# Supporting Information

# The Influence of Hydration Energy on Alkali-earth Intercalated Layered Manganese Oxides as Electrochemical Capacitors

Praeploy Chomkhuntod<sup>†</sup>, Nattapol Ma<sup>†</sup>, Soracha Kosasang<sup>†</sup>, Salatan Duangdangchote<sup>†</sup>, Nutthaphon Phattharasupakun<sup>†</sup>, Chonticha Jangsan<sup>†</sup>, and Montree Sawangphruk<sup>\*†</sup>

<sup>†</sup> Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
\*Corresponding author. Tel: +66(0)33-01-4251 Fax: + 66(0)33-01-4445.
E-mail address: montree.s@vistec.ac.th (M. Sawangphruk).
ORCID ID: https://orcid.org/0000-0003-2769-4172

#### **EXPERIMENTAL SECTION**

#### Materials

Manganese(II) nitrate tetrahydrate (Mn(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O, 98%, Loba Chemie), lithium hydroxide (LiOH, 98%, Sigma-Aldrich), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>, 30%, Chem Merck), calcium nitrate tetrahydrate (Ca(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O, 97%, Daejung), strontium nitrate (Sr(NO<sub>3</sub>)<sub>2</sub>, 99%, Himedia), barium nitrate (Ca(NO<sub>3</sub>)<sub>2</sub>, 99%, Himedia), lithium sulfate (Li<sub>2</sub>SO<sub>4</sub>·H<sub>2</sub>O, 99%, Alfa Aesar), sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>, Carlo Erba), carbon black (TIMCAL), polytetrafluoroethylene preparation (PTFE, 60 wt. % dispersion in H<sub>2</sub>O, Sigma Aldrich), and ethanol (C<sub>2</sub>H<sub>5</sub>OH, 99.5%, Sigma-Aldrich) are analytical grade and used without further purification. Nickel foam (200 g m<sup>-2</sup> with a thickness of 1 mm, Gelon) was used as a current collector. Deionized water was purified by Milli-Q system (DI water, 15 MΩ.cm, Millipore).

#### **Electrochemical evaluation**

The specific capacitance ( $C_{cv}$ ) was calculated from the CV result by the following equation  $(S1)^{1-2}$ ;

$$C_{CV} = \int \frac{I dV/\nu}{m \Delta V}$$
(S1)

where  $\int IdV/v$  (Coulomb) is a total amount of charge or integral area in the discharge process of CV curve,  $\Delta V$  is the potential window of discharge (V), and m is the total active mass of material used in each electrode.

The specific capacitance ( $C_{GCD}$ ) was also investigated from the GCD result and calculated by the following equation (S2);<sup>2-3</sup>

$$C_{GCD} = \frac{I\Delta t}{\Delta Vm}$$
 (S2)

where I is the applied current density,  $\Delta t$  is the discharge time, m is the active mass, and  $\Delta V$  is the working potential window (VS. SCE) excluding the iR drop.

Relaxation time constant ( $\tau_0$ ) or dielectric relaxation time for supercapacitor.

The  $\tau_0$  represents the discharge characteristics which corresponds to a minimum time required for fully discharging all the stored charges or the transition of electrochemical capacitor behavior from ideal resistor to ideal capacitor.<sup>2</sup> The  $\tau_0$  can be calculated from equation (S3);

$$\tau_0 = 1/(2\pi f_0)$$
 (S3)

The value of complex power can be demonstrated by following equation;

$$S(\omega) = P(\omega) + jQ(\omega)$$
 (S4)

where  $\omega = 2\pi f$  (angular frequency), *j* is imaginary number, P( $\omega$ ) is the active power and Q( $\omega$ ) is the reactive power, which are obtained from equations (S5–S6).

$$P(\omega) = \omega C''(\omega) |\Delta V_{rms}|^2 \qquad (S5)$$
$$Q(\omega) = -\omega C'(\omega) |\Delta V r_{ms}|^2 \qquad (S6)$$

where  $|\Delta V r_{ms}|^2$  represents the maximum amplitude of the ac signal which is calculated from  $|\Delta V r_{ms}| = \Delta V_{max}/\sqrt{2}(V_{max})$ . C'( $\omega$ ) and C''( $\omega$ ) are the real part and the imaginary part of the complex capacitance, respectively given from equations (S7-S8);

$$C'(\omega) = -Z''(\omega) / \{\omega | Z(\omega)|^2\}$$
(S7)  
$$C''(\omega) = Z'(\omega) / \{\omega | Z(\omega)|^2$$
(S8)

where Z' and Z" represent the real and the imaginary parts of the complex impedance Z, respectively.

The sweep-rate dependence of the response current at applied voltage can quantitively distinguish the capacitance contribution including the surface mechanism and the diffusion-controlled process. The response current can be obtained from the following equation  $(S9)^{2, 8}$ ;

$$i(V) = k_1 v + k_2 v^{0.5}$$
 (S9)

where i(V) is the current at an applied voltage, v is the scan rate.  $k_1v$  and  $k_2v^{0.5}$  represent the surface mechanism and diffusion-controlled bulk reactions, respectively.

### **Computational details**

All the calculations reported in this article were performed by Vienna ab initio simulation package (VASP)<sup>9-11</sup> based on the periodic plane-wave density functional theory (DFT). The interactions between ion cores and valence electrons were accounted by the projector-augmented wave  $(PAW)^{12}$  pseudopotentials. The exchange and correlative interactions between electrons were treated within the generalized gradient approximation (GGA)<sup>13</sup> with the Perdev-Burke-Ernzerhof (PBE)<sup>14</sup> parameterization. The additional van der Waals (vdW) contributions were obtained through the semiempirical D2 method of Grimme (DFT-D2).<sup>15</sup> The effect of 3d electron correlation can be improved by considering on-site Coulomb (U) and exchange (J) interactions<sup>16</sup>. An on-site Hubbard term of U–J is 3.9 eV <sup>17</sup> applied for Mn atoms. The cut-off energy for expanded plane-wave basis set was set to 450 eV. The convergence thresholds for full geometry optimizations were set to  $10^{-5}$  eV and 0.005 eV/Å for each electronic steps and ionic steps, respectively. The vacuum space ( $d_{vac}$ ) at least 20 Å was set among repeating slabs along the c direction to avoid periodic interactions. The 15  $\times$  15  $\times$  15 Å unit cell box was used for the calculation of isolated molecule and hydrated ions. The Brillouin zone integration is sampled grid using the Monkhorst–Pack (MP)<sup>18</sup> meshes with the  $5 \times 5 \times 1$  k-points mesh for surfaces. All calculations for isolating charged systems were corrected with the Makov<sup>19</sup> and Neugebauer<sup>20</sup> methods.

The binding energies  $(E_b)$  of water molecules to the cations in the vacuum state were determined as follow:

$$E_b = E_{\text{cation}+n\text{H2O}} - E_{\text{ion}} - nE_{\text{H2O}}$$
(S10)

The mechanisms of intercalation/deintercalation reaction processes can be represented by the following reactions;

$$[Mn_{2}^{3+}Mn^{4+}O_{z} - M^{2+}] + nH_{2}O \rightleftharpoons [Mn_{3}^{4+}O_{z} - (H)_{2}(OH)_{2}] + M(H_{2}O)_{n-2}^{2+} + 2e^{-}$$
(S11)  
$$[Mn_{3}^{4+}O_{z} - (H)_{2}(OH)_{2}] + 2Li(H_{2}O)_{n}^{+} + 2e^{-} \rightleftharpoons [Mn_{2}^{3+}Mn^{4+}O_{z} - 2Li^{+}] + (n+2)H_{2}O$$
(S12)

Sample X: Mn Ratio Li: Mn Ratio Ca-MnO<sub>x</sub> 0.15 \_ Ca-MnO<sub>x</sub> (after cycled) 0.02 0.24 Sr-MnO<sub>x</sub> 0.10 -Sr-MnO<sub>x</sub> (after cycled) 0.08 0.19 Ba-MnO<sub>x</sub> 0.15 -Ba-MnO<sub>x</sub> (after cycled) 0.12 0.13

after cycled with the CV, where X=Li, Ca, Sr, and Ba.



Figure S1. XRD patterns of the wet samples of the as-prepared manganese oxides.

**Table S1.** The structural cation-to-Mn ratio of the as-prepared manganese oxide electrodes



Figure S2. SEM images of the as-prepared layered manganese oxides: (a) Li-MnO<sub>x</sub>, (b) Ca-

MnO<sub>x</sub>, (c) Sr-MnO<sub>x</sub>, and (d) Ba-MnO<sub>x</sub>.



**Figure S3.** The TGA curves of the as-synthesized  $MnO_x$  under air atmosphere at a heating rate of 10 °C/min.



Figure S4. Mn 2p XPS spectra of the as-prepared manganese oxide samples.

The oxidation state of samples can be calculated from the deconvoluted peaks at the Mn  $2p_{3/2}$  peak including ~641.7 eV (Mn<sup>3+</sup>), and ~643.3 eV (Mn<sup>4+</sup>).<sup>21</sup> The average oxidation states of Li–MnO<sub>x</sub>, Ca–MnO<sub>x</sub>, Sr–MnO<sub>x</sub>, and Ba–MnO<sub>x</sub> are +3.42, +3.42, +3.43, and +3.43, respectively.



**Figure S5.** The specific capacitance of the as-prepared Ca-MnO<sub>x</sub> in the 0.5 M  $Li_2SO_4$  and Na<sub>2</sub>SO<sub>4</sub> as a function of the scan rate.



Figure S6. The specific capacitance of the as-prepared- $MnO_x$  as a function of the scan rate.



Figure S7. CV curves of (a) Li-MnO<sub>x</sub>, (b) Ca-MnO<sub>x</sub>, (c) Sr-MnO<sub>x</sub>, and (d) Ba-MnO<sub>x</sub> at various scan rates.



Figure S8. GCD curves of (a) Li-MnO<sub>x</sub>, (b) Ca-MnO<sub>x</sub>, (c) Sr-MnO<sub>x</sub> and (d) Ba-MnO<sub>x</sub> at various current densities.



**Figure S9.** The stability test of the as-prepared  $MnO_x$  at 3 A g<sup>-1</sup>.



**Figure S10.** (a.) The complex power analysis as well as (b) Bode plot of Li-MnO<sub>x</sub>, Ca-MnO<sub>x</sub>, Sr-MnO<sub>x</sub>, and Ba-MnO<sub>x</sub>.

The relaxation-time constant ( $\tau_0$ ) was calculated by the complex power analysis diagram in Figure S10a. The  $\tau_0$  values correspond to the crossing frequency of Li-MnO<sub>x</sub>, Ca-MnO<sub>x</sub>, Sr-MnO<sub>x</sub>, and Ba-MnO<sub>x</sub> which are equal to 4.04, 3.35, 2.55, and 3.70 s, respectively. The phase angles of all samples (See Figure S10b) are below  $-90^\circ$  as low frequency range demonstrating a pseudocapacitor.<sup>22</sup>



**Figure S11.** *Ex*-situ Raman spectra of the pristine and the charged  $\delta$ -MnO<sub>x</sub> electrodes.

Notably, the peak observed at ~640 cm<sup>-1</sup> corresponds to the birnessite- $MnO_2^{23}$  and the intermediate phase of MnOOH (birnessite-type) can be observed at 575 cm<sup>-1</sup> after charged.<sup>24</sup>

| Table S2. E0 and Mn oxidation states obtained from ex situ Mn K-eage XANES spectra | a. |
|------------------------------------------------------------------------------------|----|
|                                                                                    |    |

| Sample              | Applied potential     | Absorption threshold | Mn oxidation |
|---------------------|-----------------------|----------------------|--------------|
|                     |                       | energy (eV)          | state        |
| Li-MnO <sub>x</sub> | -                     | 6550.65              | 3.68         |
| Ca-MnO <sub>x</sub> | -                     | 6550.60              | 3.67         |
| Sr-MnO <sub>x</sub> | -                     | 6550.80              | 3.73         |
| Ba-MnO <sub>x</sub> | -                     | 6550.87              | 3.75         |
|                     | -0.1 V vs. SCE        | 6550.61              | 3.67         |
| Li-MnO <sub>x</sub> | 0.8 V vs. SCE         | 6551.70              | 4.00         |
|                     | -0.1 V vs. SCE return | 6550.70              | 3.70         |
|                     | -0.1 V vs. SCE        | 6550.30              | 3.58         |
| Ca-MnO <sub>x</sub> | 0.8 V vs. SCE         | 6551.23              | 3.86         |
|                     | -0.1 V vs. SCE return | 6550.38              | 3.60         |
|                     | -0.1 V vs. SCE        | 6550.70              | 3.70         |
| Sr-MnO <sub>x</sub> | 0.8 V vs. SCE         | 6551.45              | 3.92         |
|                     | -0.1 V vs. SCE return | 6550.70              | 3.70         |
|                     | -0.1 V vs. SCE        | 6550.60              | 3.67         |
| Ba-MnO <sub>x</sub> | 0.8 V vs. SCE         | 6551.20              | 3.85         |
|                     | -0.1 V vs. SCE return | 6550.60              | 3.67         |

| Cations          | Exp. (kcal mol <sup>-1</sup> ) <sup>25</sup> | DFT (kcal mol <sup>-1</sup> ) |  |
|------------------|----------------------------------------------|-------------------------------|--|
| Li <sup>+</sup>  | 122                                          | 204                           |  |
| Ca <sup>2+</sup> | 381                                          | 500                           |  |
| Sr <sup>2+</sup> | 346                                          | 465                           |  |
| Ba <sup>2+</sup> | 315                                          | 436                           |  |
|                  |                                              |                               |  |

**Table S3.** The DFT binding energies for the first hydration shell ( $n_{H2O} = 6$ ) for different cations.

**Table S4.** The specific capacitances of manganese oxide electrodes compared with other reports.

| Materials                | Structure   | Morphology   | Electrolyte                     | Capacitance              | Cycling       | Ref. |
|--------------------------|-------------|--------------|---------------------------------|--------------------------|---------------|------|
|                          |             |              |                                 |                          | stability     |      |
| MnO <sub>2</sub>         | pyrolusite  | hollow       | 0.5 M                           | 159.2 F g <sup>-1</sup>  | 81.5% after   | [26] |
|                          | and         | microspheres | Na <sub>2</sub> SO <sub>4</sub> | at 2 mV s <sup>-1</sup>  | 10,000 cycles |      |
|                          | ramsdellite | -            |                                 |                          | -             |      |
| α-MnO <sub>2</sub>       | hollandite  | nanospheres  | 0.5 M                           | $138.4 \text{ F g}^{-1}$ | 90% after     | [27] |
|                          |             | _            | Na <sub>2</sub> SO <sub>4</sub> | at 1 A $g^{-1}$          | 15,000 cycle  |      |
| Li <sup>+</sup> -layered | birnessite  | Nanosheets   | 0.2 M                           | 147 F g <sup>-1</sup> at | 99% after     | [28] |
| MnO <sub>2</sub>         |             |              | Li <sub>2</sub> SO <sub>4</sub> | $0.5 \text{ mA cm}^{-2}$ | 1,000 cycles  |      |
|                          |             |              |                                 |                          | -             |      |
| Cs0.2MnO2                | birnessite  | hollow       | 0.5 M                           | 155 F g <sup>-1</sup>    | ~100% after   | [29] |
|                          |             | microflowers | K <sub>2</sub> SO <sub>4</sub>  | at 1 A $g^{-1}$          | 1,000 cycles  |      |
|                          |             |              |                                 |                          | •             |      |
| Li-MnO <sub>x</sub>      | birnessite  | Nanosheets   | 1.0 M                           | 157 F g <sup>-1</sup>    | ~100% after   | [2]  |
|                          |             |              | Na <sub>2</sub> SO <sub>4</sub> | at 0.5 A $g^{-1}$        | 1,000 cycles  |      |
|                          |             |              |                                 |                          | -             |      |
| Na-MnO <sub>x</sub>      | birnessite  | Nanosheets   | 1.0 M                           | 109 F g <sup>-1</sup>    | ~100% after   | [2]  |
|                          |             |              | Na <sub>2</sub> SO <sub>4</sub> | at 0.5 A $g^{-1}$        | 1,000 cycles  |      |
|                          |             |              |                                 | C C                      | •             |      |
| Li-MnO <sub>x</sub>      | birnessite  | Nanosheets   | 0.5 M                           | 148.2 F g <sup>-1</sup>  | ~100% after   | This |
|                          |             |              | Li <sub>2</sub> SO <sub>4</sub> | at 1 A $\tilde{g^{-1}}$  | 1600 cycles   | work |
| Ca-MnO <sub>x</sub>      | birnessite  | Nanosheets   | 0.5 M                           | 172.6 F g <sup>-1</sup>  | 96 % after    | This |
|                          |             |              | Li <sub>2</sub> SO <sub>4</sub> | at 1 A $g^{-1}$          | 11,000 cycles | work |
|                          |             |              |                                 | E E                      |               |      |

## References

- 1. Meng, F.-L.; Zhong, H.-X.; Zhang, Q.; Liu, K.-H.; Yan, J.-M.; Jiang, Q., Integrated Cu<sub>3</sub>N porous nanowire array electrode for high-performance supercapacitors. *J. Mater. Chem. A* **2017**, *5* (36), 18972-18976.
- 2. Ma, N.; Kosasang, S.; Krittayavathananon, A.; Phattharasupakun, N.; Sethuraman, S.; Sawangphruk, M., Effect of intercalated alkali ions in layered manganese oxide nanosheets as neutral electrochemical capacitors. *Chem. Commun.* **2019**, *55* (9), 1213-1216.
- Zhu, S.; Li, L.; Liu, J.; Wang, H.; Wang, T.; Zhang, Y.; Zhang, L.; Ruoff, R. S.; Dong, F., Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO<sub>2</sub> for High-Performance Asymmetric Supercapacitors. *ACS Nano* 2018, *12* (2), 1033-1042.
- 4. Ganesh, V.; Pitchumani, S.; Lakshminarayanan, V., New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. *J. Power Sources* **2006**, *158* (2), 1523-1532.
- Sivaraman, P.; Kushwaha, R. K.; Shashidhara, K.; Hande, V. R.; Thakur, A. P.; Samui, A. B.; Khandpekar, M. M., All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone]. *Electrochim. Acta* 2010, *55* (7), 2451-2456.
- 6. Lee, K.; Lee, H.; Shin, Y.; Yoon, Y.; Kim, D.; Lee, H., Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate. *Nano Energy* **2016**, *26*, 746-754.
- 7. M, A.; Paul, A., Importance of Electrode Preparation Methodologies in Supercapacitor Applications. *ACS Omega* **2017**, *2* (11), 8039-8050.
- 8. Duay, J.; Sherrill, S. A.; Gui, Z.; Gillette, E.; Lee, S. B., Self-Limiting Electrodeposition of Hierarchical MnO<sub>2</sub> and M(OH)<sub>2</sub>/MnO<sub>2</sub> Nanofibril/Nanowires: Mechanism and Supercapacitor Properties. *ACS Nano* **2013**, *7* (2), 1200-1214.
- 9. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **1993**, *47* (1), 558-561.
- 10. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54* (16), 11169-11186.
- 11. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6* (1), 15-50.
- 12. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmentedwave method. *Phys. Rev. B* **1999**, *59* (3), 1758-1775.
- 13. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865-3868.
- 14. Perdew, J. P.; Ernzerhof, M.; Burke, K., Rationale for mixing exact exchange with density functional approximations. *J. Chem. Phys.* **1996**, *105* (22), 9982-9985.
- 15. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comput. Chem.* **2006**, *27* (15), 1787-1799.
- 16. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I. *Phys. Rev. B* **1991**, *44* (3), 943-954.
- Mueller, T.; Hautier, G.; Jain, A.; Ceder, G., Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing. *Chem. Mater.* 2011, 23 (17), 3854-3862.

- 18. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Phys. Rev. B* **1976**, *13* (12), 5188-5192.
- 19. Makov, G.; Payne, M. C., Periodic boundary conditions in ab initio calculations. *Phys. Rev. B* **1995,** *51* (7), 4014-4022.
- 20. Neugebauer, J.; Scheffler, M., Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). *Phys. Rev. B* **1992**, *46* (24), 16067-16080.
- 21. Kosasang, S.; Ma, N.; Wuamprakhon, P.; Phattharasupakun, N.; Maihom, T.; Limtrakul, J.; Sawangphruk, M., Insight into the effect of intercalated alkaline cations of layered manganese oxides on the oxygen reduction reaction and oxygen evolution reaction. *Chem. Comm.* **2018**, *54* (62), 8575-8578.
- 22. Sahoo, R.; Sasmal, A. K.; Ray, C.; Dutta, S.; Pal, A.; Pal, T., Suitable Morphology Makes CoSn(OH)<sub>6</sub> Nanostructure a Superior Electrochemical Pseudocapacitor. *ACS Appl. Mater. Interfaces* **2016**, *8* (28), 17987-17998.
- 23. Dubal, D. P.; Dhawale, D. S.; Salunkhe, R. R.; Lokhande, C. D., Conversion of interlocked cube-like Mn<sub>3</sub>O<sub>4</sub> into nanoflakes of layered birnessite MnO<sub>2</sub> during supercapacitive studies. *J. Alloys Compd.* **2010**, *496* (1), 370-375.
- 24. Wang, Y.; Guan, H.; Du, S.; Wang, Y., A facile hydrothermal synthesis of MnO<sub>2</sub> nanorod–reduced graphene oxide nanocomposites possessing excellent microwave absorption properties. *RSC Adv.* **2015**, *5*, 88979-88988.
- 25. Kuma, K., Crystal Structures of Synthetic 7 Å and 10 Å Manganates Substituted by Mono- and Divalent Cations. Mineral Mag: 1994; Vol. 58, p 425-447.
- 26. Zhong Chi, H.; Yin, S.; Qin, H.; Su, K., The preparation of MnO<sub>2</sub> hollow spheres for electrochemical capacitor. *Mater. Lett.* **2016**, *162*, 131-134.
- 27. Tanggarnjanavalukul, C.; Phattharasupakun, N.; Kongpatpanich, K.; Sawangphruk, M., Charge storage performances and mechanisms of MnO2 nanospheres, nanorods, nanotubes and nanosheets. *Nanoscale* **2017**, *9* (36), 13630-13639.
- 28. Song, M.-S.; Lee, K. M.; Lee, Y. R.; Kim, I. Y.; Kim, T. W.; Gunjakar, J. L.; Hwang, S.-J., Porously Assembled 2D Nanosheets of Alkali Metal Manganese Oxides with Highly Reversible Pseudocapacitance Behaviors. *J. Phys. Chem. C* **2010**, *114* (50), 22134-22140.
- 29. Chomkhuntod, P.; Jiamprasertboon, A.; Waehayee, A.; Butburee, T.; Chanlek, N.; Yong, N.; Siritanon, T., Facile molten salt synthesis of Cs–MnO<sub>2</sub> hollow microflowers for supercapacitor applications. *RSC Adv.* **2019**, *9* (33), 19079-19085.