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SUPPORTING METHODS

Evaluation of laser irradiation with HEWL activity assay. The activity of HEWL was
detected using a Lysozyme Activity Kit (Sigma Aldrich, St. Louis, MO, USA) as previously reported®.
Briefly, micrococcus lysodeikticus cell suspensions were prepared in 20 mM Tris/150 mM NaCl
buffer as the substrate of HEWL. A 100 uL of micrococcus lysodeikticus cell suspension was mixed
with 5 pL testing solution, which contained 100 uM HEWL in 20 mM Tris/150 mM NacCl buffer. The
absorbance of the resultant reaction mixture at 450 nm was measured to evaluate the activity of
HEWL after laser irradiation.

Residue level analysis using tandem MS. For chromatographically-unresolved peptides, the
label ratio of residue/sub-residue was investigated with the method described by Jumper et al?. Briefly,
carbene labeled and unlabeled fragment ions (y ions in this case) can be obtained after MS/MS
fragmentation. The MS/MS scans of the carbene-labeled peptide of interest were combined to deliver
a sum spectrum that contains both labeled ions (nieied) and unlabeled ions (Niuniaber). The label ratio

of n; residue was calculated using Supplementary Equation 1.

Label Ration, = I(n; labex:;f&::zzzabeled) * Label Ratiopeptide ()
The difference in label ratio between two consecutive fragments will generate the absolute label
ratio for the specific residue (Supplementary Equation 2).
Label Ratio¢giqye = Label Ratio,, — Label Ratioy, 2
If the ni sequence ions cannot be detected, the label ratio of n;will be grouped together with the
following fragment ions.
BKLVFFA? isomer fractionation and dimethylation. The carbene labeled peptide

PKLVFFAZ was prepared in a relatively large scale (~2 mg) and desalted with Sep-Pack Cis
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cartridges (Waters, USA). Samples were analyzed by Waters Synapt G2-Si mass spectrometer
coupling with a Waters Acquity ultra-performance LC system (Milford, MA, USA). Separation was
carried out on a Waters CSH Cig column (150 mm x 2.1 mm, 1.7 um) with 0.1% formic acid in water
as the mobile phase A and 0.1% formic acid in ACN as the mobile phase B. Samples were eluted
using a 25 min linear gradient of mobile phase B from 20% to 35% followed by 2 min at 85% B and 3
min of column re-equilibration with the flow rate set at 0.3 uL/min. The parameters of ESI and
acquisition setting were described in the Methods section. Three isomers were validated by targeted
MS/MS survey and fractionated according to the order of elution. The fractions were lyophilized and
then dissolved in 10 uLL mobile phase A. 1 uL of 1% CD,0 and 1 uL of 0.6 M NaBHsCN solution
were added to each collected fractions. The resultant peptides were analyzed to examine the mass shift
induced by reductive dimethylation.

CCS measurement. The TWIMS was calibrated by the polyalanine solution as described by
Bush et al®. lon mobility data files were acquired by MassLynx 4.1 and analyzed by DriftScope 2.8
(Waters). Selection Tool was used to select the isomers according to the retention time. The MS/MS
fragment ions of selected isomers with the corresponding arrival time values were subsequently
exported to MassLynx .raw file. The CCS values were further calculated based on measured arrival
time as described by Bush et al® and Ruotolo et al*.

The CCSke in TWIMS can be calculated with the following Supplementary Equation 3:

—ze [[8z(L1 , 1 \|760_T 1 ,:B
Qbe = 16 [ka (m + MHe)] P 2732 NLAt C)
z is the charge of the ion, e is the elementary charge, ks is the Boltzmann’s constant, m is the
mass of ion, Mye is the mass of helium gas, P is the pressure, T is the temperature, N is the helium gas

number density, L is the length of the drift region and t is the experimental arrival time. A and B are
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constants reflecting the non-uniformity of travelling wave electric field, which vary in different

instruments. A and B can be determined from standard calibration. For calibration, the following

equations can be used.

The corrected arrival time t' was calculated from experimental arrival time tusing Supplementary

Equation 4.

t'=t— (C m/z> (4)

1000

C is a constant designated as “enhanced duty cycle delay coefficient”. m/z is the mass-to-charge
ratio of the ions of interest. The corrected CCS Q' was corrected with charge and mass

(Supplementary Equation 5).
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A plot of In(t") was subsequently plotted against In(Q2") using polyalanine ions. Then, constant A
and B can be determined from the intercept and slope of the line. The correlation coefficient (R?) of
the fit should be more than 0.98. Hence, the doubly corrected t" can be obtained by Supplementary

Equation 6.

no__ "B i 1
t" = z(t) /m+MHe (6)

Next, the line was replotted with the doubly corrected t". The equation of the final line was used
to determine CCS based on the measured arrival time of the detected ions.

CCS  prediction. DeepCCS  software® was downloaded from the website
(https://github.com/plpla/DeepCCS). The structures of the fragment ions of interest were drawn using
ChemDraw (PerkinElmer) and saved in .mol files. A Python Rdkit module (http://www.rdkit.org/) was
used to convert .mol files to the canonical simplified molecular-input line-entry system (SMILES)
annotation. Subsequently, a .csv file includes structure name, SMILES annotation, adduct type (M+H")
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was manually generated. Lastly, the predicted CCS value was obtained by using the “predict” function

in DeepCCS software according to the information included in the .csv file. The median relative error

of DeepCCS prediction was approximately 2.7%.
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FIGURES

Figure S1. The structure of trifluoromethylaryl diazirine (TFMAD) and the reaction of carbene

labeling.
90 N\ eo o .
® N uv ® ..
Na E—— Na —_—
o CF3 o CFs o CF3  X=CH, NH,0,S
trifluoromethylaryl diazirine carbene carbene labeled protein/peptide

S6



Figure S2. Evaluation of laser irradiation on the enzymatic activity of HEWL. The micrococcus
lysodeikticus cells were used as the substrate of HEWL (see Methods). After adding HEWL to the
cells, the absorbance of the micrococcus lysodeikticus cells suspension decreased significantly. The
laser irradiation setup used in this study had negligible impact on the enzymatic activity of HEWL

using student’s t-test.
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Figure S3. Residue level footprinting of HEWL-NAG4 interaction. (A) Label ratio per amino acid
residue for HEWL footprinted with TFMAD in the presence (black bars) and absence (white bars) of
NAGA4. Error bars are + s.d. and significant differences (Student’s t-test, p < 0.05, n = 3) are
highlighted with a red or blue dot. Significant difference of Trp62 reactivity is highlight with a yellow
dot. (B) The structure of HEWL footprinted by TMFAD is shown in a surface mode. Color scheme:
red = significantly masked by NAG4 binding, blue = increased label ratio in the presence of NAG4,
wheat = no difference induced by NAG4 binding, grey = not covered by peptide mapping. Structure is

constructed based on the PDB file 1LZC.
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Figure S4. The MS/MS spectra of the three sub-residue isomers that share an identical sequence of

s2\\carbene\\/CNDGR®8 yet differ in the X-H bond of carbene insertion at Trp62.
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Figure S5. Extracted arrival time distributions of the fragment ions produced from three Trp62

isomers. The measurement was performed in triplicates.
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Figure S6. Correlation of the label ratio of tryptophan residue in HEWL with solvent accessible
surface area (SASA). The software GETAREA (http://curie.utmb.edu/getarea.html) with ligand-free

HEWL PDB file 1DPX was used to calculate the SASA value for individual residue.
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Figure S7. Pathway that leads to the generation of lysine low mass ions. The nitrogen atom in e-NH;

is kept in the lysine low mass ion at m/z 84.0813.
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Figure S8. The reaction mechanism of reductive methylation for a primary amine group. (A) The
mechanism of Eschweiler-Clarke reaction. The amine group is methylated using excess sodium

cyanoborohydride and deuterated formaldehyde. (B) The ranking order of amine nucleophilicity.
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Figure S9. Assigning Lys16 isomers by charge state and the presence of carbene diagnostic ion. (A)
The extracted ion chromatogram (XIC) of carbene-labelled *KLVFFA? (z = 1+). (B) The XIC of
doubly-charged carbene-labeled *KLVFFAZ. Due to the strong electrophilic property of the carbene
group, carbene-labeled amine group shows reduced tendency to attract proton, which explains the
absence of doubly charged isomer #2 and isomer #3. (C) The XIC of the dissociated carbene group

during collision induced dissociation (CID).
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Figure S10. Turbidity of *KLVFFA? with different incubation duration. The precipitation of
K LVFFA? contributes to the increased turbidity. In this study, an aggregation model that mimics an
early-stage onset of *KLVFFA?! aggregation was used, which avoids extensive precipitation due to a

long incubation period.
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Figure S11. The structure of AP (1-42) fibril. Color scheme: blue = &-NH, of Lys16, yellow =
BKLVFFA? except for e-NH; of Lys16, green = the other residues in AB. The structure is constructed

based on the PDB file 2MXU.
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Figure S12. Peptide-level footprinting of ERRa and its three ligands. (A) Label ratio of ERRa in the
absence and presence of three ligands. Error bars are + s.d. and significant differences (one-way
ANOVA, p < 0.05, n = 4) are highlighted with asterisks. (B) Model of ERRa (based on PDB 2PJL) in
a compound la-bound state. Color scheme: cyan = compound 1a, red = significant masked by ligands,
green = no difference induced by ligand binding, wheat = areas with no peptide coverage or negligible

peptide label ratio (less than 0.001).
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Figure S13. XICs of the fragment ions from 3%VLAHFYGVK*® reveal the presence of three Phe399
isomers. (A) The XIC of the precursor ion corresponding to the carbene-labeled **VLAHFYGVK*®%,

(B, C) The XIC of y4*and ys* ion of the carbene-labeled **VLAHFYGVK*%,
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Figure S14. MS/MS spectra of the three Phe399 sub-residue isomers.
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Figure S15. The extracted arrival time distributions of the fragment ions of three Phe399 isomers. The

measurement was performed in triplicate.
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Figure S16. lllustration of the carbene-labeled Phe isomers.
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Table S1. Arrival time of the fragment ions of three Trp62-containing isomers (according to Figure

S5) was compared between isomeric peptides (n=3, arrival time is shown as mean + s.d. (standard

deviation)). Two-tailed student’s t-test was used to determine whether the differences of arrival time

of fragment ions produced from different isomers were significant. v, significant arrival time shift (p

value < 0.05); %, no shift.

62WcarbeneWC N DG RGS
8 i + + + + + + +
‘ ﬁval,«,}ne(ons y1 y2 y3 y4 y5 y6 [a1 ]carbene
Isomers
3470
isomer#1 |1.90+0 255+0 347+0 434+0 597+0 803+0 | 391:0
4230
isomer#2 | 1.90+0 2.55+0 347+0 4340 597+0 8030 | S32%°
isomer#3 |1.90£0 255+0 347+0 434:0 59740 803+0 | Sooi0
P value = 1 P value <<0.05
significant | #1&#2 | X #18&#2|X #1&#2|X #1&#2|X #1&#2|X #1&#2|X | #1&#2|V
difference | #1 &#2 | X #1&#2|X #1&#2|X #1&#2|X #1&#2|X #1&#2|X| #1&#2|V
B2 H#3| X H2&HI|X H2&H#3|X H2&AHI|X H2&H#3|X #H2&A#I|X| #2&#3 |V
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Table S2. The sub-residue label ratios of Trp62 isomers with or without NAG4 incubation. The results

were analyzed by two-way ANOVA followed by Fisher’s least significant difference (LSD) test.

Two-way ANOVA alpha = 0.05

Source of Variation P value Significant?
Interaction 0.001 Yes

with or without NAG4 <0.0001 Yes
Sub-residue isomers 0.0002 Yes

Fisher's least significant difference (LSD) test alpha = 0.05
Indivdual P Value Significant?
control - NAG4

isomer #1 0.0022 Yes
isomer #2 0.0174 Yes
isomer #3 <0.0001 Yes
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Table S3. Arrival time of the fragment ions of three Phe399-containing peptide isomers (according to

Figure S16) was compared (n=3, arrival time is shown as mean * s.d.). Two-tailed student’s t-test was

used to determine whether the differences of arrival time of fragment ions produced from different

isomers were significant. v, significant arrival time shift (p value < 0.05); %, no shift.

395VLAH FcarbeneYGVK403

’.?r”'lfaff:h?e ons y2+ y3+ y4+ [y5+]carbene [y5+]carbene [y6+]carbene
isomer#1 |3.20£0 3630 526+0 [835+0 955+0 955+0
isomer#2 |3.20£0 3630 526+0 [825+0 944+0 10090
isomer#3 |3.20x0 3630 5260 |841£0 9390 9930
P value = 1 P value << 0.05
significant | g1 g#2 |X #18#2|X #18#2|X| #1&#2|V #18#2|V #18&#2|V
difference | #1&#2 X #1&#2|X #1&#2|X| #1&#2|V #1&#2 |V #18&#2|V
H2BHI|X H2&H3|X H2&H3|X| #H2&#3|V #2&#3 |V #H2&#3 |V
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Table S4. Measured CCS values of carbene-labeled fragment ions generated from
3BV LAHFemeeY GVKA% and VLAHFVK (n=3, arrival time is shown as mean * s.d. (standard
deviation)) were matched with the DeepCCS-predicted values. The assignments of meta/ortho/para
positional isomers were made based on the fragment ions of the peptides. The only irregularity is the
[y7]c@ee-based assignment (not shown). This can be explained by the relatively large ion size and
consequently decreased accuracy, since mostly ions of smaller size (2 ne < 300 A?) are included in the
training set of DeepCCS®. We performed CCS prediction and matching on another shorter version of
this peptide, and found the retention order is the same as the full-length one. Moreover, the relative

errors between the predicted and measured CCS values for target ions are kept within 1%.

Phe399 isomer Q. measured (A2) label site Q.. predicted (A%  mean relative error

+

¥, 161100 - 161.90 0.5%
A 170.74+0 - 173.82 1.8%
¥, 211440 21227 0.4%
ERRa peptide [y == 2785410 meta 278.78 0.1%
SBVLAHFeateneY GVK*03 # 276.47 +0 ortho 276.30 -0.1%
#3 279.84 10 para 279.61 0.1%

[y T=me™ 305.66 + 0 meta 305.66 0%
#2 303480 ortho 301.65 0.1%
#3 302.28+0 para 299.46 -1.0%

Phe isomer Q,, measured (A2 label site Q. predicted (A2)  relative error

+

Y, 1611020 - 161.90 0.5%
Iy, 1= 232440 meta 231.64 -0.3%

#2 2296710 ortho 230.19 0.2%

peptide #3 23368+ 0 para 235.62 0.8%
VLAHF=®=VK by, T 257.100 meta 257.83 0.3%
#2 255.96 + 0 ortho 255.63 0.1%

#3 260.97 0 para 261.58 0.2%

[ysT==" #1 268.97 + 0 meta 269.54 0.2%

#2 2676410 ortho 267.51 0.1%

#3 27247+ 0 para 274.08 0.6%
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