Pressured-induced structural phase transition and superconductivity in NaSn₅

Chun-Mei Hao¹, Yunguo Li^{1,2}, Hong-Mei Huang^{1*}, Yinwei Li¹ and Yan-Ling Li^{1*}

- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
- 2. Department of Earth Sciences, UCL, Gower Street, London, WC1E 6BT, UK

Supplementary figure legends

Fig. S1. Enthalpy difference versus pressure for competitive structures of NaSn₅, referenced to the P-42₁m phase.

Fig. S2. Electronic band structure along high symmetry lines of the Brillouin zone in the P-42₁m phase at ambient pressure.

Fig. S3. The projected density of states (PDOS) of (a) *P*-42₁*m* at 0GPa. (b) *P*6/*mmm* at 1.85 GPa.

Fig. S4. The Calculated ELF for NaSn₅-*P*6/*mmm* in the (a) (0 0 1) plane and (b) (001) plane.

Figure S1. Enthalpy difference versus pressure for competitive structures of $NaSn_{5}$, referenced to the *P*-42₁*m* phase.

Figure S2. Electronic band structure along high symmetry lines of the Brillouin zone in the $P-42_1m$ phase at ambient pressure.

Figure S3. The projected density of states (PDOS) of (a) P-42₁m at 0 GPa. (b) P6/mmm at 1.85 GPa.

Figure S4. The calculated ELF for P6/mmm-NaSn₅ in the (a) (110) plane and (b) (001) plane.