRM 1950 and internal QC in intra and inter-batch measurements. 
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S-9. Regression methods. Determination of the best fit. 

 

Succinic acid     

    Concentration 
(ng/µL)  

Predicted 
Signal 

Observed 
Signal % Recovery Relative 

Error 
Slope 9035 0 8.8E+2 0.0E+0 / / 

Intersect 882 0.05 1.3E+3 3.5E+1 3794 3694 

Unweighted 
  0.25 3.1E+3 1.5E+3 210 110 
  1.67 1.6E+4 2.1E+4 78 22 

R2 0.9957 10 9.1E+4 9.1E+4 101 1 
            3827 

Slope 9148 0 4.0E+0 0.0E+0 / / 
Intersect 4 0.05 4.6E+2 3.5E+1 1312 1212 

√S 
  0.25 2.3E+3 1.5E+3 153 53 
  1.67 1.5E+4 2.1E+4 75 25 

    10 9.1E+4 9.1E+4 101 1 
            1292 

Slope 9136 0 -8.7E+0 0.0E+0 / / 
Intersect -9 0.05 4.5E+2 3.5E+1 1275 1175 

S 
  0.25 2.3E+3 1.5E+3 152 52 
  1.67 1.5E+4 2.1E+4 74 26 

    10 9.1E+4 9.1E+4 101 1 
            1253 

Slope 6649 0 -1.4E-1 0.0E+0 / / 
Intersect 0 0.05 3.3E+2 3.5E+1 945 845 

S2 
  0.25 1.7E+3 1.5E+3 111 11 
  1.67 1.1E+4 2.1E+4 54 46 

    10 6.6E+4 9.1E+4 73 27 
            929 

Slope 1145 0 -2.2E-4 0.0E+0 / / 
Intersect 0 0.05 5.7E+1 3.5E+1 163 63 

S3 
  0.25 2.9E+2 1.5E+3 19 81 
  1.67 1.9E+3 2.1E+4 9 91 

    10 1.1E+4 9.1E+4 13 87 
            322 

Slope 746 0 -4.9E-7 0.0E+0 / / 
Intersect 0 0.05 3.7E+1 3.5E+1 106 6 

S4 
  0.25 1.9E+2 1.5E+3 12 88 
  1.67 1.2E+3 2.1E+4 6 94 

    10 7.5E+3 9.1E+4 8 92 
            279 

Slope 709 0 -1.5E-9 0.0E+0 / / 
Intersect 0 0.05 3.5E+1 3.5E+1 101 1 

S5 
  0.25 1.8E+2 1.5E+3 12 88 
  1.67 1.2E+3 2.1E+4 6 94 

    10 7.1E+3 9.1E+4 8 92 
            275 

Table S-8. Determination of the most efficient regression for succinic acid. The framed cells indicate the sum of 
relative errors. The bold values are between 80 and 120% of recovery (ideal case). The lowest sums, in grey, were 
obtained with the S5 and S4 weights (standard deviation at the fifth and fourth power, respectively). The latter was 
chosen because it gave, for a very similar error, a simpler model. As showed in the percentage of recovery, this 
regression fitted well only at low concentrations, the ones used for the sensitivity assessment. 
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Fumaric acid     

    Concentration 
(ng/µL)  

Predicted 
Signal 

Observed 
Signal % Recovery Relative 

Error 
Slope 43158 0 7.0E+3 1.0E+1 67822 67722 

Intersect 6964 0.05 9.1E+3 1.6E+3 577 477 

Unweighted 
  0.25 1.8E+4 1.2E+4 147 47 

0.9948 1.67 7.9E+4 1.0E+5 77 23 
R2   10 4.4E+5 4.3E+5 101 1 
           68271 

Slope 43379 0 1.0E+3 1.0E+1 10203 10103 
Intersect 1048 0.05 3.2E+3 1.6E+3 204 104 

√S 
  0.25 1.2E+4 1.2E+4 98 2 
  1.67 7.3E+4 1.0E+5 71 29 

    10 4.3E+5 4.3E+5 100 0 
            10237 

Slope 44162 0 3.2E+1 1.0E+1 315 215 
Intersect 32 0.05 2.2E+3 1.6E+3 142 42 

S 
  0.25 1.1E+4 1.2E+4 92 8 
  1.67 7.4E+4 1.0E+5 72 28 

    10 4.4E+5 4.3E+5 102 2 
            295 

Slope 44021 0 8.8E+0 1.0E+1 86 14 
Intersect 9 0.05 2.2E+3 1.6E+3 140 40 

S2 
  0.25 1.1E+4 1.2E+4 91 9 
  1.67 7.4E+4 1.0E+5 71 29 

    10 4.4E+5 4.3E+5 101 1 
            93 

Slope 37180 0 1.0E+1 1.0E+1 100 0 
Intersect 10 0.05 1.9E+3 1.6E+3 118 18 

S2.5 
  0.25 9.3E+3 1.2E+4 77 23 
  1.67 6.2E+4 1.0E+5 60 40 

    10 3.7E+5 4.3E+5 86 14 
            96 

Slope 32201 0 1.0E+1 1.0E+1 100 0 
Intersect 10 0.05 1.6E+3 1.6E+3 103 3 

S3 
  0.25 8.1E+3 1.2E+4 67 33 
  1.67 5.4E+4 1.0E+5 52 48 

    10 3.2E+5 4.3E+5 74 26 
            110 

Slope 30993 0 1.0E+1 1.0E+1 100 0 
Intersect 10 0.05 1.6E+3 1.6E+3 99 1 

S4 
  0.25 7.8E+3 1.2E+4 64 36 
  1.67 5.2E+4 1.0E+5 50 50 

    10 3.1E+5 4.3E+5 71 29 
            116 

Table S-9. Determination of the most efficient regression for fumaric acid. The framed cells indicate the sum of 
relative errors. The bold values are between 80 and 120% of recovery (ideal case). The lowest sum, in grey, was 
obtained with the S2 weight (square standard deviation). The obtained regression fitted well at all concentrations. 
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Glycine     

    Concentration 
(ng/µL)   

Predicted 
Signal 

Observed 
Signal % Recovery Relative 

Error 
 

Slope 16841 0 5.0E+4 4.3E+4 116 16  

Intersect 49606 0.05 5.0E+4 4.9E+4 104 4 

Unweighted 
  0.25 5.4E+4 5.0E+4 107 7 

0.9866 1.67 7.8E+4 9.2E+4 84 16 
R2   10 2.2E+5 2.2E+5 101 1 
            44 

Slope 295307 0 -3.1E+5 4.3E+4 -722 822 
Intersect -307991 0.05 -2.9E+5 4.9E+4 -602 702 

√S 
  0.25 -2.3E+5 5.0E+4 -465 565 
  1.67 1.9E+5 9.2E+4 200 100 

    10 2.6E+6 2.2E+5 1226 1126 
            3316 

Slope 313520 0 -1.9E+5 4.3E+4 -445 545 
Intersect -189820 0.05 -1.7E+5 4.9E+4 -357 457 

S 
  0.25 -1.1E+5 5.0E+4 -222 322 
  1.67 3.3E+5 9.2E+4 361 261 

    10 2.9E+6 2.2E+5 1366 1266 
            2851 

Slope 161166 0 -2.5E+4 4.3E+4 -58 158 
Intersect -24919 0.05 -1.7E+4 4.9E+4 -35 135 

S2 
  0.25 1.5E+4 5.0E+4 31 69 
  1.67 2.4E+5 9.2E+4 264 164 

    10 1.6E+6 2.2E+5 736 636 
            1162 

Table S-10. Determination of the most efficient regression for glycine. The framed cells indicate the sum of relative 
errors. The bold values are between 80 and 120% of recovery (ideal case). The unweighted regression gave the 
lowest sum and fitted very well at all the concentrations tested. 
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Figure S-11. Residual plots for the three IS using unweighted (blue points) and weighted (orange points) 
regressions. The complete plots are on the left. For succinic and fumaric acids, the plots on the right zoom-in in 
order to neglect the very high recovery percentage of the blank in the unweighted regression. The efficiency gain 
produced by weighting was especially important at low concentrations, where the limits of detection and 
quantification (LOD and LOQ) were assessed.
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Figure S-12. Unweighted and weighted linear regression for succinic acid, fumaric acid and glycine with zoom-in 
to the lowest concentrations (right). The experimental values are encircled in red. 
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S-10. Sensitivity assessment. A. Methods. B. Calculation of LOD and LOQ. 

 

(A) Methods 

 

The selective m/z considered were: 247 for fumaric acid-2,3-d2, 251 for succinic acid-2,2,3,3-d4, 104 (2 

TMS), 250 and 278 (3 TMS) for glycine-2,2-d2. 

Sensitivity was assessed in three ways. In the first, the analytical signals for LOD and LOQ, named 

yLOD and yLOQ, were defined asS-26,S-27,S-28:  

 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 3. 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 10. 𝑆𝑆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

Where M is the mean signal and S the standard deviation. The regressions obtained earlier are of the 

(linear) form y = ax + b, where y is the analytical signal at the analyte concentration x. Therefore: 

𝑦𝑦𝑦𝑦𝑦𝑦/𝑦𝑦𝑦𝑦𝑦𝑦 =
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  / 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑏𝑏 

𝑎𝑎  

In the second, the signal from the blank was compared to the signal at the lowest concentration injectedS-

29.  

𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦.
𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶

𝑀𝑀𝐿𝐿𝑎𝑎𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝐿𝐿𝑏𝑏𝑐𝑐
 

𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦.
𝑦𝑦𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶

𝑀𝑀𝐿𝐿𝑎𝑎𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑎𝑎𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝐿𝐿𝑏𝑏𝑐𝑐
 

In the third, the LOQ was defined as the minimal amount really injected with a RSD below 30 %S-30 and 

a signal over 5 times the blank signalS-31. S/N ratios were not tested because of the artificial loss of signal 

due to the early centroidization of the chromatograms that accounted for a factor around 2 despite 

optimization. 
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(B) Calculation of LOD and LOQ  

          30% RSD &  > 
5*Blank Signal 

Sensitivity (e-
/pg.ul) 

  LOD (pg/uL) 
1. 

LOQ  (pg/uL) 
2. 

LOD (pg/uL)  
3. 

LOQ (pg/uL)  
4. 

Fumaric Acid 1.6 5.2 2.2 7.3 50 44.0 
Succinic Acid 4 13 4.5 14 250 7.5 

Glycine 125 1375 53.1 75 10000 16.8 
              
  On-column     

  LOD (pg/uL) 
1. 

LOQ  (pg/uL) 
2. 

LOD (pg/uL)  
3. 

LOQ (pg/uL) 
4.     

Fumaric Acid 1.9 6.3 2.7 8.8     
Succinic Acid 5 16 5.4 17     

Glycine 150 1650 63.7 90     
              
  1. LOD = 3 SD blank / slope regression      
  2. LOQ = 10 SD blank / slope regression      
  3. LOD = Min.Conc*yLOD / y Min.Conc     
  4. LOD = Min.Conc *yLOQ / y Min.Conc     

Table S-11. LOD, LOQ and sensitivity assessment (in pg/uL injected) using three different methods: regression 
applied to the blank (1 and 2), blank and minimal concentration tested (3 and 4) and minimal concentration tested 
having RSD < 30% (5). 
 

Because of the high signal of its blank, glycine had a lower sensitivity. It also exhibited higher variations 

from one method of evaluation to the other. Therefore, only the method that compared, and in a way 

corrected, the blank to the signal at the lowest concentration injected worked well (Table S-11). To 

achieve that, the blank had to be reliably measured, which was the case here with a RSD of 7%. This 

procedure seemed the most consistent overall, presumably because it uses signals from real injections 

while the regression curves modelize an approximated behavior. Nevertheless, these results also 

emphasize the need for m/z that are very specific of the IS, therefore the need for highly deuterated 

standards, to reliably quantify compounds at low concentrations. Because it is based on real amounts 

injected, here the third method suffered from the low number of concentrations tested near the LOQ and 

thus was not very informative. 

Overall, the discrepancies observed between the three IS as well as the deviations from an ideal 

behaviour, for both linearity and sensitivity, show that the capacity to quantify, even when limited to 

semi-quantitation, cannot be systematically achieved. Hence, it is important, when establishing a 

method, to evaluate these parameters for compounds representative of the various metabolites present 

in the samples in terms of chemical classes, signal intensities and retention times. 
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The sensitivity value is based on the working principle of the microchannel plate (MCP) detector used 

in the TOF spectrometer. It makes the assumption that each unity of the signal (given by the slopes of 

the regressions) corresponds to an electron produced through the electron amplifier of the detector. Thus, 

theoretically 7, 17 and 44 electrons were produced at the detector per pg of compound (respectively 

succinic acid, fumaric acid and glycine) per µL of sample. 
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S-11. QC system. A. Acceptance/rejection criteria. B. Effect of the QC correction 

 

(A) Acceptance / rejection criteria 

 

Any injected sample was rejected if the raw peak volume of any standard –internal or injection- was 

outside the QC mean value ± 30 %.  

 

A whole batch of 5 study samples was rejected if the following QC sample was rejected or if at least 2 

study samples were rejected. 

 

A QC sample was rejected if:  

- The raw peak volume of any standard –internal or injection- was outside the QC mean value ± 30%. 

- Any retention time of any representative metabolite (out of 19) was outside the action limits, or at least 

3 of the same kind (first or second dimension) were outside the warning limits. 

- The corrected peak volume was outside the action limits for at least 2 representative metabolites (out of 

16, IS excluded), was outside the warning limits for at least 4 of them, or was outside the action limits 

for at least 1 of them and outside the warning limits for at least 2 of them. 

 

No trends criteria were used in this study but could be interesting in others. 

 

Any study or QC sample rejected was directly reinjected. A second rejection, in the absence of any other 

clue, was considered a derivatization failure. In this circumstance, a biological replicate was prepared 

and injected. Another rejection was considered a system failure and stopped the sequence of injection. 

Once the issue had been found and fixed, and the system reconditioned, the sequence started again. In 

the case of a study sample, a biological replicate was prepared and injected. In the case of a QC sample, 

the whole batch was rejected and biological replicates were prepared and injected.  
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(B) Effect of the QC correction 

 

 
Figure S-13. Effect of the LOESS (partial) correction on the QC samples for two metabolites of the final dataset. 
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Figure S-14. QC (blue points) and study samples (orange points) signals before (above) and after (below) the 
LOESS (partial) correction. 
 
 
The LOESS procedure corrected, albeit not completely, the analytical variations measured in the QC 

samples (Figure S-4, blue points in Figure S-5), while maintaining the biological variation (orange points 

in S-5). Indeed, the RSD in the QC samples went respectively from 48 and 25% to 12 and 11%. 

However, whatever the effectiveness of the procedure, the analytical variations cannot be totally 

corrected a posteriori. Trying to do so is risky because it would most probably lead to overfitting and to 

the reduction of the biological variation of interest. Since it is also more effective and less risky to correct 

for small variations, a prior optimization of the analytical method is very advisable. 
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S-12. Data Scaling. 
 

 

Figure S-15. HCA plots for the various scaling methods. Healthy controls are in red, high endoscopic activity 
samples in green, low endoscopic activity samples in royal blue and quiescent samples in light blue. The red circles 
emphasize the potential outliers and their dissimilarity. 
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Figure S-16. PCA 3D plots for the various scaling methods. Healthy controls are in red, high endoscopic activity 
samples in green, low endoscopic activity samples in royal blue and quiescent samples in light blue. The red 
circles emphasize the potential outliers.The yellow lines emphasize an early separation. 
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Figure S-17. PCA 2D plots for level scaling with all samples (left) and without the two alleged outliers (right), 
where new ones appear. Healthy controls are in red, high endoscopic activity samples in green, low endoscopic 
activity samples in royal blue and quiescent samples in light blue.  
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Figure S-18. PLS-DA 3D plots for the various scaling methods. Healthy controls are in red, high endoscopic 
activity samples in green, low endoscopic activity samples in royal blue and quiescent samples in light blue. The 
yellow lines emphasize an early separation. 
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Raw 

OOB 
Auto 

OOB 
Pareto 

OOB 
Range 

OOB 
Vast 

OOB 
0.456 0.426 0.426 0.412 0.397 

Peak MDA Peak MDA Peak MDA Peak MDA Peak MDA 
56 0.013 144 0.017 144 0.017 144 0.015 144 0.017 

144 0.012 56 0.015 56 0.013 56 0.012 56 0.016 
87 0.008 90 0.010 90 0.010 90 0.010 90 0.010 

114 0.008 87 0.006 11 0.008 11 0.007 81 0.007 
90 0.008 11 0.006 154 0.005 154 0.006 114 0.006 
11 0.007 114 0.006 114 0.005 87 0.005 11 0.006 

154 0.006 154 0.005 63 0.005 63 0.004 87 0.006 
122 0.005 63 0.005 87 0.004 114 0.004 63 0.005 
63 0.004 81 0.004 54 0.004 161 0.004 109 0.005 
29 0.004 122 0.004 122 0.004 14 0.003 154 0.005 
14 0.004 14 0.004 14 0.003 69 0.003 122 0.004 
81 0.003 54 0.003 161 0.003 81 0.003 161 0.003 

109 0.003 136 0.003 182 0.003 105 0.003 29 0.002 
136 0.003 68 0.003 81 0.002 29 0.003 133 0.002 
75 0.002 105 0.003 4 0.002 122 0.002 136 0.002 

Table S-12. Effect of scaling on random forests’ (RF) ability to highlight the most significant metabolites. All 
methods gave similar results, either for the significant metabolites or their associated mean decrease accuracy 
values (MDA). All methods also improved the significance of the potential biomarkers (higher MDA and lower 
out-of-bag error, OOB) in comparison to the raw data. 

 
  PLS-DA 

Q2 
PLS-DA 

R2 
Raw 0.01 0.35 

Pareto 0.02 0.47 
Auto  0.28 0.77 

Range 0.31 0.77 
Vast 0.17 0.73 
Level  Outliers 

Table S-13. PLS-DA Q2 and R2 for the various scaling methods. Auto and range scalings provided the best 
performances, calculated on all variables. 

 
Variation 
explained 

  

PCA (%) PLS-DA 
(%) 

Raw 70 61 
Pareto 42 34 
Auto 24 18 

Range 26 20 
Vast 37 21 
Level Outliers 

Table S-14. Percentages of variation explained by the first two axis in PCA and PLS-DA plots, that are lower for 
auto and range scalings. Again, the models were constructed on all variables. 
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S-13. Statistics for biomarker research. A. Statistical treatment details. B. Significance. 
 

(A) Statistical treatment details 

 

ANOVA consisted of Welch ANOVA and Kruskal-Wallis test. Random forests (RF) produced 500 trees 

and applied bothS-32 Gini IndexS-33 and Gain Ratio in order to improve the splitting and the variable 

selectionS-34. PLS-DA performed cross-validation to define the optimal number of latent variables. PLS-

DA and OPLS-DA performed permutation testing (2000 permutations). Naïve Bayes did not assume the 

homoscedasticity of the variables. SVM used a polynomial kernel that was adapted (often linear) to 

maximize the separation. Neural network (NN) used no hidden layer because this configuration revealed 

to be more efficient to limit overfitting as well as to select the significant variablesS-35. Multivariate ROC 

curves used SVM, RF, PLS-DA and logistic regression algorithms, with Monte-Carlo cross-validation. 

Since the global statistical power is directly linked to the p-valueS-36, S-37, it was interpreted in a similar 

way. Here, it was only partially informative because the calculation implemented in MetaboAnalyst, the 

only free resource we found, suffered from the non-consideration of the covariance between the 

biomarkersS-38. 

 

(B) Significance 

 

To be able to simultaneously take into account different statistical tests, thresholds corresponding to 

moderate and strong significance were defined for each of them, based on general statistical knowledge 

and specific sources. A variable meeting one or both thresholds was attributed respectively one or two 

points. The points were summed and the metabolites were ranked and selected accordingly. The 

thresholds were: 0.05 and 0.01 for any test giving a p-value, such as Pearson r, Spearman ρ, Kendall τ, 

Welch or Mann-Whitney/Kruskal-Wallis ANOVA and Fisher ratios (FR). 2 and 3 for PLS-DA VIP. 

0.0020 and 0.0025 for RFS-39. 0.7 and 0.8 for AUCS-40. 1.5 and 2 for fold change (FC). 70 and 80% for 

univariate two-tailed statistical power. To be selected and to be selected among the first ten variables 

for feature selection methods and OPLS-DA. To be among the most significant 10% or 5% based on 
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weight or distance for Bayes classifier, NN and SVM. For the three CD subgroups separation, the 

biological proximity of the samples made more difficult their separation and therefore lowered the 

statistical values. The PLS-DA VIP thresholds were adapted to 1.4 and 1.7. Bonferroni correction for 

multiple testingS-40 was mostly informative. Indeed, it was interesting to see which metabolites met this 

conservative threshold for significance but we did not want to restrict the selection process. Especially 

since the ability of the metabolites was further assessed at the following performance assessment step. 
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S-14. Data control and selection process for the Crohn’s disease samples and the healthy controls.

 

Figure S-19. OPLS-DA plots for the separation between CD (red) and HC (green) samples, constructed on all the 
183 metabolites taken in the final dataset. 
 

The good discrimination achieved in Figure S-19 shows the existence, in the data set, of metabolic 

information capable to separate the Crohn’s disease (CD) samples from the healthy controls (HC). Thus 

the interest to try to extract it through the selection process.

The main statistical values for the candidate biomarkers are given in the article. 
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15 tests Score   8 tests Score   15 tests Score   8 tests Score 

Peak / 30   Peak / 16   Peak / 30   Peak / 16 

144 24   144 15   4 7   4 4 
114 23   114 14   11 14   11 7 
29 22   56 13   13 9   13 3 
69 21   29 12   29 22   29 12 
154 20   63 12   54 12   54 6 
56 19   69 12   55 9   55 6 
87 19   154 12   56 19   56 13 
63 18   87 11   63 18   63 12 
81 15   81 10   69 21   69 12 
11 14   105 9   81 15   81 10 
105 14   11 7   86 5       
54 12   54 6   87 19   87 11 
132 12   55 6   90 7   90 5 
136 11   90 5   97 6   97 4 
109 10   132 5   105 14   105 9 
13 9   133 5   109 10   109 4 
55 9   136 5   114 23   114 14 
122 8   168 5   122 8   122 4 
133 8   4 4   124 6   124 3 
168 8   97 4   126 7   126 4 

4 7   109 4   132 12   132 5 
90 7   122 4   133 8   133 5 
126 7   126 4   136 11   136 5 
97 6   161 4   144 24   144 15 
124 6   13 3   154 20   154 12 
86 5   124 3         161 4 
            168 8   168 5 

Table S-15. Global significance scores obtained through the aggregation of the individual statistical significance 
values (see section S-12). Two cases are compared. In the first, all 15 tests were performed and considered (first 
and third frames). In the second, only the 8 most effective tests, the ones recommended in the main article, were 
considered (second and fourth frames): FC, ROC, Pearson/Spearman, Kendall, Welch/Mann-Whitney ANOVA, 
Stepdisc, PLS-DA, RF. The first two frames are ordered according to the global score while the third and fourth 
ones are ordered according to the peak number ID to facilitate the comparison. The peak number is the one in the 
final data set, among the 183 final variables.

 

Table S-15 shows that using only the 8 most effective tests, instead of all 15 tests, did not change the 

candidate biomarkers that were selected. The peaks with the highest scores were the same in both cases 

(peaks 86 and 161 had different rankings but also a low significance). For this reason, these 8 tests are 

recommended to simplify the selection process. Regarding the Bonferroni criterion, many candidates 

met it for some of the statistical tests (Table S-16). The most significant even met it for all the 4 tests 

considered. 
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Bonferroni   
CB / 4 tests 
1 4 
2 4 
3 4 
4 3 
5 4 
6 0 
7 1 
8 3 
9 1 

10 1 
11 2 
12 0 
13 0 
14 0 
15 0 
17 0 
18 0 
19 2 
20 3 
22 4 

Table S-16. Candidates meeting the significance threshold of 0.05 after Bonferroni correction for multiple testing 
(0.05/183) for four statistical tests: Pearson/Spearman and Kendall correlations, Welch/Kruskal-Wallis ANOVA 
and FR.

 

Peak 
Number 

PLS-DA OPLS-DA RF 
137 46 161 
16 12 14 

  46 16 130 
  12 182 12 
  76 162 75 
  182 137 160 
  3 143 41 

Table S-17. Additional biomarker research through PLS-DA, OPLS-DA and RF. The grey cells indicate the 
metabolites highlighted multiple times. The peak number is the one in the final data set, among the 183 final 
variables.

 
Peak 

Number Ranking 

46 23 
12 27 

137 28 
16 29 

182 86 

Table S-18. Ranking of the potential additional candidate biomarkers in the initial selection process. 

 
 

Regarding the search for additional candidates, some metabolites were highlighted by at least two 

methods (Table S-17). Nevertheless, their boxplots were not ‘better’ than the ones of the selected 

candidate biomarkers (Figures S-21) and they were not selected. This supported the comprehensiveness 

and efficiency of the selection process. Just as did the comparison of the OPLS-DA plots before and 
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after the selection where a degradation of the separation indicated that a large part of the relevant 

information had been successfully extracted (Figure S-20).  

  
Figure S-20. OPLS-DA plots constructed on all 183 metabolites of the final dataset (left) and on the 161 
metabolites left after the selection of the candidate biomarkers (right). 
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Figure S-21. Examples of boxplots for some of the candidate biomarkers (4 boxplots above) and for the potential 
additional ones (4 boxplots below). 
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S-15. Data control and selection process for the three subgroups of Crohn’s disease samples. 
 

 

 

 

 

 

Figure S-22. sPLS-DA plots (latent variables 1 and 2 on the left, 3 and 4 on the right) for the separation between 
CD subgroups samples. High endoscopic activity samples are in red, low endoscopic activity samples in green and 
quiescent samples in blue. 
 

Figure S-22 shows the existence of metabolic information capable to separate the CD subgroups. 

However, the difficulty to completely do so, in comparison to the direct separation with the healthy 

controls, is obvious. This is supported by the fact that, in the selection process (Table S-19), only the 

candidate highlighted as the most significant (candidate 11) met the Bonferroni criterion, for only one 

of the two univariate tests considered. The high endoscopic activity sample outside the 95% confidence 

ellipse in sPLS-DA will be investigated in a future biological interpretation of the results. 
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Candidate Normality Stepdisc Fisher p-
value 

Welch / K-
W 

PLS-DA 
VIP 

RF 
Sense of variation MDA 

11 0.00   0.00 0.00 1.9 0.0039 High > Quiescent > Low 
23 0.00   0.01 0.01 1.7 0.0028 High > Quiescent > Low 
1 0.00   0.02 0.04 1.5 0.0099 Low > High > Quiescent 

15 0.46   0.04 0.05 1.3 0.0022 High > Quiescent > Low 
18 0.20   0.01 0.01 1.8 0.0078 Quiescent > Low > High 
24 0.01   0.00 0.04 2.0 0.0012 Quiescent > Low > High 
25 0.00   0.01 0.04 1.5 0.0097 Low > High > Quiescent 
8 0.00   0.01 0.03 1.5 0.0071 Low > High > Quiescent 
5 0.02   0.06 0.04 1.6 0.0008 High > Quiescent > Low 

14 0.00   0.16 0.10 1.2 0.0013 Low > Quiescent > High 
7 0.15   0.03 0.04 1.3 0.0029 Low > High > Quiescent 

26 0.00   0.34 1.00 0.9 0.0014 High > Quiescent > Low 
9 0.00   0.02 0.02 1.3 0.0034 High > Quiescent > Low 

27 0.00   0.12   1.1 0.0009 Quiescent > High > Low 
28 0.00   0.01 0.01 1.6 0.0000 Quiescent > High > Low 
6 0.00   0.03 0.03 1.3 0.0033 Quiescent > High > Low 

29 0.00 5 0.67 0.59 0.9 0.0000 Quiescent > High > Low 
30 0.01 2 0.08 0.23 1.4 0.0003 Quiescent > High > Low 
31 0.00   0.05 0.07 1.4 0.0008 Quiescent > High > Low 
2 0.00   0.02 0.05 1.4 0.0006 Low > High > Quiescent 

32 0.00   0.02 0.06 1.4 0.0039 Low > High > Quiescent 
33 0.23 7 0.05 0.10 1.4 0.0003 Quiescent > High > Low 
34 0.57   0.05 0.01 1.3 0.0011 Low > High > Quiescent 
35 0.01   0.05 0.18 1.4 0.0008 Quiescent > High > Low 
36 0.01   0.05 0.03 1.4 0.0005 Quiescent > High > Low 
10 0.26 12 0.05 0.08 1.3 0.0038 High > Quiescent > Low 
37 0.00 13 0.06 1.00 1.5 0.0003 Quiescent > Low > High 
38 0.00   0.03 0.12 1.7 0.0010 Quiescent > High > Low 
39 0.00   0.03 1.00 1.5 0.0004 High > Low > Quiescent 

Table S-19. Main statistical values for the candidate biomarkers selected to separate the three CD subgroups. The 
candidates are ordered according to their significance in the selection process. Univariate methods: Welch and 
Kruskal-Wallis tests, FR. Multivariate methods: Stepdisc feature selection, PLS-DA, RF (mean decrease 
accuracy). The values meeting the statistical thresholds for significance are in bold.  
 

Figure S-23. sPLS-DA plots constructed on the 183 metabolites of the final dataset (left) and on the 154 metabolites 
left after selection of the candidate biomarkers (right). 
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Figure S-23, through the clear degradation of the separation when the candidates were removed, 

indicates that the information relevant for the biological question studied was successfully extracted 

from the data set by the selection process. 

 

 

 

Figure S-24. Examples of boxplots for some of the candidate biomarkers. 
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S-16. Bias control for the CD candidates. A. Repartition of the factors between the two biological 

classes. B. Relationships between the candidate biomarkers and the bias factors. C. Residual 

separation ability. 

 

The medications considered were the ones with enough representation in the groups or the ones linked 

to CD:  Elthyrone© and L-Thyroxine© (thyroid regulation), Pantomed© (gastroesophageal reflux and 

ulcer), Remicade© and Humira© (anti-TNFα) and Imuran© (immunosuppression). 

 

(A) Repartition of the factors between the two biological classes 

% 
Gender 

(F) Tobacco Alcohol Hemolysis 
Gastro. 
reflux 

L-
Thyroxin   

Anti-
TNFα Immunosupp. 

HC 58 18 21 15 27 18 0 0 
CD 60 37 23 14 29 20 51 14 

                  
Mean Inj Order Age BMI           

HC 43 ± 27 44 ± 12 25 ± 5           
CD 53 ± 28 42 ± 12 25 ± 5           

                  
Drying       Drying         

Number HC CD   % HC CD     
Batch 1 4 4   Batch 1 12 11     
Batch 2 3 5   Batch 2 9 14     
Batch 3 6 2   Batch 3 18 6     
Batch 4 5 3   Batch 4 15 9     
Batch 5 4 4   Batch 5 12 11     
Batch 6 3 5   Batch 6 9 14     
Batch 7 3 5   Batch 7 9 14     
Batch 8 2 6   Batch 8 6 17     
Batch 9 3 1   Batch 9 9 3     

                  
Extraction       Extraction         

Number HC CD   % HC CD     
Batch 1 16 16   Batch 1 48 46     
Batch 2 17 15   Batch 2 52 43     
Batch 3 0 4   Batch 3 0 11     

Table S-20. Repartition of the bias factors between the CD samples and the healthy controls, given by the numbers 
of samples, the percentages, means and medians. 
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Drying 

Chi2 0.54 
Hemolysis 

Chi2 0.33 
  Good.-Krusk. Tau      0.55 Good.-Krusk. Tau      0.33 
  Theil U 0.52 Theil U 0.27 
  

Extraction 
Chi2 0.13 

Gastro. reflux 
Chi2 0.91 

  Good.-Krusk. Tau      0.13 Good.-Krusk. Tau      0.91 
  Theil U 0.06 Theil U 0.91 
  

Gender 
Chi2 0.84 

Thyroid 
Chi2 0.85 

  Good.-Krusk. Tau      0.84 Good.-Krusk. Tau      0.85 
  Theil U 0.84 Theil U 0.85 
  

Tobacco 
Chi2 0.08 

Anti-TNFα 
Chi2 0.00 

  Good.-Krusk. Tau      0.08 Good.-Krusk. Tau      0.00 
  Theil U 0.08 Theil U 0.00 
  

Alcohol 
Chi2 0.87 

Immunosupp. 
Chi2 0.02 

  Good.-Krusk. Tau      0.87 Good.-Krusk. Tau      0.03 
  Theil U 0.87 Theil U 0.01 
       
  Norm. P / Sp Kendall ANOVA Kruskal-Wallis   

Inject. Order 0.00 0.11 0.05 0.11 0.10   
Age 0.03 0.44 0.30 0.44 0.40   
BMI 0.00 0.92 0.80 0.92 0.83   

 
Table S-21. p-values for the potential imbalances. The grey cells indicate the significant values. The factors with 
a statistical imbalance are in bold. 

 
 

Anti-TNFα and immunosuppression medications had p-values < 0.05 and were potential biases for the 

selected candidates (Tables S-20 and S-21). 

 

(B) Relationships between the candidate biomarkers and the bias factors 

 
Anti- 
TNFα Norm. P / Sp Kendall ANOVA Kruskal-

Wallis   Immuno. Norm. P / Sp Kendall ANOVA Kruskal-
Wallis 

1 0.00 0.05 0.01 0.02 0.05   1 0.00 0.07 0.01 0.00 0.07 
2 0.00 0.64 0.40 0.65 0.64   2 0.00 0.18 0.11 0.13 0.18 
3 0.00 0.08 0.00 0.06 0.08   3 0.00 0.17 0.00 0.00 0.17 
4 0.00 0.03 0.02 0.01 0.03   4 0.00 0.05 0.00 0.00 0.05 
5 0.00 0.19 0.01 0.24 0.19   5 0.00 0.04 0.01 0.00 0.04 
6 0.00 0.44 0.05 0.43 0.44   6 0.00 0.04 0.25 0.31 0.04 
7 0.02 0.06 0.02 0.08 0.06   7 0.02 0.05 0.02 0.08 0.05 
8 0.00 0.79 0.61 0.79 0.79   8 0.00 0.07 0.00 0.00 0.07 
9 0.00 0.06 0.03 0.10 0.06   9 0.00 0.00 0.00 0.09 0.00 

10 0.00 0.17 0.03 0.15 0.17   10 0.00 0.30 0.40 0.51 0.30 
11 0.00 0.82 0.75 0.83 0.82   11 0.00 0.06 0.00 0.00 0.06 
12 0.00 0.08 0.02 0.08 0.08   12 0.00 0.92 0.97 0.94 0.92 
13 0.00 0.29 0.08 0.23 0.29   13 0.00 0.26 0.10 0.02 0.26 
14 0.00 0.32 0.16 0.25 0.32   14 0.00 0.23 0.04 0.06 0.23 
15 0.06 0.66 0.59 0.66 0.58   15 0.06 0.01 0.00 0.01 0.01 
16 0.00 0.01 0.01 0.03 0.01   16 0.00 0.49 0.16 0.45 0.49 
17 0.82 0.38 0.28 0.38 0.36   17 0.82 0.19 0.11 0.18 0.26 
18 0.03 0.46 0.19 0.49 0.46   18 0.03 0.14 0.13 0.23 0.14 
19 0.00 0.32 0.07 0.15 0.32   19 0.00 0.52 0.02 0.04 0.52 
20 0.00 0.10 0.00 0.02 0.10   20 0.00 0.38 0.08 0.08 0.38 
21 0.00 0.52 0.42 0.54 0.52   21 0.00 0.86 0.95 0.84 0.86 
22 0.00 0.03 0.00 0.05 0.03   22 0.00 0.24 0.61 0.72 0.24  

Table S-22. p-values for the relationships between the candidate biomarkers and both anti-TNFα and 
immunosuppression medications. The grey cells indicate the significant values. The candidates significantly linked 
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to the potential bias factors are in bold. P/Sp stands for Pearson or Spearman correlation, according to the normality 
of the variable. 
 

Candidates 1, 3, 4, 7, 9, 12, 16, 20, 22 and 1, 3-9, 11, 14, 15, 19, respectively, were found to be linked 

to, i.e. were potentially influenced by, the factors, with p-values < 0.05 or 0.01, % FC < 90 or 80, ∆ 

AUC < -0.05 or -0.1 (Table S-22). The next section aimed to evaluate how the bias factors could affect 

the separation ability of these candidates. 

 

 

(C) Residual separation ability 

Sample Removal 

To equilibrate the classes regarding the potentially active bias factors, different combinations were 

tested. As a result, despite the fact that it left aside a substantial proportion of the samples, all samples 

with anti-TNFα or immunosuppression medication were removed. This had the advantage to completely 

equalize the distributions (resulting p-values = 0). Details are given in Tables S-23 and S-24. 

Clinical 
ID Class Anti-

TNFα   Number Before After 

228-VH CD Yes   HC 33 33 
354-FD CD Yes   CD 35 17 
356-OL CD Yes         
366-AT CD Yes         
368-FP CD Yes         
390-JT CD Yes         
404-AC CD Yes         
407-BM CD Yes         
425-SM CD Yes         
426-CF CD Yes         
429-ID CD Yes         

434-SLR CD Yes         
453-LR CD Yes         

458-SDB CD Yes         
465-PM CD Yes         

466-VLC CD Yes         
488-GA CD Yes         
508-DJ CD Yes         

Table S-23. Samples removed for the anti-TNFα equilibration and summary of the samples left. 
 
 

Clinical 
ID Class Immunosup.   Number Before After 

133-MD CD Yes   HC 33 33 
351-JT CD Yes   CD 35 30 
228-VH CD Yes         
465-PM CD Yes         
247-SK CD Yes         

Table S-24. Samples removed for the immunosuppressor equilibration and summary of the samples left. 
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Results 

Order (/ 
22) 

Anti- 
TNFα Norm. P / Sp Kendall ANOVA Kruskal-

Wallis 
Partial 
P / Sp 

Partial 
Kendall FC Ratio ROC 

Difference 
1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 203 0.06 
3 3 0.00 0.03 0.00 0.01 0.01 0.00 0.00 68 -0.04 
4 4 0.00 0.02 0.00 0.02 0.01 0.01 0.00 97 -0.01 
7 7 0.13 0.00 0.00 0.00 0.00 0.00 0.00 115 0.08 
9 9 0.00 0.01 0.00 0.01 0.00 0.02 0.01 100 0.05 

11 12 0.00 0.03 0.00 0.02 0.02 0.06 0.04 103 0.03 
15 16 0.00 0.47 0.31 0.46 0.40 0.35 0.31 85 -0.07 
20 20 0.00 0.90 0.00 0.93 0.00 0.94 0.00 79 -0.03 
22 22 0.00 0.12 0.30 0.21 0.39 0.11 0.29 94 -0.08 

           
Order (/ 
22) Immuno. Norm. P / Sp Kendall ANOVA Kruskal-

Wallis 
Partial 
P / Sp 

Partial 
Kendall FC Ratio ROC 

Difference 
1 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 87 -0.02 
3 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 89 -0.02 
4 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 95 -0.03 
4 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97 -0.02 
6 6 0.00 0.00 0.00 0.00 0.00 0.01 0.01 93 0.00 
7 7 0.02 0.01 0.00 0.00 0.00 0.00 0.00 96 -0.02 
8 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 87 -0.03 
9 9 0.00 0.02 0.00 0.01 0.01 0.02 0.01 90 -0.04 

11 11 0.00 0.05 0.00 0.05 0.05 0.04 0.00 97 -0.03 
14 14 0.00 0.11 0.01 0.09 0.09 0.09 0.02 97 -0.02 
15 15 0.13 0.03 0.01 0.03 0.03 0.02 0.04 95 -0.03 
19 19 0.00 0.12 0.00 0.12 0.12 0.11 0.00 97 -0.02 

Table S-25. Effect of the factors on the separation ability measured through the residual separation capability (p-
values for Pearson/Spearman and Kendall correlations, Welch/Kruskal-Wallis test and Fisher ratios) and on the 
capability variation (fold change percentage and ROC curve delta). The order is the ranking of the candidates in 
the set of candidate biomarkers. The grey cells indicate the significant p-values (< 0.05) while the candidates in 
bold are the ones with a low residual separation capability (p-values > 0.1). 
 
 

       Norm. P / Sp Kendall ANOVA 
Kruskal-
Wallis FC FC 

Ratio 
Uni 

ROC 
ROC 

Difference   Order Candidate 

Anti-
TNFα 

15 16 Before 0.00 0.03 0.01 0.03 0.03 1.29 85 0.65 -0.07 
After 0.00 0.47 0.31 0.46 0.40 1.10 0.58 

20 20 
Before 0.00 0.30 0.00 0.29 0.00 1.31 

79 
0.80 

-0.03 
After 0.00 0.90 0.00 0.93 0.00 1.03 0.77 

22 22 
Before 0.00 0.01 0.01 0.01 0.02 1.30 

94 
0.66 

-0.08 After 0.00 0.12 0.30 0.21 0.39 1.22 0.58 
                0.01         

Immuno. 
14 14 

Before 0.00 0.05 0.00 0.05 0.03 1.31 
97 

0.68 
-0.02 After 0.00 0.11 0.01 0.10 0.00 1.27 0.66 

19 19 
Before 0.00 0.08 0.00 0.03 0.00 1.88 

97 
0.75 

-0.02 
After 0.00 0.12 0.00 0.11 0.03 1.83 0.73 

Table S-26. Comparison of the separation ability (p-values, FC, AUC) before and after the equilibration, for the 
candidates potentially affected. The grey cells indicate the significant variations. The order is the ranking of the 
candidates in the set of candidate biomarkers. The candidates with substantial deterioration due to the bias factors 
are in grey. 
 
The residual separation capability evaluation worked in two steps, with first the direct assessment of the 

residual ability (Table S-25) and second, for the candidates with p-values > 0.1, an investigation of the 

variation resulting from the bias effect by comparing the ability with and without the consideration of 

the possible bias (Table S-26). Here, candidates 16, 20, 22 as well as 14 and 19, respectively, had p-

values > 0.1 (Table S-25). Candidate 3, linked to anti-TNFα bias, had a high decrease in fold change but 
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its other statistical values were quite good. Table S-26 shows that the candidates 16, 20 and 22 were 

deteriorated in all five tests performed and had a low residual ability. These were therefore removed 

from the set of candidate biomarkers.  
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S-17. Bias Control for the three CD subgroups candidates. A. Repartition of the factors between 

the biological classes. B. Relationships between the candidate biomarkers and the bias factors. C. 

Residual separation ability. 

 

The medications considered were the ones with enough representation in the groups or the ones linked 

to CD :  Elthyrone© and L-Thyroxine© (thyroid regulation), Pantomed© (gastroesophageal reflux and 

ulcer), Remicade© and Humira© (anti-TNFα) and Imuran© (immunosuppression). 

 

(A) Repartition of the factors between the biological classes 

 

% 
Gender 

(F) Tobacco Alcohol Hemolysis 
Gastro. 
reflux 

L-
Thyroxin 

Anti-
TNFα Immunosupp. 

High 50 42 8 8 33 8 50 33 
Low 64 43 21 7 29 21 71 0 

Quiescent 67 22 44 33 22 33 22 11 
                  

Mean 
Inj 

Order Age BMI           
High 47 ± 26 38 ± 16 22 ± 3           
Low 59 ± 28 39 ± 9 26 ± 5           

Quiescent 53 ± 32 51 ± 8 27 ± 5           
                  

Drying                 
% High Low Quiescent           

Batch 1 8 14 11           
Batch 2 25 14 0           
Batch 3 0 7 11           
Batch 4 8 14 0           
Batch 5 0 21 11           
Batch 6 17 7 22           
Batch 7 8 14 22           
Batch 8 25 7 22           
Batch 9 8 0 0           

                  
Extraction                 

% High Low Quiescent           
A 58 36 44           
B 33 57 33           
C 8 7 22           
                  

Location                 
% High Low Quiescent           

Ileitis 17 21 56           
Colitis 25 14 0           

Ileocolitis 33 43 0           
Pancolitis 8 14 11           

Other 17 7 33           
Table S-27. Repartition of the bias factors considered between the three CD groups (high, low and quiescent 
endoscopic activities) given by the numbers of samples, the percentages, the means and the medians. 
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Drying 
Chi2 0.71 

Hemolysis 
Chi2 0.17 

Good.-Krusk. Tau      0.72 Good.-Krusk. Tau      0.22 
Theil U 0.42 Theil U 0.21 

Extraction 
Chi2 0.54 

Gastro. reflux 
Chi2 0.86 

Good.-Krusk. Tau      0.55 Good.-Krusk. Tau      0.87 
Theil U 0.58 Theil U 0.85 

Gender 
Chi2 0.68 

Thyroid 
Chi2 0.36 

Good.-Krusk. Tau      0.68 Good.-Krusk. Tau      0.40 
Theil U 0.68 Theil U 0.34 

Tobacco 
Chi2 0.56 

Anti-TNFα 
Chi2 0.01 

Good.-Krusk. Tau      0.61 Good.-Krusk. Tau      0.01 
Theil U 0.54 Theil U 0.01 

Alcohol 
Chi2 0.15 

Immunosupp. 
Chi2 0.05 

Good.-Krusk. Tau      0.19 Good.-Krusk. Tau      0.04 
Theil U 0.15 Theil U 0.03 

      
Disease 

Location 

Chi2 0.12 
      Good.-Krusk. Tau      0.25 
      Theil U 0.06 
            
  Norm. ANOVA Kruskal-Wallis   

Inject; Order 0.01 0.56 0.58   
Age 0.17 0.01 0.01   
BMI 0.00 0.01 0.01   

Table S-28. p-values for the potential imbalances. The grey cells indicate the significant values. The factors with 
statistical imbalance are in bold. 
 
 
Anti-TNFα and immunosuppression medications as well as age and BMI had p-values < 0.05 (Tables 

S-27 and S-28). 

Unsupervised plots were also drawn to visualize the impact of categorical bias factors, either on all 

metabolites in the final dataset or on the selected candidates. The one for disease location is given at 

Figure S-16. Here, only a small effect between ileitis and ileocolitis can be seen. The problem of such 

plots, however, is that the metabolites are considered together. This dilutes the effect of each 

metabolite individually. 

 

 

 

 

 



S-60 
  

 

 

 

 

 

 

Figure S-25. HCA and PCA plots constructed on all 183 metabolites (above) and the selected candidates (n=29, 
below) to see the influence of disease location. 
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(B) Relationships between the candidate biomarkers and the bias factors 
 

Anti-
TNFα Norm. P / Sp Kendall ANOVA Kruskal-

Wallis   Immuno. Norm. P / Sp Kendall ANOVA Kruskal-
Wallis 

11 0.00 0.01 0.01 0.01 0.04   11 0.00 0.20 0.07 0.02 0.13 
23 0.00 0.39 0.47 0.41 0.55   23 0.00 0.02 0.40 0.28 0.48 
1 0.00 0.13 0.06 0.10 0.15   1 0.00 0.22 0.37 0.00 0.48 

15 0.46 0.11 0.05 0.09 0.11   15 0.46 0.02 0.00 0.01 0.02 
18 0.20 0.92 0.90 0.95 0.92   18 0.20 0.38 0.28 0.43 0.37 
24 0.01 0.07 0.06 0.09 0.11   24 0.01 0.59 0.21 0.70 0.30 
25 0.00 0.05 0.02 0.03 0.06   25 0.00 0.28 0.06 0.01 0.12 
8 0.00 0.03 0.00 0.01 0.00   8 0.00 0.27 0.01 0.01 0.04 
5 0.00 0.34 0.78 0.29 0.82   5 0.00 0.25 0.21 0.06 0.30 

14 0.00 0.68 0.22 0.68 0.30   14 0.00 0.36 0.16 0.23 0.24 
7 0.15 0.47 0.38 0.35 0.46   7 0.15 0.31 0.21 0.28 0.30 

26 0.00 0.41 0.81 0.37 0.84   26 0.00 0.37 0.43 0.05 0.51 
9 0.00 0.95 0.94 0.95 0.95   9 0.00 0.01 0.01 0.14 0.03 

27 0.00 0.21 0.23 0.26 0.32   27 0.00 0.91 0.69 0.91 0.74 
28 0.00 0.10 0.48 0.16 0.56   28 0.00 0.91 0.95 0.89 0.96 
6 0.00 0.23 0.38 0.26 0.46   6 0.00 0.31 0.57 0.50 0.64 

29 0.00 0.15 0.32 0.20 0.40   29 0.00 0.42 0.53 0.16 0.60 
30 0.01 0.39 0.84 0.43 0.87   30 0.01 0.78 0.57 0.87 0.64 
31 0.00 0.06 0.14 0.09 0.22   31 0.00 0.66 0.71 0.43 0.76 
2 0.00 0.04 0.04 0.02 0.08   2 0.00 0.68 0.78 0.62 0.81 

32 0.00 0.05 0.01 0.03 0.04   32 0.00 0.27 0.14 0.02 0.22 
33 0.23 0.20 0.12 0.14 0.19   33 0.23 0.78 0.73 0.91 0.78 
34 0.57 0.51 0.42 0.76 0.50   34 0.57 0.05 0.02 0.11 0.05 
35 0.01 0.39 0.20 0.39 0.29   35 0.01 0.47 0.28 0.54 0.37 
36 0.01 0.12 0.05 0.14 0.10   36 0.01 0.58 0.43 0.61 0.51 
10 0.26 0.49 0.40 0.37 0.48   10 0.26 0.93 0.91 0.93 0.92 
37 0.00 0.17 0.13 0.19 0.21   37 0.00 0.43 0.43 0.24 0.51 
38 0.00 0.03 0.13 0.06 0.21   38 0.00 0.60 0.53 0.55 0.60 
39 0.00 0.24 0.11 0.20 0.18   39 0.00 0.23 0.09 0.01 0.16 

 

Age Norm. P / Sp Kendall   BMI Norm. P / Sp Kendall 
11 0.00 0.89 0.81   11 0.00 0.20 0.01 
23 0.00 0.51 0.62   23 0.00 0.31 0.41 
1 0.00 0.19 0.50   1 0.00 0.47 0.14 

15 0.46 0.48 0.50   15 0.45 0.90 0.77 
18 0.20 0.01 0.01   18 0.31 0.00 0.00 
24 0.01 0.00 0.00   24 0.01 0.35 0.24 
25 0.00 0.89 0.58   25 0.00 0.57 0.12 
8 0.00 0.76 0.76   8 0.00 0.47 0.80 
5 0.00 0.34 0.09   5 0.00 0.80 0.29 

14 0.00 0.16 0.11   14 0.00 0.14 0.63 
7 0.15 0.57 0.53   7 0.23 0.67 0.55 

26 0.00 0.99 0.62   26 0.00 0.27 0.52 
9 0.00 0.49 0.43   9 0.00 0.56 0.39 

27 0.00 0.31 0.56   27 0.00 0.03 0.89 
28 0.00 0.00 0.02   28 0.00 0.80 0.17 
6 0.00 0.61 0.62   6 0.00 0.71 0.86 

29 0.00 0.01 0.05   29 0.00 0.31 0.19 
30 0.01 0.02 0.15   30 0.02 0.96 0.93 
31 0.00 0.01 0.01   31 0.00 0.09 0.38 
2 0.00 0.93 0.68   2 0.00 0.97 0.63 

32 0.00 0.35 0.87   32 0.00 0.79 0.19 
33 0.23 0.09 0.12   33 0.22 0.82 0.91 
34 0.57 0.59 0.48   34 0.32 0.05 0.05 
35 0.01 0.02 0.11   35 0.03 0.93 0.61 
36 0.01 0.05 0.04   36 0.01 0.45 0.47 
10 0.26 0.70 0.72   10 0.17 0.22 0.24 
37 0.00 0.51 0.68   37 0.00 0.11 0.43 
38 0.00 0.03 0.05   38 0.00 0.31 0.89 
39 0.00 0.50 0.70   39 0.00 0.01 0.00 

Table S-29. p-values for the relationships between the candidate biomarkers and the four potential bias factors. 
The grey cells indicate the significant values. The candidates significantly linked to the bias factor are in bold. 
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Candidates 11, 25, 8, 2, 32; 15, 8, 9, 34; 18, 24, 28, 29, 31, 36, 38 and 18, 34, 39, respectively, were 

found to be linked to the factors (p-values < 0.05; Table S-28). The potential impact was further assessed 

through the residual ability to separate the biological groups and, for continuous bias factors, through 

scatterplots (Figures S-26 and S-27). These figures confirmed the links between age or BMI and the 

candidates. The relationship for candidate 28 seemed due to atypical values (outliers), but it was kept 

for the remainder of the process since it was significant in Kendall correlation, a non-parametric 

measure.  

 

 

 

 

 

 

 

 

 

Figure S-26. Scatterplots of the candidates’ detected signal against age with the corresponding linear regression. 
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Figure S-27. Scatterplots of the candidates’ detected signal against BMI with the corresponding linear regression. 
 
 
 
 (C) Residual separation ability 

Sample Removal 

To equilibrate the classes regarding the potentially active bias factors, different combinations were 

tested. Details of the final results are given at Table S-30, 31, 32 and 33. 

  Group BMI         
390-JT Quiescent /         

434-SLR "Low" /         
429-ID "High" 15.4   Number Before After 
83-ML "High" 17.5   Quiescent 9 7 
508-DJ "High" 19.6   "High" 12 7 
502-SA "High" 20.7   "Low" 14 11 

466-VLC "High" 20.5         
367-VW Quiescent 39.2   N W / K-W Fisher 
354-FD "Low" 30.1   0.98 0.29 0.27 
357-WF "Low" 41.5         

Table S-30. Samples removed for the BMI equilibration (left), summary of the samples left (top right) and p-
values for the repartition after the removal (bottom right). 
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Clinical 
ID Class Anti-

TNFα   Number Before After 

404-AC Low Yes   Quiescent 9 6 
354-FD Low Yes   High 12 12 
453-LR Low Yes   Low 14 8 
356-OL Low Yes         
426-CF Low Yes   Chi2 0.38   

425-SM Low Yes   
Good.-Krusk. 

Tau      0.46   
133-MD Quiescent No   Theil U 0.37   
155-PC Quiescent No         

28-CL Quiescent No   Norm. ANOVA Kruskal-
Wallis 

        0.00 0.43 0.42 
Table S-31. Samples removed for the anti-TNFα equilibration (left), summary of the samples left (top right) and 
p-values for the repartition after the removal (bottom right). 

        Number Before After 
Clinical ID Class Immunosupp.   Quiescent 9 9 

465-PM High Yes   High 12 10 
247-SK High Yes   Low 14 14 

              

  Chi2 0.24   Norm. ANOVA Kruskal-
Wallis 

  Good.-Krusk. Tau      0.21   0 0.88 0.25 
  Theil U 0.15         

Table S-32. Samples removed for the immunosuppressor equilibration (left), summary of the samples left (top 
right) and p-values for the repartition after the removal (bottom right). 
 

Clinical 
ID Class Age   Number Before After 

133-MD Quiescent 65   Quiescent 9 7 
426-CF Low 28   High 12 9 
366-AT High 22   Low 14 12 
390-JT Low 29         

247-SK High 26   Norm. ANOVA Kruskal-
Wallis 

228-VH High 26   0.17 0.13 0.38 
28-CL Quiescent 56         

Table S-33. Samples removed for the age equilibration (left), summary of the samples left (top right) and p-values 
for the repartition after the removal (bottom right). 
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Results 

Anti-
TNFα Norm. ANOVA Kruskal-

Wallis   Immuno. Norm. ANOVA Kruskal-
Wallis 

11 0.00 0.10 0.01   15 0.58 0.08 0.08 
25 0.00 0.30 0.01   8 0.00 0.03 0.00 
8 0.00 0.15 0.11   9 0.00 0.03 0.04 
2 0.00 0.48 0.65   34 0.63 0.02 0.01 

32 0.02 0.28 0.25           

          BMI Norm. ANOVA Kruskal-
Wallis 

Age Norm. ANOVA Kruskal-
Wallis   11 0.00 0.03 0.02 

18 0.18 0.16 0.07   18 0.45 0.14 0.05 
24 0.01 0.11 0.11   34 0.56 0.12 0.11 
28 0.00 0.51 0.34  39 0.00 0.40 0.41 
29 0.00 0.54 0.79           
31 0.00 0.19 0.14           
36 0.01 0.08 0.07           
38 0.00 0.28 0.61           

Table S-34. Effect of the factors on the separation ability measured through the residual separation capability (p-
values for Pearson/Spearman and Kendall correlations, Welch/Kruskal-Wallis test and Fisher ratios).  The order 
is the ranking of the candidates in the set of candidate biomarkers. The grey cells indicate the significant p-
values (< 0.05) while the candidates in bold are the ones with a low residual separation capability (p-values > 
0.1). 

Order (/ 
29) 

Anti-
TNFα Norm. ANOVA Kruskal-

Wallis   
Order (/ 

29) Age Norm. ANOVA Kruskal-
Wallis 

7 
25 

0.00 0.04 0.01   4 
18 

0.20 0.01 0.01 
  0.00 0.30 0.01     0.18 0.07 0.14 
7 8 0.00 0.03 0.01   4 24 0.01 0.04 0.00 
  0.00 0.15 0.11     0.01 0.11 0.02 

20 2 0.00 0.05 0.02   10 28 0.00 1.00 0.55 
  0.00 0.48 0.25     0.00 0.51 0.61 

20 32 0.00  0.00 0.02   17 29 0.00  0.59 0.67 
  0.02 0.28 0.15     0.00 0.54 0.44 

            20 
31 

0.00  0.07 0.05 
Order (/ 

29) BMI Norm. ANOVA Kruskal-
Wallis     0.00 0.19 0.16 

4 18 0.20 0.01 0.01   25 38 0.00  0.12 0.03 
  0.45 0.05 0.05     0.00 0.28 0.17 

20 
34 

0.57 0.01 0.05             
  0.56 0.11 0.26             

25 
39 

0.00  0.13 0.03             
  0.00 0.40 0.26             

Table S-35. Comparison of the separation ability (p-values) before and after the equilibration, for the candidates 
potentially affected. The grey cells indicate the significant values. The order is the ranking of the candidates in the 
set of candidate biomarkers. The candidates with substantial deterioration due to the bias factor are in bold. 
 
 
The residual separation capability evaluation worked in two steps. First, the direct assessment of the 

residual ability (Table S-34). Second, for the candidates with p-values > 0.1, an investigation of the 

variation resulting from the bias effect by comparing the ability with and without the consideration of 

the possible bias (Table S-35). Overall, candidates 2, 32, 38 and 39 were considered deteriorated and 

thus removed from the set of candidate biomarkers. The candidate 18 was impacted by two different 

factors and was also removed. Candidates 8 and 34, as far as we could evaluate, were significantly 
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impacted (with initial low p-values, < 0.05) but had remaining p-values around 0.1. It was decided to 

keep them as biological markers but to leave them aside when evaluating the separation performance. 
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S-18. Data Processing. A. Meta-markers. B. Testing of potential bias between training and test 

sets. 

 

(A) Meta-markers 

Three meta-markers were considered. The first (CB1) used the most significant candidates for each 

separation (n=6 for both). The second (CB2) added the very significant ones (n=12 and n=15, 

respectively). The third (CB3) used all the selected and not biased candidates (n= 19 and n=22). 

 

(B) Testing of potential bias between training and test sets for all samples 

  Number of samples           
  Class Training Test   Drying Training Test 
  Healthy Controls 22 11   Batch 1 7 1 
  Low 10 4   Batch 2 6 2 
  High 8 4   Batch 3 4 4 
  Quiescent 6 3   Batch 4 5 3 
          Batch 5 5 3 
  Extraction Training Test   Batch 6 6 2 
  Batch 1 21 11   Batch 7 5 3 
  Batch 2 23 9   Batch 8 7 1 
  Batch 3 2 2   Batch 9 1 3 
                
 Number           

  Inj. Order Gender Age at 
sampling Tobacco Alcohol BMI 

Training 48.4 0.39 41.3 0.26 0.24 24.70 
Test 47.4 0.45 46.2 0.27 0.18 25.32 

                

  Gastro. reflux L-Thyroxin Anti-
TNFα Immuno.       

Training 0.30 0.13 0.26 0.11       
Test 0.23 0.32 0.27 0.00       

 

    p-values Normality P / Sp ANOVA Kruskal-
Wallis 

Drying 

Chi2 0.43   Inj. Order 0.00 0.89 0.89 0,89 
Wilk's Lambda 0.09   Age 0.03 0.11 0.11 0,09 

Good-Krusk. Tau      0.44   Tobacco 0.00 0.92 0.92 0,92 
Theil U 0.41   Alcohol 0.00 0.60 0.59 0,60 

Extraction 

Chi2 0.64   Gastro. reflux 0.00 0.51 0.50 0,51 
Wilk's Lambda 0.00   L-Thyroxin   0.00 0.07 0.11 0,07 

Good-Krusk. Tau      0.64   Anti-TNFα 0.00 0.91 0.91 0,91 
Theil U 0.65   Immunosupp. 0.00 0.11 1.00 0.11 

Gender 

Chi2 0.62             
Wilk's Lambda 0.00             

Good-Krusk. Tau      0.62             
Theil U 0.62             

Table S-36. Distribution of the samples (numbers of samples and percentages) and corresponding p-values 
between training and test sets for the various potential bias factors. 
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S-19. Separation between healthy controls and Crohn’s disease samples. A. Performances. B. 
Selection order in the models. 
 

(A) Performances 

  Predictive Orthogonal Permutation Probability 
OPLS-

DA Q2 R2Y Q2 R2Y Q2 R2Y Q2 R2Y 

CB 1 0.45 0.48 0.00 0.03 0.46 0.51 < 0.0005 < 
0.0005 

CB 2 0.46 0.49 0.00 0.09 0.46 0.58 < 0.0005 < 
0.0005 

CB 3 0.48 0.53 -0.01 0.09 0.47 0.62 < 0.0005 < 
0.0005 

                  

PLS-DA Q2 R2Y Probability Nber 
LV   LDA Rao value p-value 

CB 1 / / / /   CB 1 10.7 < 
0.0001 

CB 2 0.33 0.49 < 0.0005 3   CB 2 7.3 < 
0.0001 

CB 3 0.31 0.39 < 0.0005 1   CB 3 4.5 < 
0.0001 

                  
Error 
rates 

sPLS-
DA RF SVM   Error 

rates 
Re-

subst. 
Re-

sampling Test 

CB 1 / 0.15 /   CB 1 0.19 0.22 0.16 
CB 2 0.16 0.19 0.21   CB 2 0.14 0.20 0.14 
CB 3 0.18 0.15 0.23   CB 3 0.11 0.21 0.16 

                  
ROC Predict. Holdout Test Permut.         
CB 1 0.85 0.90 19 0.01         
CB 2 0.78 0.93 19 0.05         
CB 3 0.75 0.92 17 0.09         

 
Table S-37. Discrimination performances achieved with the three different meta-markers using OPLS-DA, PLS-
DA, LDA, sPLS-DA, SVM and RF models. Plus ROC curves and mean error rates for Bayes classifier, NN, SVM 
and PLS-DA. The grey cells indicate the best values obtained. Nber LV is the number of latent variables required 
to obtain the most efficient separation in PLS-DA. 
 

The results summarized in Table S-37 showed that the CD samples were effectively separated from the 

healthy controls. Rao p-value was < 0.001 for all three potential meta-markers. Mean error rates were 

around 0.2 (range 0.16-0.29, depending on the meta-marker and the method) and 0.15 (range 0.09-0.23) 

in re-sampling and test validation, respectively. This was confirmed by sPLS-DA cross-validation (0.16-

0.18) and RF out-of-bag error (0.17-0.19). As well as by ROC test validation (between 0.15 and 0.2). 

The predictive Q2 was moderate in PLS-DA model (0.31-0.33) and good in OPLS-DA (0.45-0.48)40.  

ImportantlyS-41, there was very little overfitting S-42 since Q2 was close to R2Y in both PLS-DA and 

OPLS-DA : 0.39/0.49 and 0.48/0.53 respectively. In OPLS-DA, we observed an explicative power much 

higher than noise, with the orthogonal Q2 equal to 0. Moreover, the permutation Q2 was close to the 

predictive Q2 (0.46/0.47) and its p-value was low (< 0.0005), rejecting the hypothesis of a discrimination 
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due to bare chance. The diagnosis ability measured by ROC AUC was good S-40, S-43 with a mean value 

of 0.80, a range of 0.75-0.85, a confidence interval (CI) mean range of 0.70 - 0.99, a CI global range of 

0.57 - 1 and a probability p-value < 0.1. The global statistical power was over 0.8 at FDR 0.1 when all 

the candidates where employed (Figure S-28). Re-sampling and test validations also indicated the 

potential ability of the meta-markers to be generalized to new samples. The ratio between the 

information valuable to separate and the noise can be evaluated by comparing the supervised (that use 

only mostly the first) and the unsupervised plots (that use both). Here, as in most cases, the successive 

additions of candidates brought valuable information (better discrimination in supervised plots) but at 

the cost of noise addition (poorer separation in unsupervised plots; Figure S-30). The performances 

attained were particularly satisfying, if one considers that the CD samples consisted in three endoscopic 

activity subgroups, which most probably increased their overall group variance.

  

 
 
 
 

Figure S-28. ROC curves (100 cross-validation, SVM algorithm) for an increasing number of candidates (left). 
Adding candidates to the meta-marker increased the diagnosis capability marginally. Multivariate statistical power 
for all the candidates at FDR 0.01, > 0.8 for the minimal n (= 33). 
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Figure S-29. HCA and PCA plots constructed on the most significant candidate biomarkers. The CD samples are 
in red, the HC in green and the QC samples in blue. 
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Figure S-30. PCA (left) and OPLS (right) plots constructed on the three different meta-markers (CB1, above, CB2, 
middle, and CB3, below). 
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(B) Selection order in the models 

CB NN Bayes PLS-
DA SVM OPLS-

DA RF CB Mean Median Best Worst LDA 

1 5 2 1 3 1 1 1 2 2 1 5 1 
2 11 14 5 16 3 7 2 9 9 3 16   
3 2 1 2 2 7 4 3 3 2 1 7 3 
4 6 5 6 4 10 14 4 8 6 4 14 4 
5 18 7 3 7 2 3 5 7 5 2 18   
6 4 6 10 8 6 11 6 8 7 4 11 6 
7 7 11 8 5 4 6 7 7 7 4 11   
8 17 8 4 9 5 2 8 8 7 2 17 8 
9 10 15 14 15 8 9 9 12 12 8 15   

10 12 9 7 6 9 16 10 10 9 6 16 10 
11 14 13 12 13 15 5 11 12 13 5 15   
12 3 16 9 10 11 8 12 10 10 3 16   
13 16 12 18 11 16 13 13 14 15 11 18   
14 15 18 16 18 19 12 14 16 17 12 19   
15 13 10 13 14 12 19 15 14 13 10 19   
17 19 19 15 12 17 18 17 17 18 12 19   
18 8 17 17 19 13 17 18 15 17 8 19   
19 9 3 19 17 18 10 19 13 14 3 19   
22 1 4 11 1 14 15 22 8 8 1 15   

Table S-38.  Ranking or selection order of the candidate biomarkers in neural network (NN), Bayes classifier, 
PLS-DA, OPLS-DA, SVM and RF models. In the far right column, the metabolites found significant in the LDA 
model. The grey cells emphasize the highest ranks. 

 
 

As expected, the candidates selected as the most significant had the highest ranks in the models (Table 

S-38). As already noticed in the selection process, Bayes classifier, neural network and SVM worked 

differently, particularly regarding the candidates 19 and 22 (in bold), an issue worth to mention but 

outside the scope of this study. 
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S-20. Separation between the three Crohn’s disease groups. A. Performances. B. Selection order 

in the models. 

 

(A) Performances 

PLS-DA Q2 R2Y Probability Nber LV   LDA Rao     
CB 1 / / / /   CB 1 3.7 0.000 
CB 2 -0.20 0.07 0.003 1   CB 2 1.9 0.032 
CB 3 -0.25 0.11 < 0.0005 1   CB 3 1.7 0.069 

                  
Error 
rates 

sPLS-
DA RF   Error 

rates Re-subst. Re-
sampling Test   

CB 1 / 0.29   CB 1 0.24 0.36 0.41   
CB 2 0.31 0.37   CB 2 0.11 0.45 0.57   
CB 3 0.29 0.37   CB 3 0.07 0.44 0.57   

Table S-39. Discrimination performances achieved with the three different meta-markers using PLS-DA, LDA, 
sPLS-DA and RF models, and mean error rates for Bayes classifier, NN, SVM and PLS-DA. 
 
 

Error rates in re-substitution were acceptable, either for sPLS-DA, RF or the mean of SVM, Bayes 

classifier, NN, and PLS-DA models (0.20-0.30, but as low as 0.07, Table S-39). However, the re-

sampling and test error rates increased to 0.36 and 0.41 respectively. And the PLS-DA models were not 

able to separate effectively the three CD subgroups (negative Q2). Reasons for this have been mentioned 

in the manuscript (section 3.3), particularly the difficulty to separate three classes with one rule (section 

5.5). To support this, the Rao p-value indicated the possibility to distinguish at least two classes, with a 

much higher effectiveness (p < 0.0001). And HCA and PLS plots clearly showed that the candidates 

were able to separate (Figure S-31). 

Despite the low number of samples available (n=9 for quiescent CD), the variations of concentration of 

the candidates were sufficient to achieve a statistical power around 0.8 at FDR 0.1. 
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Figure S-31. HCA and PLS plots for the separation between the three CD groups (above), constructed on the most 
significant candidates (CB1) and all the selected and not biased candidates (CB3), respectively. The high 
endoscopic activity samples are in red, the low endoscopic activity ones in green, the quiescent ones in blue. 
Statistical power for the 15 most significant candidates (CB2) at FDR 0.1 (below). 
 

 

Figure S-32. HCA and PCA plots constructed on all the candidate biomarkers. The high endoscopic activity 
samples are in red, the low endoscopic activity ones are in green, the quiescent ones in light blue, the QC samples 
in royal blue. 
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(B) Selection order in the models 

 
CB NN Bayes PLS-

DA RF CB Mean Median Best Worst LDA 

11 2 6 1 2 11 3 2 1 6 1 
23 8 7 3 6 23 6 7 3 8   
1 15 1 7 1 1 6 4 1 15   

15 4 9 9 4 15 7 7 4 9   
25 16 4 6 3 25 7 5 3 16   
5 17 10 8 16 5 13 13 8 17   

14 18 20 15 14 14 17 17 14 20   
7 5 14 4 9 7 8 7 4 14   

26 3 17 17 13 26 13 15 3 17   
9 9 19 16 7 9 13 13 7 19   

27 19 2 18 8 27 12 13 2 19   
28 10 11 19 12 28 13 12 10 19   
6 11 15 14 20 6 15 15 11 20   

29 12 13 20 15 29 15 14 12 20   
30 13 8 13 11 30 11 12 8 13   
33 20 18 10 10 33 15 14 10 20   
35 14 5 11 18 35 12 13 5 18   
36 6 12 5 17 36 10 9 5 17   
10 7 16 12 19 10 14 14 7 19   
37 1 3 2 5 37 3 3 1 5   

Table S-40. Ranking or selection order of the candidate biomarkers in NN, Bayes classifier, PLS-DA and RF 
models. In the far right column, the significant metabolites in the LDA model. The grey cells emphasize the highest 
ranks. 

 

Again, the candidates selected as the most significant had the highest ranks in the models, a convergence 

that tended to support the selection process (Table S-40). Candidate 37, however, seemed important to 

discriminate despite the fact that it was at first selected in a low position. This discrepancy could again 

be due to the complexity of separating three groups at once. 
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S-21. Annotation of the candidate biomarkers. 

 

Candidate ID Specific Peaks Match Proba. ∆ RT ∆ 
(ppm) 

Criteria 
Met 

1 / 205, 103         0 

2 Erythronic acid / 
Threonic Acid   902 49 57 0.1 2 

3 / 259, 198, 167, 139, 114         0 

4 / 216, 188, 172         0 

5 / 449, 408, 393, 333, 318, 305         0 

6 / 205, 147, 117         0 

7 Aspartic Acid   758 82 19 0.2 3 

8 Threonolactone*   808 57 40 0.6 2 

9 Glutamic Acid   853 78 5 0 3 

10 Xylose   757 6 28 0.7 2 

11 / 203, 156, 112, 89         0 

12 / 364, 277, 189, 172         0 

13 Methionine   678 86 0 0.1 3 

14 2-Hydroxybutyric 
acid   846 27 1 0.1 3 

15 / 249, 233, 207, 175, 133         0 

17 1,5-Anhydroglucitol    912 66 11 0.4 3 

18 Citric Acid   872 95 12 0.2 3 

19 Galactose   739 11 10 34 2 

22 / 56         0 
                

23 Erythrose / Threose   572 12 24 0.4 2 

24 / 325, 174         0 

25 / 203, 188, 172         0 

26 Capric acid   795 93 0 0.3 3 

27 / 292         0 

28 / 384, 369, 327, 266, 237         0 

29 / 217, 191, 147     0 

30 / 327, 145, 129         0 

31 Erythritol / Threitol   823 23 16 / 2 

33 Myristic acid   879 96 14 0.1 3 

34 Glucose   899 15 7 0.6 3 

35 / 255         0 

36 Lauric acid   806 90 8 0.1 3 

37 Terephthalic acid**   644 0 10 0.2 2 

Table S-41. Annotation of the candidate biomarkers. The candidates highlighted in the CD vs HC separation are 
above. The candidates highlighted in the 3 CD subgroups separation are below. The values that meet the 

significance thresholds are in bold. 
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S-22. Biological functions of the candidate biomarkers. 

 

Compound 
2-

Hydroxybutyric 
acid 

1,5-
anhydroglucitol Citric acid Galactose Erythrose 

/ Threose Decanoic acid 

HMDB 0000008 0002712 0000094 0000143 0002649 0000511 
CHEBI 1148 16070 30769 28061 23956 30813 

Pubchem 11266 64960 311 6036 439574 2969 
KEGG C05984 C07326 C00158 C00124 C01796 C01571 
CAS 565-70-8 154-58-5 77-92-9 3646-73-9 1758-51-6 334-48-5 

Source Endogenous Endogenous Endogenous, 
food Endogenous, food Food Endogenous, food 

Tissues and 
organs 

Prostate Prostate All Tissues Brain Cartilage Liver 
    Prostate Liver   Prostate 
      Prostate   Stratum Corneum 
      Blood   Thyroid Gland 
      Breast Milk     
      Cellular Cytoplasm     
      Feces     
      Saliva     

Biofluid 

Blood Blood Blood Urine Blood Blood 
CSF CSF Breast Milk Extracellular Feces CSF 

Feces Saliva CSF Lysosome   Feces 
Saliva Sweat Feces     Saliva 
Sweat Urine Saliva     Sweat 
Urine   Sweat     Urine 

    Urine       

Cell 
Cytoplasm Cytoplasm 

(predicted) Cytoplasm na Cytoplasm 
(predicted) Cytoplasm 

Extracellular   Extracellular     Extracellular 
    Mitochondria     Membrane (predicted) 

Biological 
role 

Metabolite na na na na Membrane stabilizer 
         Energy source 
          Energy storage 
          Nutrient 

Biochemical 
process 

na na na na na Lipid transport 
          Lipid metabolism 
          Fatty acid metabolism 

Cellular 
process na na na na na Cell signaling 

Chemical 
reaction na na na na na Beta Oxidation of LC Fatty 

Acids 
Environmental 

role na na na na na Lipid peroxidation 

Industrial 
application 

na na Pharmaceutical na na Food and nutrition 

    Antimicrobial 
agent     Surfactant 

    Food and 
nutrition     Emulsifier 

    Personal care 
products     Pharmaceutical 

    Chelating 
agent       

Pathways             
HMDB Yes na Yes Yes na Yes 
KEGG Yes na Yes Yes na Yes 

Biomarker             
CD na na Yes na na na 
IBD na na Yes na na na 
UC na na Yes na na na 
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Compound Erythronic 
acid Threonic acid Aspartic acid Threonolactone* Glutamic acid Xylose Methionine 

HMDB 0000613 0000943 0000191 0000940 0000148 0000098 0000696 
CHEBI 37655 15908 17053 71176 16015 53455 16643 

Pubchem 2781043 5460407 5960 2724794 33032 135191 6137 
KEGG / C01620 C00049 / C00025 C00181 C00073 
CAS 13752-84-6 7306-96-9 56-84-8 21730-93-8 56-86-0 58-86-6 63-68-3 

Source Endogenous na Endogenous, 
food Endogenous Endogenous, 

food 
Endogenous, 

food 
Endogenous, 

food 

Tissues and 
organs 

na na All tissues na Adrenal Medulla Erythrocyte Fibroblasts 
    Prostate   Epidermis Small Intestine Kidney 
        Fibroblasts   Liver 
        Intestine   Muscle 
        Kidney   Pancreas 
        Muscle   Prostate 
        Myelin   Spleen 
        Nerve Cells     
        Neuron     
        Pancreas     
        Placenta     
        Platelet     
        Prostate     
        Skeletal Muscle     
        Spleen     

        Stratum 
Corneum     

Biofluid 

Blood Blood Blood na Blood Blood CSF 

CSF Feces Breast milk   Cellular 
Cytoplasm Feces Feces 

Feces Saliva CSF   CSF Saliva Saliva 
Saliva Sweat Feces   Feces Urine Sweat 
Urine Urine Saliva   Saliva   Urine 

    Sweat   Sweat     
    Urine   Urine     

Cell 

Cytoplasm 
(predicted) 

Cytoplasm 
(predicted) Cytoplasm na Extracellular Cytoplasm Extracellular 

    Mitochondria   Mitochondria Extracellular   
    Extracellular   Lysosome Lysosome   

        Endoplasmic 
reticulum     

Biological role 

na na Essential 
amino acid na Metabolite na Drug 

metabolite 

        Trace element   Essential 
amino acid 

        Molecular 
messenger   Waste product 

        Neurotransmitter   Trace element 

            Atherogen 
(indirect) 

            Metabotoxin 
(indirect) 

Biochem. proc. na na na na na na na 
Cellular process na na na na na na na 

Chemical reaction na na na na na na na 
Environmental 

role na na na na na na na 

Industrial 
application 

na Pharmaceutical Pharmaceutical na Nutritional 
supplement 

Food and 
nutrition 

Nutritional 
supplement 

        Pharmaceutical Personal care 
products Pharmaceutical 

          Pharmaceutical   
Pathways               

HMDB na na Yes na Yes na Yes 
KEGG na Yes Yes na Yes Yes Yes 

Biomarker               
CD na na Yes na Yes Yes Yes 
IBD na na Yes na Yes na Yes 
UC na na Yes na Yes na Yes 
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Compound Erythritol Threitol Myristic acid Glucose Dodecanoic acid Terephthalic 
acid* 

HMDB 0002994 0004136 0000806 0000122 0000638 0002428 
CHEBI 17113 48300 28875 4167 30805 15702 

Pubchem 222285 169019 11005 5793 3893 7489 
KEGG C00503 C16884 C06424 C00031 C02679 C06337 
CAS 149-32-6 2418-52-2 544-63-8 50-99-7 143-07-7 100-21-0 

Source Endogenous, 
food 

Endogenous, 
food Endogenous, food Endogenous, 

food Endogenous, food Endogenous 

Tissues and 
organs 

Epidermis na Adipose Tissue Adipose 
Tissue Stratum Corneum Fibroblasts 

Prostate   Epidermis Adrenal 
Cortex   Platelet 

    Prostate Adrenal 
Gland     

    Spleen Adrenal 
Medulla     

      Beta Cell     
      Bladder     
      Brain     

      Brain 
Plaques     

      Epidermis     
      Eye Lens     
      Fetus     
      Fibroblasts     
      Gonads     
      Gut     
      Intestine     
      Kidney     
      Liver     
      Lung     
      Mouth     
      Muscle     
      Myelin     
      Nerve Cells     
      Neuron     
      Pancreas     
      Placenta     
      Prostate     

Biofluid 

Blood Blood Blood Blood Blood Blood 
CSF CSF CSF Breast Milk Breast Milk Saliva 

Feces Feces Feces CSF Feces Urine 
Saliva Urine Saliva Feces Saliva   
Urine   Urine Saliva Sweat   

      Sweat Urine   
      Urine     

Cell 

Cytoplasm 
(predicted) na Cytoplasm Extracellular Extracellular na 

    Extracellular Lysosome Membrane 
(predicted)   

    Membrane 
(predicted) 

Endoplasmic 
reticulum     

      Golgi 
apparatus     

Biological 
role 

na na Membrane stabilizer Metabolite Membrane stabilizer na 
    Energy source   Energy source   
    Energy storage   Energy storage   
    Nutrient   Nutrient   

Biochemical 
process 

na na Lipid transport na Lipid transport na 
    Lipid metabolism   Lipid metabolism   

    Fatty acid metabolism   Fatty acid 
metabolism   

Cellular 
process na na Cell signaling na Cell signaling na 

Chemical 
reaction na na Fatty Acid 

Biosynthesis na na na 

Environmental 
role na na Lipid peroxidation na Lipid peroxidation na 

Industrial 
application 

na na Food and nutrition Food and 
nutrition Food and nutrition na 

    Surfactant   Personal care 
products 

PET plastic 
(manual) 
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    Emulsifier   Surfactant   
    Pharmaceutical   Emulsifier   
        Antibacterial   

          Pharmaceutical   
Pathways             

HMDB na na Yes na Yes na 
KEGG Yes na Yes Yes Yes All microbial 

Biomarker             
CD na na na na na na 
IBD na na na na na na 
UC na na na Yes na na 

Table 42. Biological functions of the candidate biomarkers. * Threonolactone has been excluded as a product of 
degradation of L-ascorbic acid. Terephthalic acid is most probably an analytical artefact. Another evidence for it 
is that all pathways it is involved in are microbial ones. 
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S-23. Literature review. 

 

Despite the variety of matrices, phenotypes and populations reported, the variations of concentration 

reported are often in agreement with our observations. 

 
Known Metabolites in IBD 

2-Hydroxybutyric-acid Galactose Methionine 
Aspartic Acid Glucose Xylose 

Citric Acid Glutamic acid Erythronic / Threonic Acid 

Erythritol /Threitol     
      

Metabolites unknown in IBD 

1,5-Anhydroglucitol Erythrose / Threose Myristic acid 
Capric acid Terephthalic acid* Threonolactone* 

Lauric acid   

Table S-43.  Metabolites known and unknown to play a role in IBD. The first ones tend to confirm the results 
obtained. The others could lead, after validation, to new knowledge that would be helpful in diagnosis and to 
understand better the CD phenotypes and their functioning. Threonolactone and terephthalic acid are probable 
artefacts (*). 
 

2-hydroxybutyrate         

Reference Instrumentation Matrix Samples Variation 

Minamoto GC-TOFMS Serum, Feces IBD Dogs ↑ 

Schicho 2012 NMR Serum UC ↑ 

Schicho 2012 NMR Plasma UC ↑ 

Schicho 2012 NMR Plasma CD ↑ 

Dawiskiba NMR Urine CD & UC ↓ 

Scoville UPLC-MS/MS Serum CD & UC ↓ 

          

Aspartate         

Reference Instrumentation Matrix Samples Variation 

Ooi GC-MS Tissues CD & UC ↑ 

Scoville UPLC-MS/MS Serum CD & UC ↓ 

Kolho UPLC-MS/MS Feces CD & UC Significant 

Ponnusamy GC-MS Feces IBS Significant 

          

Citrate         

Reference Instrumentation Matrix Samples Variation 

Minamoto GC-TOFMS Serum, Feces IBD Dogs ↑ 

Martin NMR Plasma IL-10 mice (vs time) ↑ 

Dawiskiba NMR Serum CD & UC ↓ 

Dawiskiba NMR Urine CD & UC ↓ 

Schicho 2010 NMR Serum DSS-induced (mice) ↓ 

Schicho 2012 NMR Serum UC ↓ 

Schicho 2012 NMR Serum CD ↓ 
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Schicho 2012 NMR Urine UC ↓ 

Schicho 2012 NMR Urine CD ↓ 

Scoville UPLC-MS/MS Serum CD & UC ↓ 

Stephens NMR Urine IBD Significant 

Williams 2009 NMR Urine CD & UC Significant 

Murdoch NMR Urine IL-10 mice Significant 

          

Galactose         

Reference Instrumentation Matrix Samples Variation 

Schicho 2012 NMR Urine CD ↑ 

Schicho 2012 NMR Urine UC ↓ 
  
         

Glucose         

Reference Instrumentation Matrix Samples Variation 

Williams 2012 NMR Serum CD & UC ↑ 

Schicho 2012 NMR Serum UC ↑ 

Zhang NMR Serum Early stage colitis ↑ 

Balasubramanian 1H-MRS CMT (In)active CD & UC ↑ 

Sharma NMR CMT IBD ↑ 

Le Gall NMR Feces CD & UC ↑ 

Schicho 2010 NMR Serum DSS-induced (mice) ↓ 

Schicho 2012 NMR Plasma CD ↓ 

Martin NMR Plasma IL-10 mice (vs time) ↓ 

Dawiskiba GC-MS Urine IL-10 mice Significant 

Scoville UPLC-MS/MS Serum CD & UC Not Sign. 

Lai LC-QTOFMS Serum In(active) CD Not Sign. 

          

Glutamate         

Reference Instrumentation Matrix Samples Variation 

Hisamatsu AA Analyze Plasma CD & UC ↑ 

Dawiskiba NMR Feces CD & UC ↑ 

Bjerrum NMR Feces (In)active CD & UC ↓ 

Ooi GC-MS Tissues CD & UC ↓ 

Scoville UPLC-MS/MS Serum CD & UC Not Sign. 

Le Gall NMR Feces CD & UC Not Sign. 

          

Methionine         

Reference Instrumentation Matrix Samples Variation 

Ooi GC-MS Tissues CD & UC ↑ 

Schicho 2012 NMR Serum UC ↑ 

Martin NMR Plasma IL-10 mice (vs time) ↑ 

Schicho 2010 NMR Urine DSS-induced (mice) ↓ 

Schicho 2010 NMR Serum DSS-induced (mice) ↓ 

Scoville UPLC-MS/MS Serum CD & UC Not Sign. 

Lai LC-QTOFMS Serum In(active) CD Not Sign. 
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Hisamatsu AA Analyze Plasma CD & UC Not Sign. 

          

Xylose         

Reference Instrumentation Matrix Samples Variation 

Minamoto GC-TOFMS Serum, Feces IBD Dogs ↑ 

Schicho 2012 NMR Urine CD ↑ 

          

Erythronic acid / Threonic Acid       

Reference Instrumentation Matrix Samples Variation 

Minamoto GC-TOFMS Serum, Feces IBD Dogs ↑ 
  
 
 
 

        

Erythritol / Threitol       

Reference Instrumentation Matrix Samples Variation 

Minamoto GC-TOFMS Serum, Feces IBD Dogs ↑ 

Table S-44. Literature review for the selected and annotated potential biomarkers. Comparison of experimental 
and reported variations. Threonolactone and terephthalic acid are probable artefacts (*). CMT stands for colonic 
mucosal tissue. The metabolites in grey are the ones with opposite reported variations. 
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