Supporting Information

Dual-Band Electrochromic Devices with a

Conductive Capacitive Transparent Charge-

Balancing Anode

Shengliang Zhang,†,‡ Yang Li,† Tianran Zhang,†,‡ Sheng Cao,†,‡ Qiaofeng Yao,† Haibin Lin,†

Hualin Ye, † Adrian Fisher, \sharp , \sharp and Jim Yang Lee *, \dagger , \sharp

† Department of Chemical and Biomolecular Engineering, National University of Singapore,

10 Kent Ridge Crescent, Singapore 119260, Singapore

[‡] Cambridge Centre for Advanced Research and Education in Singapore, 1 Create Way,

Singapore 138602, Singapore

§ Department of Chemical Engineering and Biotechnology, University of Cambridge, West

Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom.

Corresponding Author

*Email: cheleejy@nus.edu.sg

S-1

Supporting Figures and Table

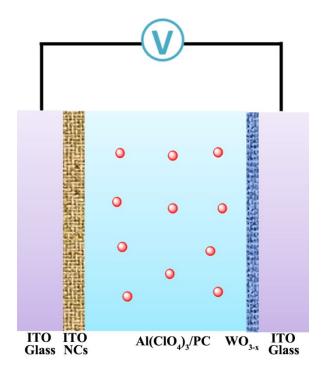
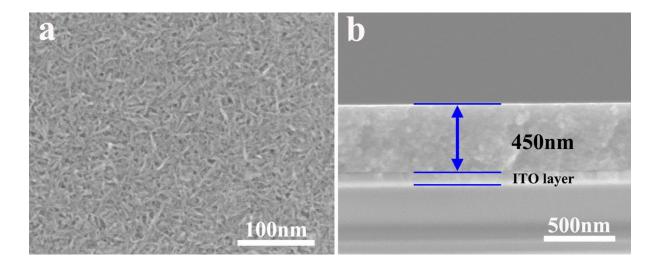
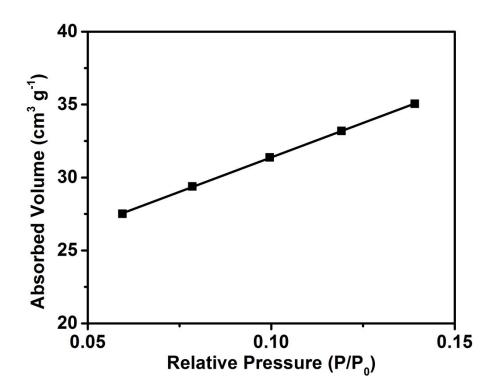


Figure S1. Schematic of DBED based on a WO_{3-x} cathode and an ITO NC anode.

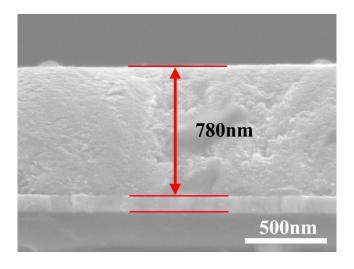

Figure S2. (a) Surface and (b) cross-sectional SEM images of the WO_{3-x} NW film.

Table S1. Chemical composition and bandgap of ITO NCs with different Sn-dopant contents.

Nominal Sn at%	Sn at% estimated by ICP-OES	Band gap (eV)
0	0	3.78
2	2.3	3.97
4	4.5	4.04
10	10.3	4.15

Figure S3. The N_2 adsorption isotherm of ITO NCs.

Figure S4. Cross-sectional SEM image of ITO-3L.

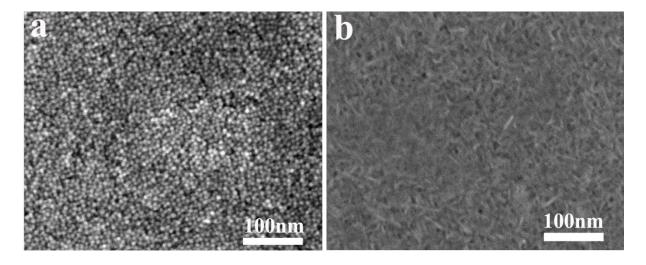


Figure S5. The SEM images of the ITO-6L anode (a) and WO_{3-x} cathode (b) after 500 cycles.