Supporting Information for "UV-Visible Lysine-Glutamate Dimer Excitations in Protein Charge Transfer Spectra: TDDFT Descriptions using an Optimally Tuned CAM-B3LYP Functional"

Imon Mandal[†], Sutanuka Manna[†], Ravindra Venkatramani[†]*

[†] Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India.

* Corresponding Author:

Email: ravi.venkatramani@tifr.res.in

Phone: +91 (022) 2278 2064

CONTENTS

Page Number

1.	A 6-fragment model for the Lys-Glu dimer with possible CT transitions	S 1
2.	Control calculations on Glycine: Characterization of BB-CT and LE transitions	S2
3.	Characterization of Lys-Glu dimer (weak interaction) spectra using the 6-fragment model	S3
4.	Characterization of Lys-Glu dimer (intermediate interaction) spectra using the 4-fragment	
	model	S4
5.	Characterization of Lys-Glu dimer (strong interaction) spectra using the 4-fragment model	S5
6.	CAM-B3LYP J-score landscape for Lys-Glu dimers: sensitivity to interaction strength	S6
7.	CAM-B3LYP J-score landscape for Lys-Glu dimers: sensitivity to sidechain separation	S7
8.	Table: CAM-B3LYP J-score landscape for Lys-Glu dimers: sensitivity to sidechain separation	S8
9.	Effect of TDDFT Functional and Backbone Model on the Lowest Energy Transitions in the	
	ProcharTS of weakly interacting Lys-Glu dimers	S9
10.	TDDFT CAM-B3LYP spectra and statistics for pure CT transitions ($P_{a \rightarrow b}(\lambda) > 75$ %) in	
	Lys-Glu dimers	S10
11.	Statistics for pure CT transitions ($P_{a \rightarrow b}(\lambda) > 75\%$) in Lys-Glu dimers: CAM-B3LYP versus	
	OT-CAM-B3LYP	S11

A 6-fragment model for the Lys-Glu dimer with possible CT transitions

Control calculations on Glycine: Characterization of BB-CT and LE transitions

Figure S2: Percentage fragment pair contributions $P_{a \rightarrow b}$ (λ) (Eqn. 9) to ProCharTS transitions from a 2-fragment model for 2 representative conformations of Gly ((φ , ψ) =(96,11) and (68,23)) sampled from the α_3 C MD trajectory (structure and fragments drawn on top). Each row (a-b) /column (1-2) panel shows $P_{a \rightarrow b}$ (λ) for a specific fragment pair (a=B1/B2)/(b=B1/B2) to hole/electron density of transitions classified as CT/LE (charge separation measures in section 2.2.1) and colored according to their character. Each panel only shows transitions with $P_{a \rightarrow b}$ (λ) > 10 %. For 4 selected transitions at 220 nm, 186 nm, 168 nm, and 153 nm, we show a Symm-BB (Gly) fragment with a difference density plot (Pink/blue lobes represent the hole/electron density).

<u>Characterization of Lys-Glu dimer (weak interaction) spectra using the 6-</u> <u>fragment model</u>

Figure S3: Percentage fragment pair contributions $P_{a \to b}$ (λ) (Eqn. 9) to ProCharTS transitions from 2 representative conformations of Lys-Glu dimers with sidechain separations of 5-6 Å using the 6-fragment model (Fig S1). Each row (a-c) /column (1-4) panel shows $P_{a \to b}$ (λ) for a specific fragment pair (a=KB/EH/EB)/(b=KH/KS/KB/EB) to hole/electron density of transitions classified as CT/LE (based on charge separation measures in section 2.2.1) and colored according to their character. The number of CT: LE:Total transitions (only those with $P_{a \to b}$ (λ) > 10 %) in each panel is indicated.

<u>Characterization of Lys-Glu dimer (intermediate interaction) spectra using the</u> <u>4-fragment model</u>

Figure S4: Percentage fragment pair contributions $P_{a \to b}$ (λ) (Eqn. 9) to ProCharTS transitions from 100 conformations of Lys-Glu dimers with sidechain separations of 3-4 Å (intermediate interactions) using the 4-fragment model. Each row (a-c) /column (1-3) panel shows $P_{a \to b}$ (λ) for a specific fragment pair (a=KB/EH/EB)/(b=KH/KB/EB) to hole/electron density of transitions classified as CT/LE (based on spatial charge separation measures in section 2.2.1) and colored according to their character. The number of CT:LE:Total transitions (only those with $P_{a \to b}$ (λ) > 10 %) in each panel is indicated.

Characterization of Lys-Glu dimer (strong interaction) spectra

using the 4-fragment model

Figure S5: Percentage fragment pair contributions $P_{a \to b}$ (λ) (Eqn. 9) to ProCharTS transitions from 80 conformations of Lys-Glu dimers with sidechain separations of 2-3 Å (strong interactions) using the 4-fragment model. Each row (a-c) /column (1-3) panel shows $P_{a \to b}$ (λ) for a specific fragment pair (*a*=KB/EH/EB)/(*b*=KH/KB/EB) to hole/electron density of transitions classified as CT/LE (based on spatial charge separation measures in section 2.2.1) and colored according to their character. The number of CT:LE:Total transitions (only those with $P_{a \to b}$ (λ) > 10 %) in each panel is indicated.

<u>CAM-B3LYP J-score landscape for Lys-Glu dimers: sensitivity to interaction</u> <u>strength</u>

Figure S6: Top row: 2D plots of average $J(\omega,\beta)$ for 2 Lys-Glu dimer conformations sampled from α_3 C MD structures at three sidechain separations (strong=2-3 Å, intermediate=3-4 Å, weak=5-6 Å). In all cases *J*-score minima are found at or very close to the optimal parameter values β =0.80, ω =0.25. **Bottom row:** 1D slices of $J(\beta, \omega$ =0.25) and $J(\beta$ =0.80, ω) for the data in the top row (left and centre panels). *J*-score data for the 2 Lys-Glu conformations (top and bottom) with different sidechain separations (red, blue, green colors). Variation in optimal $J(\beta$ =0.80, ω = 0.25 Bohr⁻¹) for each of the 6 Lys-Glu dimer structures as a function of Lys-Glu sidechain separations (right panel).

<u>CAM-B3LYP J-score landscape for Lys-Glu dimers: sensitivity to sidechain</u> <u>separation</u>

Figure S7: Top row: 2D plots of average $J(\omega,\beta)$ for 6 Lys-Glu dimer conformations sampled from α_3 C MD structures at 4 sidechain separations ranging from 3-9 Å. In all cases *J*-score minima are found at or very close to the optimal parameter values β =0.80, ω =0.25. **Middle row:** 1D $J(\beta, \omega$ =0.25) slices (averages and SD over 6 conformations) at different sidechain separations derived from the data in the top row. **Bottom row:** 1D $J(\beta$ =0.80, ω) slices (averages and SD over 6 conformations) at different sidechain separations derived from the data in the top row.

<u>CAM-B3LYP J-score landscape for Lys-Glu dimers: sensitivity to sidechain</u> <u>separation</u>

Distance (monomer	Min J In eV						
Separation), Å	Conf 1	Conf 2	Conf 3	Conf 4	Conf 5	Conf 6	
3	0.0220*	0.0540§	0.0183§	0.0443*	0.0255*	0.005*	
5	0.0507	0.0216	0.0388 ζ	0.0353	0.0271	0.0973*	
7	0.0443	0.0738	0.0752 ζ	0.0517	0.0429	0.0149	
9	0.0756	0.0916	0.0771	0.0761	0.0703	0.0493	

Min J scores in table were obtained using optimal tuned parameters: α =0.20 β =0.80 & ω =0.25 Bohr⁻¹

*Min J scores were obtained using optimal tuned parameters: α =0.35 β =0.65 & ω =0.15 Bohr⁻¹

[§]Min J scores were obtained using optimal tuned parameters: α =0.40 β =0.60 & ω =0.15 Bohr⁻¹

[#]Min J scores were obtained using optimal tuned parameters: α =0.30 β =0.70 & ω =0.15 Bohr⁻¹

^{ζ}Min J scores were obtained using optimal tuned parameters: α =0.15 β =0.85 & ω =0.25 Bohr⁻¹

Table S8: Optimal $J(\beta, \omega)$ values obtained from a complete parameter scan α/β and ω values subject to the constraints ($0 \le \alpha \le 1$; $\alpha + \beta = 1$; $0 < \omega < 1$) for the CAM-B3LYP functional. $J(\beta, \omega)$ were computed for 6 conformations x 4 sidechain separations = 24 Lys-Glu dimer structures to produce the 2D landscapes shown in Fig S7. The values shown in the table represent the minima in the 2D plots.

<u>Effect of TDDFT Functional and Backbone Model on the Lowest Energy</u> <u>Transitions in the ProcharTS of weakly interacting Lys-Glu dimers</u>

Figure S9: (a) Histograms of absorption wavelengths for the lowest energy transitions obtained in Fig 6 a3-c3. (b) Histograms of oscillator strengths (intensities) for the lowest energy transitions obtained in Fig 6 a3-c3. (c) Scatter plots correlating the absorption wavelengths obtained for the lowest energy transitions in Fig 6 b3 with that in Fig 6 a3 (red) and Fig 6 c3 (blue). (d) Scatter plots correlating the absorption wavelengths in Fig 6 b3 with that in Fig 6 a3 (red) and Fig 6 c3 (blue). (e) Histograms of absorption wavelengths for LE transitions obtained in Fig 6 a3-c3 (f) histograms of oscillator strengths (intensities) for LE transitions obtained in Fig 6 a3-c3.

<u>TDDFT CAM-B3LYP spectra and statistics for pure CT transitions ($P_{a \rightarrow b}(\lambda) >$ 75 %) in Lys-Glu dimers.</u>

Figure S10: Filtered ProCharTS spectra of pure CT transitions (colored by CT type) computed using TDDFT (CAM-B3LYP/6-31G++(d)) for Lys-Glu dimers with the Symm-backbone model (top row) with strong, intermediate, and weak residue sidechain interactions. The transitions (20,000 in each panel) for the spectra in Fig. 6 b1-b3 were first characterized into different classes of CT transitions using the 4-fragment model as shown in Fig 4 and then selected CT transitions with $P_{a \rightarrow h}(\lambda)$ values > 75 % are displayed in the top row of panels. The bottom row shows statistics associated with pure CT transitions in the Lys-Glu dimer ProCharTS (colored by residue sidechain interaction strength). The total number of CT transitions over the 150-950 nm wavelength range as a function of $P_{a \rightarrow b}(\lambda)$ cut-off is shown in the left panel. Only transitions with $P_{a \rightarrow b}(\lambda)$ values above the cutoff are counted. The middle panel shows number of pure CT transitions observed in specific wavelength ranges corresponding to peptide backbone absorption (100-200 nm), aromatic amino acids (200-300 nm), dye labels (300-400), and protein metal-ligand co-factors/prosthetic groups (> 400 nm). For each wavelength range we also show the fraction of CT transitions as a percentage of total transitions in that window. The right panel shows a correlation plot between the charge separation index D_{CT} (Eqns 2-3) and absorption wavelength for pure CT transitions in the 150-950 nm range.

Figure S11: Statistics associated with pure CT transitions in the Lys-Glu dimer ProCharTS (colored by residue sidechain interaction strength). Each column corresponds to data for a specific type of CT transitions (BS-CT, SS-CT, and BB-CT). The total number of CT transitions over the 150-850 nm wavelength range as a function of $P_{a\rightarrow b}$ (λ) cut-off is shown in rows 1 and 3. Only transitions with $P_{a\rightarrow b}$ (λ) values above the cut-off are counted. Rows 2 and 4 show number of pure CT transitions observed in specific wavelength ranges corresponding to peptide backbone absorption (100-200 nm), aromatic amino acids (200-300 nm), labelling dyes (300-400), and protein metal-ligand co-factors/prosthetic groups (> 400 nm). Rows 1 and 2 correspond to data obtained using the Symm-Backbone model and the CAM-B3LYP functional. Rows 3 and 4 correspond to data obtained using the Symm-Backbone model and the OT-CAM-B3LYP functional as indicated.