Supporting Information for: Li₁₅P₄S₁₆Cl₃, a lithium chloro-thiophosphate as a solid-state ionic conductor

Zhantao Liu¹, Tatiana Zinkevich², Sylvio Indris², Xingfeng He³, Jue Liu⁴, Wenqian Xu⁵, Jianming Bai⁶, Shan Xiong¹, Yifei Mo³, Hailong Chen^{1*}

¹ The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA

² Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

³ Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA

⁴ Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

⁵ X-ray Science Division, Advanced Photon Source, Argonne National laboratory, Argonne, Illinois 60439,

United States

⁶ National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States

Correspondence should be addressed to Hailong Chen via E-mail address: hailong.chen@me.gatech.edu

Figure S1. Difference Fourier maps used to identify Li sites generated from synchrotron X-ray diffraction data (left, where white regions indicate positive difference peaks associated with the Li electron density) and time-of-flight neutron diffraction data (right, where white regions indicate negative peaks associated with the Li coherent nuclear scattering length density). The residual positions from both X-ray diffraction and neutron diffraction matches well with the refined positions from Rietveld refinement.

a = 14.3066(4) Å

Site	Wyck.	Х	У	Z	Occ.	$B_{iso}(Å^2)$
Li(1)	12a	0.00000	0.25000	0.37500	1	3.65(48)
Li(2)	48e	0.1427(13)	0.2082(15)	0.5921(19)	1	3.65(48)
S (1)	16c	0.0322(2)	0.0322(2)	0.0322(2)	1	1.35(7)
S(2)	48e	0.1086(2)	0.3428(3)	0.4721(2)	1	1.35(7)
Cl(1)	12b	0.00000	0.25000	0.87500	1	2.23(17)
P(1)	16c	0.1996(2)	0.1996(2)	0.1996(2)	1	1.18(13)

Table S1. Refined structure of $Li_{15}P_4S_{16}Cl_3$ using synchrotron diffraction data ($\lambda = 0.24116$ Å).

S.G. *I*-43d

Fig. S2. Nyquist plot of Li₁₅P₄S₁₆Cl₃ at 30 °C.

Fig. S3. The Mean-squared Displacement-time (MSD-t) relationship