Supporting Information

Probing heteroatomic dopant-activity synergy over Co₃O₄/doped carbon nanotube electrocatalysts for oxygen reduction reaction

Aiai Zhang,† Jinfang Wu,*† Lei Xue,† Shan Yan,‡ Shanghong Zeng*†

[†]Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China

[‡]Department of Chemistry, State University of New York at Binghamton,

Binghamton, New York 13902, United States

Figure S1. Pore size distribution curves of Co₃O₄/CNTs, Co₃O₄/P-CNTs, Co₃O₄/O-CNTs, Co₃O₄/N-CNTs.

 Table S1 Pore structure parameters of the samples

Sample	BET surface area(m ² /g)	Pore volume(cm ³ /g)
Co ₃ O ₄ /CNTs	178.48	0.64
Co ₃ O ₄ /P-CNTs	123.94	0.14
Co ₃ O ₄ /O-CNTs	102.46	0.11
Co ₃ O ₄ /N-CNTs	80.00	0.11

Figure S2. Wide-scan XPS spectra of (a) Co_3O_4 /N-CNTs, (b) Co_3O_4 /O-CNTs, (c) Co_3O_4 /P-CNTs, and XPS spectra of (d) C 1s.

Figure S3. LSV polarization curves of CNTs, P-CNTs, O-CNTs and N-CNTs.

Figure S4. LSV polarization curves for ORR with various rotation rates and the corresponding K-L plots (j^{-1} vs $\omega^{-1/2}$) at different potentials of (a, b) Co₃O₄/CNTs, (c, d) Co₃O₄/P-CNTs and (e, f) Co₃O₄/O-CNTs.

Figure S5. The electric double layer capacitance (C_{dl}) test of Co_3O_4/N -CNTs, Co_3O_4/O -CNTs Co_3O_4/P -CNTs with different scan rate.

Figure S6. CV curves of (a) Co_3O_4/N -CNTs, (b) Co_3O_4/O -CNTs and (c) Co_3O_4/P -CNTs after accelerated stability tests.

Figure S7. XRD patterns of (a) the catalysts and SEM images of (b) Co_3O_4/N -CNTs, (c) Co_3O_4/O -CNTs and (d) Co_3O_4/P -CNTs after potential cycling of 10000 cycles.

Table S2 The energy of LUMO, HOMO and LUMO-HOMO energy gap of pure CNTs and dopedCNTs.

	HOMO (eV)	LUMO (eV)	$\Delta E_{ m LUMO-HOMO}$
CNTs	-4.767	-4.029	0.738
P-CNTs	-4.450	-3.906	0.544
O-CNTs	-4.286	-3.779	0.507
N-CNTs	-4.848	-4.220	0.628

LUMO

Figure S8. LUMO and HOMO shapes of pure CNTs and doped CNTs.