## **Supporting Information**

## Effective Stabilization of Long Cycle Lithium–Sulfur Batteries Utilizing In–Situ Prepared Graphdiyne–Modulated Separators

Jing Wang, <sup>†</sup>\* Kun Wang, <sup>†</sup>\* Ze Yang, <sup>†</sup> Xiaodong Li, <sup>†</sup> Juan Gao, <sup>†</sup> Jianjiang He, <sup>†</sup>

Ning Wang, <sup>§</sup> Huanlei Wang, <sup>‡</sup> Yanliang Zhang, <sup>&</sup> Changshui Huang <sup>†</sup>\*

<sup>†</sup>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao266101, P. R. China
<sup>‡</sup>Ocean University of China, 238 Songling Road, Qingdao 266101, P. R. China
<sup>§</sup>Shandong University, 27 Shanda Nanlu, Jinan 250100, P.R. China.
<sup>&</sup>Thermo Fisher Scientific., Ltd, 27 Xin Jinqiao Road, Shanghai 201206, P. R. China
E-mail: huangcs@qibebt.ac.cn; wang\_kun@qibebt.ac.cn.

## Materials characterization

The morphology of GDY-modulated PP and bare PP separators was measured by field emission scanning electron microscopy (FESEM, HITACHI S-4800), respectively. The TEM image of exfoliated GDY after as-prepared GDY-modulated PP dissolved in hot methylbenzene to remove the PP base, and the precipitation GDY products were filtered and collected, then measured by transmission electron microscopy (TEM, H-7650) apparatus. The X-Ray photo electron spectrometer (XPS) was tested on VG Scientific ESCA Lab220i-XL X-Ray photo electron spectrometer, using Al Ka radiation as the excitation sources. The Raman spectra were recorded at room temperature using a Thermo Scientific DXRXI system with excitation from an Ar laser at 532 nm. The in-situ Raman measurement was operated through a Thermo Scientific<sup>TM</sup> DXR<sup>TM</sup>xi, as diagrammatized in Figure S1. Raman imaging microscope and an in-situ optical electrochemical cell with sandwich configuration and quartz window, as shown in Figure S1. The Raman imaging microscope spectra were collected over a 100  $\mu$ m × 100  $\mu$ m area with different change state. Raman images were presented in which the image contrast was generated by the changes in the strength of the acetylene bond. The Galvanostatic charge/discharge results were obtained by a LAND-CT2001 instrument. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results was carried out using a CHI760 electrochemical work station.



**Figure S1.** Experimental setup for the in situ example showing the electrochemical cell mounted on the stage of a Raman imaging microscope.



**Figure S2**. (a) The XPS survey of exfoliated GDY; (b) XPS survey of the chemical composition analysis for C1s (b) of exfoliated GDY.



**Figure S3.** CV curves of the GDY–PP (a) and PP (b) based cells at first cycles with a scan rate of  $0.1 \text{ mV s}^{-1}$ .



**Figure S4**. (a) In–situ Raman images of GDY–PP based separator from the area of acetylene peaks (specific peak region 1800~2200 cm<sup>-1</sup>) at initial state; (b) The Raman spectrum corresponding to specific regions.



**Figure S5**. In–situ Raman images of PP based separator from the area of acetylene peaks (specific peak region 1800~2200 cm<sup>-1</sup>) with different state of charge during the electrochemical process.



Figure S6. The XPS survey of GDY–PP, PP separator based cells after 300 cycles.



**Figure S7.** The EDX elemental mapping of Li anode from the PP (a) and GDY–PP (b) separators based cells charged to 2.7 V at 300 cycles.

| Materials                     | Sulfur  | Current  | Cycles | Initial                | Capacity               | Capacity  | Years/            |
|-------------------------------|---------|----------|--------|------------------------|------------------------|-----------|-------------------|
|                               | content | (C-rate) |        | discharge              | retention              | decay per | Refs              |
|                               | (wt %)  |          |        | capacity               | (mAh g <sup>-1</sup> ) | cycle     |                   |
|                               |         |          |        | (mAh g <sup>-1</sup> ) |                        |           |                   |
| GDY                           | 70      | 1        | 600    | 1396                   | 412                    | 0.095%    | This              |
|                               |         |          |        |                        |                        |           | work              |
| CNT-zeolitic                  | 80      | 0.2      | 100    | 1588.4                 | 870.3                  | 0.45%     | 2019 <sup>1</sup> |
| Ketjen Black /TiO2            | 67.5    | 0.5      | 100    | 996.7                  | 804.3                  | 0.192%    | 2019 <sup>2</sup> |
| Graphene/CuS                  | 53.3    | 0.2      | 200    | 1302                   | 639                    | 0.19%     | 2019 <sup>3</sup> |
| MXene/ESM                     | 67      | 0.5      | 250    | 1185                   | 876                    | 0.104%    | $2018^{4}$        |
| rGO/MoS <sub>2</sub>          | 70      | 0.2      | 500    | 1122                   | 368                    | 0.116%    | 20185             |
| CNFs@ZrO <sub>2</sub>         | 70      | 0.2      | 500    | 1181                   | 759                    | 0.098%    | 20186             |
| C <sub>3</sub> N <sub>4</sub> | 45      | 0.2      | 200    | 990                    | 829                    | 0.5%      | 20187             |
| CNFs/MnO <sub>2</sub>         | 80      | 0.5      | 200    | 1156                   | 856                    | 0.191%    | 2017 <sup>8</sup> |
| SWCNTs                        | 80      | 0.2      | 300    | 953                    | 501                    | 0.18%     | 2016 <sup>9</sup> |
| Mesoporous Carbon             | 60      | 0.2      | 500    | 1378                   | 683                    | 0.081%    | 201510            |
| PANi-MWCNT                    | 60      | 0.2      | 100    | 1020                   | 709                    | 0.3%      | 201511            |
| MCNT/PEG                      | 60      | 0.5      | 200    | 1283                   | 727                    | 0.12%     | 201512            |
| Carbon                        | 60      | 0.2      | 200    | 1389                   | 828                    | 0.20%     | 201413            |
| PEG/Carbon                    | 70      | 1        | 500    | 1300                   | 780                    | 0.1088%   | 201414            |
| Super P                       | 60      | 0.5      | 500    | 1350                   | 740                    | 0.09%     | 201415            |

 Table S1. Comparison of Li–S batteries performance with previous reports involving carbon–coated composite separators using carbon/sulfur cathodes.

## References

1. Wu, F.; Zhao, S. Y.; Chen, L.; Lua, Y.; Su, Y. F.; Jia, Y. N.; Bao, L. Y.; Wang, J.; Chen, S.; Che, R. J. Metal–Organic Frameworks Composites Threaded on the CNT Knitted Separator for Suppressing the Shuttle Effect of Lithium Sulfur Batteries. *Energy Storage Materials.* **2018**, *14*, 383–391, DOI: 10.1016/j.ensm.2018.06.009.

2. Lin. S.; Cai Y. Y.; Yang. J.; Ruan. F. X.;Wu, J.; Sireesh, B.; Yao, X.; Gao. J. K.; Yao, J. M. Entrapment of Polysulfides by a Ketjen Black&Mesoporous TiO<sub>2</sub> Modified Glass Fiber Separator for High Performance Lithium–Sulfur Batteries. *J. Alloys and Compounds.* **2019**, *779*, 412–419, DOI: 10.1016/j.jallcom.2018.11.261.

3. Lia, H.; Suna, L.; Zhao, Y.; Tan, T.; Zhang, Y. A novel CuS/Graphene–Coated Separator for Suppressing the Shuttle Effect of Lithium/Sulfur Batteries. *Appl. Surf. Sci.* **2019**, 466, 309–319, DOI: 10.1016/j.apsusc.2018.10.046.

4. Yin, L. X., Xu, G. Y.; Nie, P.; Dou, H.; Zhang, X. G. MXene Debris Modified Eggshell Membrane as Separator for High–Performance Lithium–Sulfur Batteries. *Chem. Eng. J.* **2018**, 352, 695–703, DOI: 10.1016/j.cej.2018.07.063.

5. Tan, L.; Li, X.; Wang, Z.; Guo, H.; Wang, J. Light Weight Reduced Graphene Oxide@ MoS2 Interlayer as Polysulfide Barrier for High–Performance Lithium–Sulfur Batteries. *ACS Appl. Mater. Interfaces* **2018**, *10*, 3707–3713, DOI: 10.1021/acsami.7b18645.

6. Lia, Y.; Zhu, J.; Shi, R.; Dirican, M.; Zhu, P.; Yan, C.; Jia, H.; Zang, J.; He, J.; Zhang, X. Ultrafine and Polar ZrO<sub>2</sub>–inlaid Porous Nitrogen–Doped Carbon Nanofiber as Efficient Polysulfide Absorbent for High–Performance Lithium–Sulfur Batteries with Long Life Span. *Chem. Eng. J.* **2018**, *349*, 376–387, DOI: 10.1016/j.cej.2018.05.074.

7. Huangfu, Y.; Zheng, T. T.; Zhang, K.; She, X. J.; Xu, H.; Fang, Z.; Xie, K. Y.
Facile Fabrication of Permselective g–C3N4 Separator for Improved Lithium–Sulfur
Batteries. *Electrochimica Acta*, **2018**, 272, 60–67, DOI: 10.1016/j.electacta.2018.03.149.

 Lai, Y.; Wang, P.; Qin, F.; Xu, M.; Li, J.; Zhang, K. A Carbon Nanofiber@Mesoporous δ–MnO<sub>2</sub> Nanosheet–Coated Separator for S11 High–Performance Lithium–Sulfur Batteries. *Energy Storage Mater.* **2017**, *9*, 179–187, DOI: 10.1016/j.ensm.2017.07.009.

9. Chang, C.–H.; Chung, S.–H. Manthiram, A. Effective Stabilization of a High–Loading Sulfur Cathode and a Lithium–Metal Anode in Li–S Batteries Utilizing SWCNT–Modulated Separators. *Small* **2016**, *12*, 174–179, DOI: 10.1002/smll.201502505.

10. Balach, J.; Jaumann, T.; Klose, M.; Oswald, S.; Eckert, J.; Giebeler, L. Functional Mesoporous Carbon–Coated Separator for Long–Life, High–Energy Lithium–Sulfur Batteries. *Adv. Funct. Mater.* **2015**, *25*, 5285–5306, DOI:10.1002/adfm.201502251.

11. Chang, C.–H.; Chung, S.–H.; Manthiram, A. Ultra–Light Weight PANiNF/MWCNT–Functionalized Separators with Synergistic Suppression of Polysulfide Migration for Li–S Batteries with Pure Sulfur Cathodes. *J. Mater. Chem. A* **2015**, *3*, 18829–18834, DOI:10.1039/C5TA05053G.

12. Wang, G.; Lai, Y.; Zhang, Z.; Li, J.; Zhang, Z. Enhanced Rate Capability and Cycle Stability of Lithium–Sulfur Batteries with a Bifunctional MCNT@PEG–Modified Separator. *J. Mater. Chem. A* **2015**, *3*, 7139–7144, DOI: 10.1039/c4ta07133f.

13. Chung, S.-H.; Manthiram, A. Bifunctional. Separator with a Light–Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries. *Adv. Funct. Mater.* **2014**, *24*, 5299, DOI: 10.1002/adfm.201400845.

 Chung, S.–H.; Manthiram, A. A Polyethylene Glycol–Supported Microporous Carbon Coating as a Polysulfi de Trap for Utilizing Pure Sulfur Cathodes in Lithium–Sulfur Batteries. *Adv. Mater.* 2014, 26, 7352–7357, 10.1002/adma.201402893.

15. Yao, H.; Yan, K.; Li, W.; Zheng, G.; Kong, D.; Seh, Z.; Narasimhan, V.; Liang, Z.; Cui, Y. Improved Lithium–Sulfur Batteries with a Conductive Coating on the Separator to Prevent the Accumulation of Inactive S–Related Species at the Cathode–Separator Interface. *Energy Environ. Sci.* **2014**, *7*, 3381–3390, DOI: 10.1039/C4EE01377H.