Supporting Information

Diverse structures and dimensionalities in Zn(II), Cd(II) and Hg(II) metal complexes with Piperonylic acid

Daniel Ejarque^a, Francisco Sánchez-Férez^a, José A. Ayllón^a, Teresa Calvet^b, Mercè Font-Bardia^c, Josefina Pons^{a,*}

^aDepartament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain

^bCristal·lografia, Mineralogia I Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain

^cUnitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiYUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain

Crystallographic data

For 1c, the integration of the data using a orthorombic unit cell yielded a total of 31371 reflections to a maxim θ angle of 30.58° (0.70 Å resolution), of which 9625 were independent (average redundancy 3.259, completeness = 99.0%), R_{int} = 4.75%, R_{sig} = 5.89%) and 8246 (85.67%) were greater than $2\sigma(F^2)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.5731 and 0.7461. For 2, the integration of the data using a monoclinic unit cell yielded a total of 23326 reflections to a maxim θ angle of 26.44° (0.80 Å resolution), of which 3061 were independent (average redundancy 7.620, completeness = 99.3%), R_{int} = 4.78%, R_{sig} = 3.07%) and 2942 (96.11%) were greater than $2\sigma(F^2)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6276 and 0.7454. For 3, the integration of the data using a monoclinic unit cell yielded a total of 75108 reflections to a maxim θ angle of 30.55° (0.70 Å resolution), of which 7516 were independent (average redundancy 9993, completeness = 99.9%), R_{int} = 6.40%, R_{sig} = 3.57%) and 5827 (77.53%) were greater than $2\sigma(F^2)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.6545 and 0.7461. For 4, the integration of the data using a monoclinic unit cell yielded a total of 53325 reflections to a maxim θ angle of 30.59° (0.70 Å resolution), of which 4363 were independent (average redundancy 12.222, completeness = 99.7%), R_{int} = 8.45%, R_{sig} = 4.05%) and 3549 (81.34%) were greater than $2\sigma(F^2)$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.3818 and 0.7461.

For 1c, the final anisotropic full-matrix least-squares refinement on F^2 with 500 variables converged at $R_1 = 6.11\%$, for the observed data and $wR_2 = 17.03\%$ for all data. For 2, the final anisotropic full-matrix least-squares refinement on F^2 with 230 variables converged at $R_1 = 7.76\%$, for the observed data and $wR_2 = 18.00\%$ for all data. For 3, the final anisotropic full-matrix least-squares refinement on F^2 with 341 variables converged at $R_1 = 5.43\%$, for the observed data and $wR_2 = 14.82\%$ for all data. For 4, the final anisotropic full-matrix least-squares refinement on F^2 with 226 variables converged at $R_1 = 2.96\%$, for the observed data and $wR_2 = 5.48\%$ for all data.

HR-ESI-MS

Figure S1. a. HR-ESI-MS spectra of **3**. b. In detail view of [Cd(Pip)(DMSO)]⁺ fragment

Figure S2. In detail view of $[1c - 2H_2O + Na]^+$ fragment in 1c

Figure S3. HR-ESI-MS spectra of compound 4. In detail view of a. $[Hg_2(Pip)_4 + Na]^+$, b. $[Hg(Pip)_2 + Na]^+$ and c. $[4 - CO_2 + Na]^+$ fragments of 4

Figure S4. HR-ESI-MS spectra of compound **2**. In detail view of a. $[Cd(Pip)_2 + H]^+$ and b. $[Cd_2(Pip)_4 + Na]^+$ fragments

FTIR-ATR, ¹H and ¹³C NMR spectroscopies

Figure S5. FTIR-ATR spectrum of compound [Zn(Pip)₂(H₂O)(NH₃)] (1b)

Figure S6. FTIR-ATR spectrum of compound $[Zn(Pip)_2(H_2O)_2]$ (1c)

Figure S7. FTIR-ATR spectrum of compound $[Cd(\mu-Pip)_2(H_2O)]_n$ (2)

Figure S8. FTIR-ATR spectrum of compound $[Cd_3(\mu-Pip)_6(MeOH)_2]_n$ (3)

Figure S9. FTIR-ATR spectrum of compound $[Hg(\mu-Pip)_2]_n$ (4)

Figure S10. Time resolved ¹H NMR spectra in DMSO- d_6 solution of the same sample. Experiment a. at (t₀) (**1a**). b. after 24h (t₁) (**1b**) and c. after 7 days (t₂) (**1c**). In detail views of the peak around 3.1 ppm which is attributed to the ammonia molecules.

Figure S1. ¹H NMR spectrum of compound $[Cd(\mu-Pip)_2(H_2O)_2]_n$ (2)

Figure S12. ¹H NMR spectrum of compound $[Cd_3(\mu-Pip)_6(MeOH)_2]_n$ (3)

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of compound [Zn(Pip)₂(H₂O)₂] (1c)

Figure S4. a. ¹³C{¹H} NMR spectrum of compound $[Cd(\mu-Pip)_2(H_2O)_2]_n$ (2) b. DEPT-135 spectrum of compound $[Cd(\mu-Pip)_2(H_2O)_2]_n$ (2)

Figure S5. ¹³C{¹H} NMR spectrum of compound $[Hg(\mu-Pip)_2]_n$ (4)

TG/DTA determinations

Figure S17. TG/DTA of compound 1c

Figure S18. TG/DTA of compound 2

Figure S19. TG/DTA of compound 4

Figure S20. UV-Vis spectra of complexes 1c (black line), 2 (red line), 3 (dark blue line) and 4 (pink line), HPip ligand (green line) and L-tyrosine (light blue line) in MeOH solution ($9.95 \cdot 10^{-7}$ M for the HPip and $\sim 1.00 \cdot 10^{-7}$ M for 1c-4 complexes) and Milli-Q water solution ($1.01 \cdot 10^{-4}$ M for L-tyrosine) at r.t.

Table S1. Detailed parameters extracted from the photoluminescence properties of HPip ligand and compounds **1c-4**.

	Abs (λ_{max}) (nm)	Emission (λ_{em}) (nm)	Quantum yield ($\varphi_{\rm S}$)
HPip	204, 255, 292	352	0.0086
1c	206, 254, 292	369	0.019
2	216, 255, 292	369	0.033
3	214, 255, 292	353	0.053
4	214. 256. 293	363	0.12