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The Self-Consistent Field Formalism for Homopolymer Brushes

The polymer SCFT formalism of ref 1 is reviewed for homopolymer brushes in the absence

of other polymer matrices. The system schematic is shown in the lower panel of Figure 1(a),

where the two parallel walls are separated by H. In the absence of solvent, the intervening

polymers would uniformly �ll the inter-wall space. Therefore, the total volume fraction of

the polymers should satisfy the incompressibility condition,

φ (z) + φ (−z) = 1. (S1)
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The SCFT elastic free energy functional per chain in the system has the following form:

F
kBT

= φ̄

(
ln
φ̄V
Q
− 1

)
− 1

V

∫
w (r)φ (r) dr, (S2)

where φ̄ is the mean volume fraction of the brush, V is the system volume, Q is the partition

function per chain, and w is the self-consistent �eld. Essentially, the �rst term represents the

total free energy of the polymer in the �eld relative to a uniform �uid state and the second

term removes the average internal free energy from the �eld.2

The partition function of a chain with a total number of N segments described by the

parameter s going from 0 at the free end and 1 at the tethered end is de�ned as,

Q =

∫
q(r, s)q†(r, s)dr, (S3)

where q(r, s) is the forward propagator for a chain of sN segments with one end free and the

other �xed at r in space, and q†(r, s) is the backward propagator for a complementary chain

of (1− s)N segments with one end tethered to the surface and the other �xed at r in space.

These two partition functions are determined by solving the modi�ed di�usion equations:

∂q(r, s)

∂s
=
[
R2

g∇
2 − w(r)

]
q(r, s) (S4)

and

∂q†(r, s)

∂s
= −

[
R2

g∇
2 − w(r)

]
q†(r, s) (S5)

satisfying the boundary conditions ∂q
∂z

(−H
2
, s) = 0, ∂q

∂z
(H
2
, s) = 0, ∂q†

∂z

(
−H

2
, s
)

= 0, and

∂q†

∂z
(H
2
, s) = 0, as well as the initial conditions q (r, 0) = 1, q† (r, 1) = δ(z + H

2
) for the lower

brush. The volume fraction is then calculated using the partition functions,

φ (r) =
φ̄V
Q

∫ 1

0

q†(r, s)q(r, s)ds. (S6)
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The con�guration of the system corresponds to the one that minimizes eq (S2) subjected to

eq (S1).

We generally follow the numerical procedure of ref 3 to solve the modi�ed di�usion

equations. Starting with an initial guess of w(z), we employ the Crank-Nicholson method4 to

solve for q(z, s) and q†(z, s). The domain integrals regarding Q(z) and φ(z) are accomplished

by an extended trapezoidal method. We obtain a new �eld wk+1(z) through a Picard iteration

scheme where α [φ (z) + φ (−z)− 1] with 0 < α ≤ 1 is repeatedly added to the old wk(z).

The convergence is met until |φ (z) + φ (−z)− 1| < 0.001 for −H
2
≤ z ≤ H

2
.
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