Supporting Information

Orthogonal Method for Double Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS)

Sonja L. Knowles, Ngoc Vu, Daniel A. Todd, Huzefa A. Raja, Antonis Rokas, Qibin Zhang, and Nicholas H. Oberlies

Table S1. NMR table of ent-sartorypyrone E (1)

Table S2. Table of accurate masses for the OzID products of compound 1

Table S3. Table of accurate masses for the OzID products of compound 1 in an extract

Table S4. Table of accurate masses for the OzID products of compound 1 in situ

Table S5. Table of accurate masses for the OzID products of compound 2

Table S6. Table of accurate masses for the OzID products of compound 3

Table S7. Table of accurate masses for the OzID products of compound 4

Table S8. Table of accurate masses for the OzID products of compound 5

Figure S1. UPLC-PDA detector chromatogram of ent-sartorypyrone E (1)

Figure S2. ¹H NMR spectrum (700 MHz, Top) and ¹³C NMR spectrum (175 MHz, Bottom) both in CDCI₃, of ent-sartorypyrone E (**1**)

Figure S3. HSQC spectrum of ent-sartorypyrone E (1), CDCl₃, 700 MHz

Figure S4. HMBC spectrum of ent-sartorypyrone E (1), CDCI₃, 700 MHz

Figure S5. ¹H COSY spectrum of ent-sartorypyrone E (1), CDCl₃, 700 MHz

Figure S6. UPLC-PDA detector chromatogram of an extract of A. fischeri grown on solid oatmeal media

Figure S7. ¹H NMR spectrum (400 MHz) in CDCl₃, of sorbicillin (3)

Figure S8. ¹H NMR spectrum (500 MHz) in MeOD, of trichodermic acid A (4)

Figure S9. ¹H NMR spectrum (500 MHz) in (CD₃)₂CO, of AA03390 (5)

Figure S10. Schematic of the Waters Synapt G2 HDMS modified to allow ozone in the trap and transfer cells to perform OzID-MS. Adapted from Vu et al.¹

Structure Elucidation by Traditional NMR and Mass Spectrometry Techniques. For Compound 1

Ent-sartorypyrone E (1) was obtained as a white solid with a molecular formula of $C_{26}H_{40}O_5$ as determined via HRESIMS along with ¹H, ¹³C, and edited-HSQC NMR data (Table 1), demonstrating an index of hydrogen deficiency of 7. Inspection of the MS and NMR data suggested 1 as an analogue of sartorypyrone A (2).² For example, 1 showed a trisubstituted unsaturated δ -lactone moiety, as noted by two conjugated double bonds (δ_c 100.6, 165.5, 100.5, and 160.3 for C-3, C-4, C-5, and C-6 respectfully) containing one olefinic proton (δ_H 5.75 for H-5), both of which were conjugated with an ester (δ_C 165.6 for C-2). Additional similarities included NMR signals characteristic of two sequential isoprene units, which were connected to the α -position (δ_c 100.6 for C-3) of the δ -lactone moiety. Key differences between compound 2^2 and 1 were in the terminal part of the terpenoid side chain. Specifically, compound 1 lacked the terminal cyclohexane moiety along with the acetyl group seen in 2, which were replaced by a dihydroxy unsaturated isoprene unit, as indicated by NMR data characteristic of two methyls (δ_H/δ_C 1.2/26.4; 1.2/23.2 for CH₃-22 and CH₃-23, respectively), two methylenes (δ_H/δ_C 2.22/2.06/26.8; 1.40/1.59/29.5 for CH₂-18 and CH₂-19, respectively), one oxymethine (δ_H/δ_C 3.36/78.3, for CH-20), and a quaternary oxygenated carbon (δ_c 73.1 for C-21). These data, along with further analysis of the 2D-NMR data, including COSY and HMBC experiments (Figure 2 and discussed in the manuscript under section "Structure Elucidation by Traditional NMR and Mass Spectrometry Techniques"), yielded the structure of compound 1.

Position	δн	δc	Mult (<i>J</i> in Hz)
2		165.6	
3		100.6	
4		165.5	
5	5.75	100.5	d (1.1)
6		160.3	
7	3.23	23.0	d (7.4)
8	5.31	120.6	m
9		140.9	
10	2.10	39.5	m
11	2.12	25.8	m
12	5.04	123.6	m
13		135.6	
14	1.99	39.4	m
15	2.08	26.1	m
16	5.15	125.1	m
17		134.7	
18	2.22	26.8	m
	2.06		m
19	1.40	29.5	dddd (14.0, 10.6, 8.4, 5.7)
	1.59		m
20	3.36	78.3	dd (10.6, 1.9)
21		73.1	
22	1.15	23.2	S
23	1.20	26.4	S
24	1.60	15.8	S
25	1.58	16.0	S
26	1.77	16.3	S
27	2.18	19.7	S

 Table S1. NMR table of ent-sartorypyrone E (1)

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	$C_{26}H_{40}NaO_5^+$	455.2772	455.2773	0.2
В	C ₁₈ H ₃₂ NaO ₃ ⁺	319.2248	319.2249	0.3
а	$C_8H_8NaO_5^+$	207.0287	207.0269	8.7
b	$C_{18}H_{32}NaO_4^+$	335.2202	335.2198	1.2
А	C ₈ H ₈ NaO₄ ⁺	191.0332	191.0320	6.3
В	C ₁₃ H ₂₄ NaO ₃ ⁺	251.1634	251.1623	4.4
а	C ₁₃ H ₁₆ NaO ₅ ⁺	275.0902	275.0895	2.5
b	C ₁₃ H ₂₄ NaO ₄ ⁺	267.1579	267.1573	2.2
A	C ₁₃ H ₁₆ NaO₄ ⁺	259.0954	259.0946	3.1
В	$C_8H_{16}NaO_3^+$	183.0992	183.0997	2.7
а	C ₁₈ H ₂₄ NaO ₅ ⁺	343.1526	343.1522	1.2
b	C ₈ H ₁₆ NaO ₄ ⁺	199.0954	199.0946	4.0
A	C ₁₈ H ₂₄ NaO ₄ ⁺	327.1578	327.1573	1.5

Table S2. Table of accurate masses for the OzID products of compound 1

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	$C_{26}H_{40}NaO_5^+$	455.2780	455.2773	1.5
В	C ₁₈ H ₃₂ NaO ₃ ⁺	319.2239	319.2249	3.1
а	C ₈ H ₈ NaO ₅ ⁺	-	207.0269	-
b	C ₁₈ H ₃₂ NaO₄ ⁺	335.2192	335.2198	1.8
A	C ₈ H ₈ NaO₄ ⁺	191.0329	191.0320	4.7
В	C ₁₃ H ₂₄ NaO ₃ ⁺	251.1616	251.1623	2.8
а	C ₁₃ H ₁₆ NaO ₅ ⁺	275.0886	275.0895	3.3
b	C ₁₃ H ₂₄ NaO₄ ⁺	267.1573	267.1573	0.0
A	C ₁₃ H ₁₆ NaO₄ ⁺	259.0950	259.0946	1.5
В	$C_8H_{16}NaO_3^+$	183.0983	183.0997	7.6
а	C ₁₈ H ₂₄ NaO ₅ ⁺	343.1520	343.1522	0.6
b	C ₈ H ₁₆ NaO ₄ ⁺	199.0937	199.0946	4.5
A	C ₁₈ H ₂₄ NaO ₄ ⁺	327.1567	327.1573	1.8

 Table S3. Table of accurate masses for the OzID products of compound 1 in an extract

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	$C_{26}H_{40}NaO_{5}^{+}$	455.2783	455.2773	2.2
В	C ₁₈ H ₃₂ NaO ₃ ⁺	319.2241	319.2249	2.5
а	$C_8H_8NaO_5^{+}$	-	207.0269	-
b	C ₁₈ H ₃₂ NaO ₄ ⁺	335.2200	335.2198	0.6
A	C ₈ H ₈ NaO₄ ⁺	191.0332	191.0320	6.3
В	C ₁₃ H ₂₄ NaO ₃ ⁺	251.1619	251.1623	1.6
а	C ₁₃ H ₁₆ NaO ₅ ⁺	275.0885	275.0895	3.6
b	C ₁₃ H ₂₄ NaO ₄ ⁺	267.1567	267.1573	2.2
A	C ₁₃ H ₁₆ NaO₄ ⁺	259.0952	259.0946	2.3
В	C ₈ H ₁₆ NaO ₃ ⁺	183.1024	183.0997	14.7*
а	C ₁₈ H ₂₄ NaO ₅ ⁺	343.1515	343.1522	2.0
b	C ₈ H ₁₆ NaO ₄ ⁺	199.0919	199.0946	13.6*
A	C ₁₈ H ₂₄ NaO ₄ ⁺	327.1583	327.1573	3.1

 Table S4. Table of accurate masses for the OzID products of compound 1 in situ

* The measured value was close to the noise level which caused the ppm shift to be out of the 10 ppm range.

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	$C_{28}H_{40}O_5Na^+$	479.2784	479.2773	2.3
В	C₂₀H₃₂O₃Na⁺	343.1948	343.2249	87.7
а	C ₈ H ₈ O₅Na⁺	207.0283	207.0269	6.8
b	C ₂₀ H ₃₂ O₄Na⁺	359.2246	359.2198	13.3
А	C ₈ H ₈ O ₄ Na⁺	191.0335	191.0320	7.9
а	C ₁₃ H ₁₆ O₅Na⁺	275.0936	275.0895	14.9
A	C ₁₃ H ₁₆ O ₄ Na ⁺	259.0984	259.0949	13.5

Table S5. Table of accurate masses for the OzID products of compound 2

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	$C_{14}H_{16}O_{3}Na^{+}$	255.1003	255.0997	2.4
A	C ₁₀ H ₁₀ O ₄ Na ⁺	217.0475	217.0477	0.9
A	$C_{12}H_{12}O_4Na^+$	243.0625	243.0634	3.7
•	C ₁₄ H ₁₆ O ₄ Na ⁺	271.0966	271.0946	7.4

Table S6. Table of accurate masses for the OzID products of compound 3

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	$C_{19}H_{28}O_4Na^+$	343.1891	343.1886	1.5
A	C ₁₄ H ₂₂ O ₃ Na ⁺	261.1485	261.1467	6.9
A	C ₁₆ H ₂₄ O ₃ Na ⁺	287.1632	287.1624	2.8
•	C ₁₉ H ₂₈ O ₅ Na ⁺	359.1840	359.1835	1.4
а	$C_{16}H_{24}O_{4}Na^{+}$	303.1581	303.1567	4.6

Table S7. Table of accurate masses for the OzID products of compound 4

OzID-MS Products	Molecular Formula	Measured Value	Calculated Value	Accuracy (in ppm)
Parent Mass	C ₂₆ H ₃₈ O ₅ Na ⁺	453.2609	453.2617	1.8
а	C ₂₀ H ₂₈ O ₆ Na ⁺	387.1808	387.1784	6.2
А	C ₂₀ H ₂₈ O ₅ Na ⁺	371.1844	371.1835	2.4
а	C ₂₂ H ₃₀ O ₆ Na ⁺	413.2004	413.1940	15.5
А	C ₂₂ H ₃₀ O ₅ Na ⁺	397.1985	397.1991	1.5
	$C_{26}H_{38}O_{6}Na^{+}$	469.2548	469.2566	3.8

Table S8. Table of accurate masses for the OzID products of compound 5

Figure S1. UPLC-PDA detector chromatogram of ent-sartorypyrone E (1)

Figure S3. HSQC spectrum of ent-sartorypyrone E (1), CDCl₃, 700 MHz

Figure S4. HMBC spectrum of ent-sartorypyrone E (1), CDCl₃, 700 MHz

Figure S5. ¹H COSY spectrum of ent-sartorypyrone E (1), CDCl₃, 700 MHz

Figure S6. UPLC-PDA detector chromatogram of an extract of A. fischeri grown on solid oatmeal media

Figure S8. ¹H NMR spectrum (500 MHz) in MeOD, of trichodermic acid A (4)

Figure S9. ¹H NMR spectrum (500 MHz) in (CD₃)₂CO, of AA03390 (5)

Figure S10. Schematic of the Waters Synapt G2 HDMS modified to allow ozone in the trap and transfer cells to perform OzID-MS. Adapted from Vu et al.¹

References

(1) Vu, N.; Brown, J.; Giles, K.; Zhang, Q., Rapid Commun. Mass Spectrom. 2017, 31, 1415-1423.

(2) Eamvijarn, A.; Gomes, N. M.; Dethoup, T.; Buaruang, J.; Manoch, L.; Silva, A.; Pedro, M.; Marini, I.; Roussis, V.; Kijjoa, A., *Tetrahedron* **2013**, *69*, 8583-8591.