# **Supporting Information**

# A Thermo-Electrochemical Converter using High Temperature Polybenzimidazole (PBI) Membranes for Harvesting Heat Energy

Fei Huang<sup>a</sup>, Andrew T. Pingitore<sup>a</sup>, Tedric Campbell<sup>b</sup>, Andrew Knight<sup>b</sup>, David Johnson<sup>b</sup>, Lonnie
G. Johnson<sup>b</sup>,\*, and Brian C. Benicewicz<sup>a</sup>,\*

<sup>a</sup>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA

<sup>b</sup>Johnson Research and Development, Atlanta, GA, 30312, USA

#### **Corresponding Authors**

ilinex@johnsonrd.com (L. Johnson), benice@sc.edu (B. Benicewicz)

#### **Proton Conductivity Measurement**

The through-plane proton conductivities were measured by an AC Zahner IM6e electrochemical work station using four-probe impedance spectroscopy method over the frequency range from 1 Hz to 100 kHz with an amplitude of 5mV. A rectangular piece of membrane ( $3.5 \text{ cm} \times 7.0 \text{ cm}$ ) was cut from the bulk membrane and placed between two Kapton support layers. Four platinum wire acting as four probes were set in a custom designed glass cell. The membrane ohmic resistance was determined by the model fitting according to the Nyquist plot based on a three-component equivalent circuit.<sup>1-2</sup>



**Figure S1.** (a) Schematic four-probe proton conductivity testing setup, (b) Equivalent circuit model, and (c) A typical Nyquist plot used for membrane resistance fitting.

## Effect of the Membranes on the JTEC Performance

| Membrane | Monomer<br>Charge<br>(wt%) | IV<br>(dL/g) | Polymer<br>Content<br>(wt%) | PA content<br>(wt%) | PA/PBI r.u.<br>(molar ratio) |
|----------|----------------------------|--------------|-----------------------------|---------------------|------------------------------|
| DiOH-PBI | 3                          | /            | 6.6                         | 56.9                | 27.3                         |
| para-PBI | 2                          | 3.3          | 5.6                         | 57.3                | 32.3                         |
| m/p-PBI  | 10                         | 1.8          | 16.8                        | 57.6                | 10.8                         |

**Table S1.** PBI membrane composition



**Figure S2.** Proton conductivities of DiOH-PBI, para-PBI, and m/p-PBI membranes as a function of temperature.

Table S2. Creep compliance test results of DiOH-PBI, para-PBI, and m/p-PBI membranes.

|                                        | DiOH-PBI | para-PBI | m/p-PBI |
|----------------------------------------|----------|----------|---------|
| $J_{s}^{0} (10^{-6} Pa^{-1})$          | 2.5      | 10.3     | 1.9     |
| creep rate $(10^{-12} Pa^{-1} s^{-1})$ | 18.9     | 21.8     | 4.1     |



**Figure S3.** Creep compliance of the DiOH-PBI, para-PBI, and m/p-PBI copolymer membranes. Membranes were preconditioned at 180°C for 24h and compressed at 0.1MPa at 180°C for 20h.

### References

(1) Bard, A. J.; Faulkner, L. R. Fundamentals and applications. *Electrochemical Methods* 2001, 2, 482.

(2) Xie, Z.; Song, C.; Andreaus, B.; Navessin, T.; Shi, Z.; Zhang, J.; Holdcroft, S. Discrepancies in the measurement of ionic conductivity of PEMs using two-and four-probe AC impedance spectroscopy. *J. Electrochem. Soc.* **2006**, *153*, E173-E178.