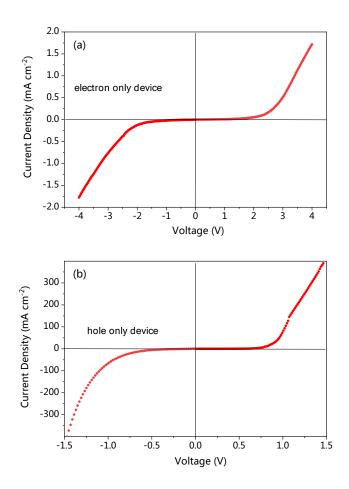
Supporting information

Photoinduced Ultrafast Electron Transfer and Charge Transport in the PbI₂/C₆₀ Heterojunction

Chuan-Hui Cheng,^{1 *} Bi-Long Zhang,^{1, 2} Hang-Qi Song,¹ Yuan Wang,¹ Wen-Hui Li,¹

Junxue Liu,³ Jing Leng,³ Wenming Tian,³ Chunyi Zhao,³ Shengye Jin,³ Weifeng Liu,⁴


 * and Shulin Cong 1

¹School of Physics, Dalian University of Technology, Dalian 116024 China

²723 Research Institute of China Shipbuilding Industry Corporation, Yangzhou 225000 China

³State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China

⁴Mechanical and Electrical Engineering College, Hainan University, Haikou 570228 China

Figure S1. *J-V* characteristics of **(a)** the electron- and **(b)** hole-only devices under forward and reverse bias. The device architectures were Glass/Al/PbI₂ (100 nm)/Alq₃ : LiF (20 : 1 in weight, 10 nm)/LiF (1.0 nm)/Al, and Glass/Au/MoO₃(8 nm)/PbI₂ (100 nm)/ MoO₃(8 nm) /Au. The glass substrate side was defined as positive during measurements.

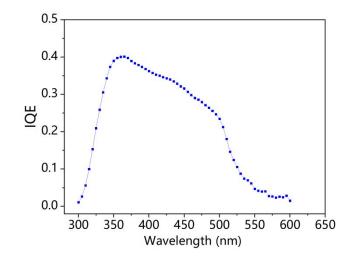


Figure S2. IQE spectrum of the solar cell with a PbI_2/C_{60} heterojunction.