Supplementary information for: "First-principles many-body non-additive polarization energies from monomer and dimer calculations only : A case study on water"

Rory A. J. Gilmore, Martin T. Dove, and Alston J. Misquitta

School of Physics and Astronomy and the Thomas Young Centre for Theory and Simulation of Materials at Queen Mary University of London, London E1 4NS, U.K.

E-mail:

1 Model specifications

1.1 DIFF functional form

The DIFF functional form is not fixed, but instead is determined by the best theoretical understanding available. At present we utilize an anisotropic Born-Mayer functional form ${ }^{1}$ but we have also used alternative forms ${ }^{2,3}$ sometimes with better results.

Following Misquitta \& Stone ${ }^{1}$ we represent the potential $V_{\text {int }}$ as

$$
\begin{equation*}
V_{\mathrm{int}}=\sum_{a \in A} \sum_{b \in B} V_{\mathrm{pair}}[a b]\left(r_{a b}, \Omega_{a b}\right)+V_{\mathrm{pol}}[\text { cluster }], \tag{1}
\end{equation*}
$$

where, a and b label sites in the interacting molecules A and $B, r_{a b}$ is the inter-site separation, $\Omega_{a b}$ is a suitable set of angular coordinates that describes the relative orientation of the local axis systems
on these sites (see ch. 12 in ref. 4), and $V_{\text {pair }}[a b]$ is the pair-wise site-site potential defined as

$$
\begin{equation*}
V_{\text {pair }}[a b]=V_{\text {sr }}[a b]+V_{\text {elst }}[a b]+V_{\text {disp }}[a b] . \tag{2}
\end{equation*}
$$

Note that the polarization term cannot be written as a pair-wise sum over sites as it is a manifestly many-body term.

The short-range term $V_{\mathrm{sr}}[a b]$ describes the exchange-repulsion energy, the electrostatic penetration energy, and all other short-range terms, including the charge-delocalization energy:

$$
\begin{equation*}
V_{\mathrm{sr}}[a b]=G \exp \left[-\alpha_{a b}\left(\Omega_{a b}\right)\left(r_{a b}-\rho_{a b}\left(\Omega_{a b}\right)\right)\right], \tag{3}
\end{equation*}
$$

where $\rho_{a b}\left(\Omega_{a b}\right)$ is the shape function for this pair of sites, which depends on their relative orientation described by $\Omega_{a b}$, and $\alpha_{a b}$ is the hardness parameter which will be taken to be independent of orientation. $G=10^{-3}$ hartree is a constant energy which determines the units of $V_{\mathrm{sr}}[a b]$. The shape-function $\rho_{a b}\left(\Omega_{a b}\right)$ for site pair $a b$ is dependent on the relative orientation of these sites $\Omega_{a b}$ and is given by

$$
\begin{equation*}
\rho_{a b}\left(\Omega_{a b}\right)=\rho_{a b}^{a}\left(\Omega_{a b}\right)+\rho_{a b}^{b}\left(\Omega_{a b}\right) \tag{4}
\end{equation*}
$$

where $\rho_{a b}^{a}\left(\Omega_{a b}\right)=\sum_{l, k} \rho_{l k}^{a} C_{l k}\left(\theta_{a}, \phi_{a}\right)$ is the shape function for atom a and $C_{l k}(\theta, \phi)=\frac{4 \pi}{2 l+1} Y_{l, m}(\theta, \phi)$ is a renormalised spherical harmonic term.

The shape function $\rho_{a b}\left(\Omega_{a b}\right)$ is best described in local axis systems that reflect the local symmetries of the sites a and b. These symmetries could be approximate. For example, a convenient choice for the local z-axis at a carbon atom in a benzene molecule might be to have it point from the carbon to the bonded hydrogen atom. With this choice of z-axis, an approximate cylindrical symmetry may be imposed. In which case, the potential parameters would be quite simple. But we now need to transform from these local axis systems to the global axis as the molecular configurations are defined in the global, or laboratory frame. This transformation is done using the
S-functions defined by eqs. 3.3.7 in ref. ${ }^{4}$ and is given by (eq. 12.2 .6 in ref. ${ }^{4}$)

$$
\begin{equation*}
\rho_{a b}\left(\Omega_{a b}\right)=\sum_{l_{a} l_{j} j_{a} k_{a} k_{b}} \rho_{l_{a} k_{a} b_{j} k_{b}}^{k_{a} \bar{S}_{a} k_{b} k_{b} .} \tag{5}
\end{equation*}
$$

We do not use the most general S-function in our potentials, but only the special cases: $\bar{S}_{l 0 l}^{k 0}$ and $\bar{S}_{0 l l}^{0 k}$. Since we do not use mixed terms in the sum, this leads to a very intuitive result that the shape function of a pair of sites is the sum of the shape functions of the individual sites. This is so because these special S-functions can be written quite simply as

$$
\begin{equation*}
\bar{S}_{l 0 l}^{k 0}=C_{l, k}(\theta, \phi)^{*}, \tag{6}
\end{equation*}
$$

where the renormalized spherical harmonics (in the Racah definition) are defined as

$$
\begin{equation*}
C_{l, k}(\theta, \phi)=\sqrt{\frac{4 \pi}{2 l+1}} Y_{l m}(\theta, \phi) . \tag{7}
\end{equation*}
$$

We can use the real components of the renormalized spherical harmonics (defined below) to get

$$
\begin{equation*}
\bar{S}_{l 0 l}^{\kappa 0}=C_{l, k}\left(\theta_{a}, \phi_{a}\right), \tag{8}
\end{equation*}
$$

where the Greek letter κ has been used in place of k to indicate this is the real component and the angles now have subscripts a to indicate they are the polar coordinates describing the site-site vector from a to b in the local axis system of site a. Likewise, we define

$$
\begin{equation*}
\bar{S}_{0 l l}^{0 \kappa}=C_{l, k}\left(\theta_{b}, \phi_{b}\right) . \tag{9}
\end{equation*}
$$

Now we can write the (approximate) shape function as

$$
\begin{equation*}
\rho_{a b}\left(\Omega_{a b}\right)=\rho^{a}\left(\theta_{a}, \phi_{a}\right)+\rho^{b}\left(\theta_{b}, \phi_{b}\right), \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho^{a}\left(\theta_{a}, \phi_{a}\right)=\sum_{l k} \rho_{l k}^{a} C_{l, k}\left(\theta_{a}, \phi_{a}\right), \tag{11}
\end{equation*}
$$

with a similar expression for $\rho^{b}\left(\theta_{b}, \phi_{b}\right)$.
We can interpret ρ^{a} as the shape function of site a. This is a very useful concept when developing atom-atom potentials with the aim of transferability, where it is important to define the parameters in the potential in terms of the properties of the atomic sites. However Misquitta \& Stone ${ }^{1}$ have argued that this interpretation is only valid at first order. When second-order terms are included then there is a coupling between the parameters from sites a and b as would happen, for example, if there was a strong charge-delocalization between the sites. This happens for the O..H interaction in water. So in the DIFF models we have specific parameters sets for the O..O, H..H, and O..H interactions; i.e., transferability is not imposed. Indeed, it cannot be imposed without compromising the accuracy of the models.
$V_{\text {elst }}[a b]$ is the expanded electrostatic energy:

$$
\begin{align*}
V_{\mathrm{elst}}[a b] & =V_{\mathrm{elst}}[a b]\left(r_{a b}, \Omega_{a b}, Q_{t}^{a}, Q_{u}^{b}\right) \tag{12}\\
& =\sum_{t u} Q_{t}^{a} T_{t u}^{a b} Q_{u}^{b}, \tag{13}
\end{align*}
$$

where Q_{t}^{a} is the multipole moment of rank t for site a, where, using the notation of ref. 4, the angular momenta are indexed as $t=l \kappa=00,10,11 c, 11 s, 20,21 c, 21 s, 22 c, 22 s, \cdots$. Notice that we do not (as yet) damp the electrostatic model. Here $T_{t u}^{a b}$ is a T-tensor defined as (see eq. 3.3.14 in Stone ${ }^{4}$)

$$
\begin{align*}
T_{t u}^{a b} & \equiv T_{l_{1} \kappa_{1} l_{2} \kappa_{2}}^{a b} \tag{14}\\
& =\left[\frac{\left(l_{1}+l_{2}\right)!}{l_{1}!l_{2}!}\right] \bar{S}_{l_{1} l_{2} l_{1}+l_{2}}^{\kappa_{1} \alpha_{2}} r_{a b}^{-\left(l_{1}+l_{2}+1\right)} . \tag{15}
\end{align*}
$$

The polarization term $V_{\text {pol }}$ [cluster] has been defined in the main body of the paper but is provided here for completeness. In the DIFF models the polarization energy is defined between
molecules and not within molecules. This is because the polarizabilities defined using the ISA-Pol algorithm already include intramolecular polarization effects. So the polarization model is defined not in terms of sites, but in terms of molecules. Further, as this is a manifestly many-body term, it cannot be written in terms of pairs of molecules, but is defined as

$$
\begin{equation*}
V_{\mathrm{pol}}[\mathrm{cluster}]=\sum_{A} E_{\mathrm{pol}, \mathrm{cl}}(A), \tag{16}
\end{equation*}
$$

where the classical polarization energy of a molecule A in a cluster of molecules is defined as:

$$
\begin{equation*}
E_{\mathrm{pol}, \mathrm{cl}}(A)=\frac{1}{2} \sum_{a \in A} \sum_{B \neq A} \sum_{b \in B} \sum_{t u} \Delta Q_{t}^{a} f_{n(t u)}\left(\beta_{\mathrm{pol}}^{a b} R_{a b}\right) T_{t u}^{a b} Q_{u}^{b}, \tag{17}
\end{equation*}
$$

where the terms are as defined above for the electrostatic case. $f_{n(t u)}\left(\beta_{\mathrm{pol}}^{a b} R_{a b}\right)$ is a damping function of order n, that will usually be taken to be the Tang-Toennies incomplete Gamma function of order $n+1$:

$$
\begin{equation*}
f_{n}^{T T}(\beta R)=P(n+1, \beta R)=1-\exp (-\beta R) \sum_{k=0}^{n} \frac{(\beta R)^{k}}{k!} . \tag{18}
\end{equation*}
$$

Here n is a function of the tensor ranks t and u, and if $t=l_{1} \kappa_{1}$ and $u=l_{2} \kappa_{2}$, then $n=l_{1}+l_{2}+1$. We assume that the damping depends only on the distance $R_{a b}$ between sites a and b and not on their relative orientation. This is an approximation that needs assessment, but we do not address this issue in this paper. The strength of the damping is governed by the damping parameter $\beta_{\mathrm{pol}}^{a b}$. In the above expression, ΔQ_{t}^{a} is the change in multipole moment t at a due to the self-consistent polarization of site a in the field of all sites on other molecules, and is given by

$$
\begin{equation*}
\Delta Q_{t}^{a}=-\sum_{a^{\prime} \in A} \sum_{B \neq A} \sum_{b \in B} \sum_{t^{\prime} v} \alpha_{t t^{\prime}}^{a a^{\prime}} f_{n\left(t^{\prime} v\right)}\left(\beta_{\mathrm{pol}}^{a^{\prime} b} R_{a^{\prime} b}\right) T_{t^{\prime} v}^{a^{\prime} b}\left(Q_{v}^{b}+\Delta Q_{v}^{b}\right) \tag{19}
\end{equation*}
$$

where $\alpha_{t t^{\prime}}^{a a^{\prime}}$ is the distributed polarizability for sites $\left(a, a^{\prime}\right)$ which describes the response of the multipole moment component Q_{t}^{a} at site a to the t^{\prime}-component of the field at site a^{\prime}. To find ΔQ_{t}^{a}
we need to solve eq. (19) iteratively. If ΔQ_{v}^{b} is dropped from the right-hand-side of this equation then the resulting ΔQ_{t}^{a}, when inserted in eq. (17) leads to the second-order polarization energy, $E_{\text {pol, cl }}^{(2)}$.

In the polarization models used in this paper we assume the Tang-Toennies form for the damping functions. ${ }^{5}$ Further we use the localized form ${ }^{6,7}$ of the distributed polarizability tensor, that is, the non-local polarizability $\alpha_{t u}^{a a^{\prime}}$ in eq. (19) is replaced by $\alpha_{t u}^{a} \delta_{a a^{\prime}}$, where $\delta_{a a^{\prime}}$ is the Kronecker-delta and $\alpha_{t u}^{a}$ is the localized polarizability tensor of the same rank.

The dispersion energy $V_{\text {disp }}[a b]$ depends on the anisotropic dispersion coefficients $C_{n}^{a b}\left(\Omega_{a b}\right)$ for the pair of sites, and on a damping function f_{n} that we will take to be the Tang-Toennies ${ }^{8}$ incomplete gamma functions of order $n+1$:

$$
\begin{equation*}
V_{\mathrm{disp}}[a b]=-\sum_{n=6}^{12} f_{n}\left(\beta_{\mathrm{disp}}^{a b} r_{a b}\right) C_{n}^{a b}\left(\Omega_{a b}\right) r_{a b}^{-n} \tag{20}
\end{equation*}
$$

1.2 Model parameters

The DIFF model parameters presented here are defined in local axis frame for each atom in the water molecule. In the notation used in the Orient program ${ }^{9}$ the local axes are defined to be as follows:

Axes

0	z between $H 1$ and $H 2$	x from H1 to H2
H1 z from 0 to H1	x from H1 to H2	
$H 2 ~ z ~ f r o m ~ 0 ~ t o ~ H 2 ~$	x from H2 to H1	

End
This choice places the water molecule in the xz-plane with the z-axes on each H -atom pointing outwards, along the $\mathrm{O}-\mathrm{H}$ bond, and that for the $\mathrm{O}-\mathrm{atom}$ bisecting the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle and pointing from the O towards the H -atoms.

The DIFF models are all created for the water molecule in a fixed geometry given as (in atomic units):

0	0.00000000	0.00000000	0.00000000
H1	-1.45365196	0.00000000	-1.12168732
H2	1.45365196	0.00000000	-1.12168732

In some of the water clusters the monomer geometries differ from the one above. In this case the DIFF model parameters presented below were moved onto the sites and the local axis system was kept the same. That is, the DIFF model parameters were transferred, without change, to the new monomer geometries, with the local axis system and parameters kept the same.

The polarization model parameters are given in the main paper, but are reproduced below for convenience.

Table 1: L1pol $x=0.0$ (IP)

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.575293 E+01$
	00	10	$-0.405000 E-02$
	10	00	$-0.405000 E-02$
	00	20	$0.166090 E-01$
	00	22 c	$-0.117827 E+00$
	20	00	$0.166090 E-01$
	22 c	00	$-0.117827 E+00$
O H	00	00	$0.470612 E+010.193432 E+01$
	00	10	$-0.265887 E+00$
	00	11 c	$0.179670 E-01$
	10	00	$-0.199970 E-01$
	20	00	$0.724500 E-02$
	22 c	00	$-0.169075 E+00$
H H	00	00	$0.376139 E+01$
	00	10	$-0.215258 E+00$
	00	11 c	$0.483480 E-01$
	10	00	$-0.215258 E+00$
	11 c	00	$0.483480 E-01$

Table 2: L1pol $x=0.5$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.574133 E+01$
	00	10	$-0.651900 E-02$
	10	00	$-0.651900 E-02$
	00	20	$0.164840 E-01$
	00	22 c	$-0.118650 E+00$
	20	00	$0.164840 E-01$
	22 c	00	$-0.118650 E+00$
O H	00	00	$0.471851 E+010.192714 E+01$
	00	10	$-0.279558 E+00$
	00	11 c	$0.190500 E-01$
	10	00	$-0.184210 E-01$
	20	00	$0.794900 E-02$
	22 c	00	$-0.167358 E+00$
H H	00	00	$0.375748 E+010.200219 E+01$
	00	10	$-0.211388 E+00$
	00	11 c	$0.468130 E-01$
	10	00	$-0.211388 E+00$
	11 c	00	$0.468130 E-01$

Table 3: DIFF-L1pol $x=1.0$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.572103 E+01$
	00	10	$-0.787800 E-02$
	10	00	$-0.787800 E-02$
	00	20	$0.166740 E-01$
	00	22 c	$-0.118533 E+00$
	20	00	$0.166740 E-01$
	22 c	00	$-0.118533 E+00$
O H	00	00	$0.473665 E+01$
	00	10	$-0.296016 E+00$
	00	11 c	$0.207420 E-01$
	10	00	$-0.171990 E-01$
	20	00	$0.847100 E-02$
	22 c	00	$-0.164328 E+00$
H H	00	00	$0.375798 E+01$
	00	10	$-0.207660 E+00$
	00	11 c	$0.449220 E-01$
	10	00	$-0.207660 E+00$
	11 c	00	$0.449220 E-01$

Table 4: L1pol $x=1.5$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.566957 E+01$
	00	10	$-0.693800 E-02$
	10	00	$-0.693800 E-02$
	00	20	$0.162530 E-01$
	00	22 c	$-0.116227 E+00$
	20	00	$0.162530 E-01$
	22 c	00	$-0.116227 E+00$
O H	00	00	$0.477758 E+010.189670 E+01$
	00	10	$-0.315240 E+00$
	00	11 c	$0.248030 E-01$
	10	00	$-0.164550 E-01$
	20	00	$0.953500 E-02$
	22 c	00	$-0.158684 E+00$
H H	00	00	$0.377554 E+01$
	00	10	$-0.207309 E+00$
	00	11 c	$0.406770 E-01$
	10	00	$-0.207309 E+00$
	11 c	00	$0.406770 E-01$

Table 5: DIFF-L2pol $x=1.0$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.570240 E+01$
	00	10	$-0.288290 E-01$
	10	00	$-0.288290 E-01$
	00	20	$0.829100 E-02$
	00	22 c	$-0.122959 E+00$
	20	00	$0.829100 E-02$
	22 c	00	$-0.122959 E+00$
O H	00	00	$0.481023 E+010.191122 E+01$
	00	10	$-0.338792 E+00$
	00	11 c	$0.258230 E-01$
	10	00	$-0.721500 E-02$
	20	00	$0.115020 E-01$
	22 c	00	$-0.165928 E+00$
H H	00	00	$0.367186 E+010.201785 E+01$
	00	10	$-0.135984 E+00$
	00	11 c	$0.385040 E-01$
	10	00	$-0.135984 E+00$
	11 c	00	$0.385040 E-01$

Table 6: L3pol $x=0.0$ (IP)

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.585650 E+01$
	00	10	$0.168560 E-01$
	10	00	$0.168560 E-01$
	00	20	$0.109910 E-01$
	00	22 c	$-0.108392 E+00$
	20	00	$0.109910 E-01$
	22 c	00	$-0.108392 E+00$
O H	00	00	$0.467033 E+010.201391 E+01$
	00	10	$-0.190363 E+00$
	00	11 c	$0.127970 E-01$
	10	00	$-0.126610 E-01$
	20	00	$0.400000 E-04$
	22 c	00	$-0.178575 E+00$
H H	00	00	$0.370112 E+01$
	00	10	$-0.166826 E+00$
	00	11 c	$0.468670 E-01$
	10	00	$-0.166826 E+00$
	11 c	00	$0.468670 E-01$

Table 7: L3pol $x=0.5$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.578240 E+01$
	00	10	$-0.879600 E-02$
	10	00	$-0.879600 E-02$
	00	20	$0.851400 E-02$
	00	22 c	$-0.120035 E+00$
	20	00	$0.851400 E-02$
	22 c	00	$-0.120035 E+00$
O H	00	00	$0.475443 E+010.193819 E+01$
	00	10	$-0.254994 E+00$
	00	11 c	$0.177050 E-01$
	10	00	$-0.421200 E-02$
	20	00	$0.604100 E-02$
	22 c	00	$-0.172302 E+00$
H H	00	00	$0.367475 E+01$
	00	10	$-0.157909 E+00$
	00	11 c	$0.398460 E-01$
	10	00	$-0.157909 E+00$
	11 c	00	$0.398460 E-01$

Table 8: DIFF-L3pol $x=1.0$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.573132 E+01$
	00	10	$-0.170380 E-01$
	10	00	$-0.170380 E-01$
	00	20	$0.959900 E-02$
	00	22 c	$-0.122018 E+00$
	20	00	$0.959900 E-02$
	22 c	00	$-0.122018 E+00$
O H	00	00	$0.478851 E+010.190116 E+01$
	00	10	$-0.308985 E+00$
	00	11 c	$0.193160 E-01$
	10	00	$-0.472900 E-02$
	20	00	$0.899500 E-02$
	22 c	00	$-0.169783 E+00$
H H	00	00	$0.369505 E+01$
	00	10	$-0.151968 E+00$
	00	11 c	$0.375710 E-01$
	10	00	$-0.151968 E+00$
	11 c	00	$0.375710 E-01$

Table 9: L3pol $x=1.5$

Pair	l_{a}	l_{b}	ρ
O O	00	00	$0.566135 E+01$
	00	10	$-0.163670 E-01$
	10	00	$-0.163670 E-01$
	00	20	$0.108010 E-01$
	00	22 c	$-0.116228 E+00$
	20	00	$0.108010 E-01$
	22 c	00	$-0.116228 E+00$
O H	00	00	$0.481617 E+010.187771 E+01$
	00	10	$-0.362695 E+00$
	00	11 c	$0.232330 E-01$
	10	00	$-0.641400 E-02$
	20	00	$0.965000 E-02$
	22 c	00	$-0.169048 E+00$
H H	00	00	$0.374351 E+010.197627 E+01$
	00	10	$-0.135674 E+00$
	00	11 c	$0.385730 E-01$
	10	00	$-0.135674 E+00$
	11 c	00	$0.385730 E-01$

Table 10: Polarisation damping parameters used for each model used in this work. The column titled "IP" indicates the damping based on the ionization potential of water (see text for details), and "DIFF" indicates the optimized damping for the DIFF models. This table is also presented in the main paper.

IP $x=0$			$x=0.5$	DIFF
$x=1$	$x=1.5$			
L3:				
$\beta_{O O}$	1.926	1.588	1.25	0.912
$\beta_{O H}$	1.926	1.698	1.47	1.242
$\beta_{H H}$	1.926	1.963	2.00	2.037
L2:				
$\beta_{O O}$	-	-	1.25	-
$\beta_{O H}$	-	-	1.57	-
$\beta_{H H}$	-	-	2.00	-
L1:				
$\beta_{O O}$	1.926	1.588	1.25	0.912
$\beta_{O H}$	1.926	1.803	1.68	1.557
$\beta_{H H}$	1.926	1.963	2.00	2.037

Table 11: Dispersion coefficients from the localized ISA-Pol model and site-site damping parameters. All terms in atomic units.

Pair $(a b)$	$C_{6}^{a b}$	$C_{8}^{a b}$	$C_{10}^{a b}$	$C_{12}^{a b}$	$\beta_{\text {disp }}^{a b}$
O O	24.34089	489.9063	12519.45	238364.1	1.7794
O H	4.335086	55.94859	1174.193	13116.46	1.9011
H H	0.7833591	4.356823	90.61106	771.3764	2.0227

Table 12: Non-zero components of the DF-ISA rank 4 multipole model in the local axes frame. Note that symmetry is not imposed so that there are small differences in the multipoles on the two hydrogen sites.

O					
t	Q_{t}^{O}				
00	-0.825458				
10	-0.170731				
20	0.013320				
22 c	0.446098				
30	-0.111202				
32 c	-0.116581				
40	-0.395115				
42 c	0.449626				
44 c	0.017959				
H 1		H 2			
t	$Q_{t}^{H 1}$	t	$Q_{t}^{H 2}$		
00	0.413222	00	0.413227		
10	0.016268	10	0.016266		
11 c	-0.022715	11 c	-0.022713		
20	0.026170	20	0.026166		
21 c	-0.012333	21 c	-0.012333		
22 c	0.023062	22 c	0.023061		
30	0.022590	30	0.022592		
31 c	0.009128	31 c	0.009123		
32 c	-0.000725	32 c	-0.000723		
33 c	-0.001680	33 c	-0.001680		
40	-0.047819	40	-0.047805		
41 c	0.039014	41 c	0.039005		
42 c	-0.027919	42 c	-0.027914		
43 c	-0.000806	43 c	-0.000803		
44 c	0.005395	44 c	0.005393		

Table 13: $\alpha_{t u}^{O O}$ for the ISA-Pol L3pol model. Terms are expressed in the local-axis frame. Units are atomic units.

t, u	$\alpha_{t u}^{O O}$	t, u	$\alpha_{t u}^{O O}$
10,10	6.938561067132	$21 \mathrm{~s}, 31 \mathrm{~s}$	-5.695850943476
10,20	0.283014503203	$21 \mathrm{~s}, 33 \mathrm{~s}$	-5.544559210436
$10,22 \mathrm{c}$	1.297065784153	$22 \mathrm{c}, 22 \mathrm{c}$	31.003555795636
10,30	-1.924692628858	$22 \mathrm{c}, 30$	-2.134821966453
$10,32 \mathrm{c}$	-5.065926516432	$22 \mathrm{c}, 32 \mathrm{c}$	6.387970997851
$11 \mathrm{c}, 11 \mathrm{c}$	6.758614571817	$22 \mathrm{~s}, 22 \mathrm{~s}$	28.975306251152
$11 \mathrm{c}, 21 \mathrm{c}$	2.609015559476	$22 \mathrm{~s}, 32 \mathrm{~s}$	-5.423168252926
$11 \mathrm{c}, 31 \mathrm{c}$	5.869123330783	30,30	197.513252679545
$11 \mathrm{c}, 33 \mathrm{c}$	-6.605301843408	$30,31 \mathrm{c}$	-0.013502436204
$11 \mathrm{~s}, 11 \mathrm{~s}$	7.522295544935	$30,21 \mathrm{c}$	39.341637391107
$11 \mathrm{~s}, 21 \mathrm{~s}$	0.534498269999	$30,33 \mathrm{c}$	-0.016042300561
$11 \mathrm{~s}, 31 \mathrm{~s}$	-3.263639064343	$31 \mathrm{c}, 31 \mathrm{c}$	196.876749295609
$11 \mathrm{~s}, 33 \mathrm{~s}$	-9.492140869903	$31 \mathrm{c}, 32 \mathrm{c}$	0.025580817673
20,20	27.634920511971	$31 \mathrm{c}, 33 \mathrm{c}$	22.885787318830
$20,22 \mathrm{~s}$	6.178197154040	$31 \mathrm{~s}, 31 \mathrm{~s}$	194.533538449987
20,30	-1.850509303928	$31 \mathrm{~s}, 33 \mathrm{~s}$	32.298750884673
$20,32 \mathrm{c}$	-1.859913227916	$32 \mathrm{c}, 32 \mathrm{c}$	237.101696439329
$21 \mathrm{c}, 21 \mathrm{c}$	27.989582837200	$32 \mathrm{c}, 33 \mathrm{c}$	0.025727884497
$21 \mathrm{c}, 31 \mathrm{c}$	3.459918679126	$32 \mathrm{~s}, 32 \mathrm{~s}$	235.740220888427
$21 \mathrm{c}, 33 \mathrm{c}$	5.231198193522	$33 \mathrm{c}, 33 \mathrm{c}$	258.178588469019
$21 \mathrm{~s}, 21 \mathrm{~s}$	33.110619559210	$33 \mathrm{~s}, 33 \mathrm{~s}$	202.634991496274

Table 14: $\alpha_{t u}^{H H}$ for the ISA-Pol L3pol model. Terms are expressed in the local-axis frame. Units are atomic units.

t, u	$\alpha_{t u}^{H H}$	t, u	$\alpha_{t u}^{H H}$
10,10	2.133530241229	$21 \mathrm{c}, 30$	0.491372594083
$10,11 \mathrm{c}$	0.014806076479	$21 \mathrm{c}, 31 \mathrm{c}$	3.244889231824
$10,21 \mathrm{c}$	-1.962195867167	$21 \mathrm{c}, 32 \mathrm{c}$	-0.164192398715
$10,21 \mathrm{~s}$	0.558394807976	$21 \mathrm{c}, 33 \mathrm{c}$	0.502961820740
$10,22 \mathrm{c}$	-0.139007994819	$21 \mathrm{~s}, 21 \mathrm{~s}$	0.862161214828
10,30	2.624600448864	$21 \mathrm{~s}, 22 \mathrm{~s}$	0.067763055234
$10,31 \mathrm{c}$	-0.387671591787	$21 \mathrm{~s}, 31 \mathrm{~s}$	4.658283502883
$10,32 \mathrm{c}$	-0.285952156735	$21 \mathrm{~s}, 32 \mathrm{~s}$	-0.299828269759
$10,33 \mathrm{c}$	-0.039088323730	$21 \mathrm{~s}, 33 \mathrm{~s}$	0.123635495859
$11 \mathrm{c}, 10$	0.014806076479	$22 \mathrm{c}, 22 \mathrm{c}$	2.258497604970
$11 \mathrm{c}, 11 \mathrm{c}$	0.768893987100	$22 \mathrm{c}, 30$	-0.014559136681
$11 \mathrm{c}, 20$	-0.060959104003	$22 \mathrm{c}, 31 \mathrm{c}$	0.073289640942
$11 \mathrm{c}, 21 \mathrm{c}$	0.204839449553	$22 \mathrm{c}, 32 \mathrm{c}$	1.932260882992
$11 \mathrm{c}, 22 \mathrm{c}$	0.146065219982	$22 \mathrm{c}, 33 \mathrm{c}$	0.846069547066
$11 \mathrm{c}, 30$	-0.084814571913	$22 \mathrm{~s}, 22 \mathrm{~s}$	2.358486780599
$11 \mathrm{c}, 31 \mathrm{c}$	0.025623412166	$22 \mathrm{~s}, 31 \mathrm{~s}$	-0.083428643181
$11 \mathrm{c}, 32 \mathrm{c}$	0.374664191337	$22 \mathrm{~s}, 32 \mathrm{~s}$	2.019910136457
$11 \mathrm{c}, 33 \mathrm{c}$	-0.399931921642	$22 \mathrm{~s}, 33 \mathrm{~s}$	0.526987026651
$11 \mathrm{~s}, 11 \mathrm{~s}$	0.787159280680	30,30	-2.732173577046
$11 \mathrm{~s}, 21 \mathrm{~s}$	0.553458688663	$30,31 \mathrm{c}$	-0.976616012299
$11 \mathrm{~s}, 22 \mathrm{~s}$	0.183476194197	$30,32 \mathrm{c}$	5.916676794459
$11 \mathrm{~s}, 31 \mathrm{~s}$	-0.581574706631	$30,33 \mathrm{c}$	2.459537631952
$11 \mathrm{~s}, 32 \mathrm{~s}$	0.335756030493	$31 \mathrm{c}, 31 \mathrm{c}$	11.389988339701
$11 \mathrm{~s}, 33 \mathrm{~s}$	-0.332939366208	$31 \mathrm{c}, 32 \mathrm{c}$	4.464304862624
20,20	4.693088404029	$31 \mathrm{c}, 33 \mathrm{c}$	4.569874943117
$20,21 \mathrm{c}$	-0.677855615155	$31 \mathrm{~s}, 31 \mathrm{~s}$	13.964067932662
$20,22 \mathrm{c}$	0.725066406875	$31 \mathrm{~s}, 32 \mathrm{~s}$	3.094566951749
20,30	1.210062157884	$31 \mathrm{~s}, 33 \mathrm{~s}$	-0.301357361307
$20,31 \mathrm{c}$	1.041758490711	$32 \mathrm{c}, 32 \mathrm{c}$	0.281721397105
$20,32 \mathrm{c}$	0.105983816308	$32 \mathrm{c}, 33 \mathrm{c}$	-2.903496260436
$20,33 \mathrm{c}$	0.018679739312	$32 \mathrm{~s}, 32 \mathrm{~s}$	-4.032641998208
$21 \mathrm{c}, 21 \mathrm{c}$	1.423976650100	$32 \mathrm{~s}, 33 \mathrm{~s}$	0.783324615248
$21 \mathrm{c}, 22 \mathrm{c}$	0.121006332199	$33 \mathrm{~s}, 33 \mathrm{~s}$	11.308337868268

Table 15: $\alpha_{t u}^{O O}$ for the ISA-Pol L2pol model. Terms are expressed in the local-axis frame. Units are atomic units.

t, u	$\alpha_{t u}^{O O}$
10,10	6.978439619408
10,20	0.298266643849
$10,22 \mathrm{c}$	1.284142535503
$11 \mathrm{c}, 11 \mathrm{c}$	6.923882571524
$11 \mathrm{c}, 21 \mathrm{c}$	2.590522565151
$11 \mathrm{~s}, 11 \mathrm{~s}$	7.712578185325
$11 \mathrm{~s}, 21 \mathrm{~s}$	0.590880476972
20,20	27.998687464761
$20,22 \mathrm{c}$	6.115649837756
$21 \mathrm{c}, 21 \mathrm{c}$	27.431664736301
$21 \mathrm{~s}, 21 \mathrm{~s}$	33.400963369514
$22 \mathrm{c}, 22 \mathrm{c}$	31.418111682887
$22 \mathrm{~s}, 22 \mathrm{~s}$	30.005436201383

Table 16: $\alpha_{t u}^{H H}$ for the ISA-Pol L2pol model. Terms are expressed in the local-axis frame. Units are atomic units.

t, u	$\alpha_{t u}^{H H}$	t, u	$\alpha_{t u}^{H H}$
10,10	2.080105897425	$11 \mathrm{~s}, 22 \mathrm{~s}$	0.302067978718
$10,11 \mathrm{c}$	0.053116146435	20,20	4.814477514669
10,20	-1.854642739739	$20,21 \mathrm{c}$	-0.684744785441
$10,21 \mathrm{c}$	0.655677997532	$20,22 \mathrm{c}$	0.730912286810
$10,22 \mathrm{c}$	-0.203666996438	$21 \mathrm{c}, 21 \mathrm{c}$	1.438600109316
$11 \mathrm{c}, 11 \mathrm{c}$	0.712203468085	$21 \mathrm{c}, 22 \mathrm{c}$	0.121807515267
$11 \mathrm{c}, 20$	-0.123521050531	$21,21 \mathrm{~s}$	0.870977300150
$11 \mathrm{c}, 21 \mathrm{c}$	0.16637245640	$21 \mathrm{~s}, 22 \mathrm{~s}$	0.064467545108
$11 \mathrm{c}, 22 \mathrm{c}$	0.159427069532	$22 \mathrm{c}, 22 \mathrm{c}$	2.257351971348
$11 \mathrm{~s}, 11 \mathrm{~s}$	0.699536201785	$22 \mathrm{~s}, 22 \mathrm{~s}$	2.378902651023
$11 \mathrm{~s}, 21 \mathrm{~s}$	0.443538935284		

Table 17: $\alpha_{t u}^{O O}$ for the ISA-Pol L1pol model. Terms are expressed in the local-axis frame. Units are atomic units.

t, u	$\alpha_{t u}^{O O}$
10,10	6.636912518476
$11 \mathrm{c}, 11 \mathrm{c}$	6.397939492453
$11 \mathrm{~s}, 11 \mathrm{~s}$	6.746166610856

Table 18: $\alpha_{t u}^{H H}$ for the ISA-Pol L1pol model. Terms are expressed in the local-axis frame. Units are atomic units.

t, u	$\alpha_{t u}^{H H}$
10,10	2.221233947114
$10,11 \mathrm{c}$	-0.013585535815
$11 \mathrm{c}, 11 \mathrm{c}$	1.021508106671
$11 \mathrm{~s}, 11 \mathrm{~s}$	1.188309162710

2 Plots for the two-body interaction

Figure 1: The total interaction energy along the profile of the dimer global minimum for all DIFF models.

Figure 2: Scatter plot of total interaction energy for all DIFF models V versus SAPT(DFT) total interaction energy E.

2.1 Second virial coefficient

The second virial coefficient $B(T)$ is calculated using

$$
\begin{equation*}
B(T)=-\frac{1}{2} \iint\left(e^{E_{\text {int }} / k T}-1\right) d \Omega d r^{3}+\frac{\hbar^{2}}{24(k T)^{3}}\left(\frac{\left\langle\mathbf{F}^{2}\right\rangle_{0}}{M}+\sum_{\alpha} \frac{\left\langle\mathbf{T}_{\alpha}{ }^{2}\right\rangle_{0}}{I_{\alpha \alpha}}\right) \tag{21}
\end{equation*}
$$

where the first term above is the classical result $B(T)_{\mathrm{C} 1}$ from integrating the Mayer function (the integration here is over separations and orientations) and the second term gives the quantum correction. Here $\left\langle\mathbf{F}^{2}\right\rangle_{0}$ and $\left\langle\mathbf{T}_{\alpha}{ }^{2}\right\rangle_{0}$ are the mean square force and components of mean square torque on the molecule respectively and $I_{\alpha \alpha}$ are the molecule's moments of inertia.

Figure 3: Second virial coefficient for water for all L3 models and for the $x=1.0 \mathrm{~L} 2$ and L 1 models plotted against temperature. Experimental data taken from Mas et al. (2000). ${ }^{10}$

3 Water cluster structures

Sources for the water cluster structures:

- $\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$: Two sets were used. One from Liu et al. ${ }^{11}$ and the 600 trimer set from Akin-Ojo and Szalewicz. ${ }^{12}$
- $\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$: These structures were taken from Bates \& Tschumper. ${ }^{13}$
- $\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}$: These were from Yoo and Xantheas ${ }^{14}$ and are also provided by Góra et al. ${ }^{15}$ in their SI. Note that for the boat-a structure given in these references the O and H sites are not ordered. The structure with the correct ordering is provided below.
- $\left(\mathrm{H}_{2} \mathrm{O}\right)_{24}$: As for $\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}$.

$3.1 \quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}$ boat-a isomer

This is the structure with the atoms ordered according to the water molecule they belong to:

48
boat-a: MP2/aug-cc-pVTZ (opt) E = -1221.536142 a.u.
$0 \quad 0.12742587 \quad 1.14684972-1.58027855$
H $-0.717258041 .53849679-1.87225414$
H $-0.00427839 \quad 0.17400371-1.58650759$
$0 \quad 4.23247769-0.26271901-1.24153281$
H $4.97071820-0.25118561-1.85737926$
H $3.72092881 \quad 0.57286259-1.40972697$
$0-2.42866591 \quad 2.23165734-1.85770461$
H $-2.685728753 .03888825-2.31286191$
H -2.49329627 2.42735616 -0.88330238
$0-4.23429048 \quad 0.26350591 \quad 1.23919725$
H -3.72176515 -0.57149271 1.40711309

H $-4.97199711 \quad 0.25127986 \quad 1.85568760$
$\begin{array}{llll}0 & 2.76159464 & 2.38202662 & 1.41229013\end{array}$
$\begin{array}{llll}\text { H } & 3.27367235 & 1.54634517 & 1.57145967\end{array}$
$\begin{array}{llll}\text { H } & 3.16989060 & 3.05563656 & 1.96351943\end{array}$
$0 \quad 2.52685413-2.46453621-0.77925849$
H 1.63876110 -2.24899979 -1.11640748
H 3.10657890 -1.74710268 -1.09353796
$0-2.52476503 \quad 2.46384789 \quad 0.77992184$
$\begin{array}{llll}\mathrm{H} & -1.63736906 & 2.24746385 & 1.11841417\end{array}$
H -3.105858321 .747263591 .09349706
$0-2.76186721-2.38048819-1.41506704$
H -3.27465488 -1.54522054 -1.57436672
H -3.16870741 -3.05438894 -1.96703452
O -2.79264028 -1.95698424 1.44172471
H -1.85687894 -1.75682833 1.63115432
H -2.78903010 -2.31202936 0.53726329
$\begin{array}{llll}0 & 4.08043374 & 0.07727714 & 1.57432064\end{array}$
H $3.56805875-0.707564351 .83742253$
H $4.32624834-0.10262958 \quad 0.64945285$
$0-0.11657254-1.55258996-1.14833997$
H $-0.97416083-1.94951222-1.39379643$
H $-0.16336722-1.46208551-0.17107250$
$0 \quad 2.79243517 \quad 1.95862738$-1.44410922
H 1.85680583 1.75649358 -1.63217101
H $2.78916008 \quad 2.31417338-0.53981244$
$0-4.08049979-0.07673860-1.57722005$
H -3.56777805 $0.70839215-1.83878183$

H	-4.32866081	0.10305124	-0.65302683
0	-0.12623544	-1.14911860	1.58450896
H	0.71887096	-1.54099591	1.87520218
H	0.00519896	-0.17621894	1.59153759
O	2.43054159	-2.23102984	1.85838070
H	2.49447002	-2.42706168	0.88398964
H	2.68572680	-3.03885326	2.31351095
O	0.11727910	1.55092462	1.15243575
H	0.97484648	1.94864826	1.39674109
H	0.16355228	1.45911335	0.17525371

4 Hexamer data

Table 19: Water hexamer isomer intermolecular energies and many-body decomposition. Reference $\operatorname{CCSD}(\mathrm{T})$-F12 and MB-pol model energies are from Medders et al.. ${ }^{16}$ The columns $n \mathrm{~B}$ show the n-body non-additive interaction energies, and the total interaction energy is given in column " $2 \mathrm{~B}-6 \mathrm{~B}$ ". The sum of the terms of 3 B to 6 B is given in column " $>2 \mathrm{~B}$ ". All energies are in $\mathrm{kJ} \mathrm{mol}^{-1}$.

Model	2B-6B	2B	3B	4B	5B	6B	$>2 \mathrm{~B}$
Prism							
CCSD(T)-F12	-200.957	-161.711	-36.735	-2.761	0.251	0.000	-39.245
MB-pol	-201.543	-163.008	-36.568	-2.175	0.209	0.000	-38.534
DIFF-L3pol	-202.522	-158.044	-40.359	-4.429	0.299	0.012	-44.478
DIFF-L2pol	-201.371	-158.025	-39.561	-4.154	0.357	0.012	-43.345
DIFF-L1pol	-201.491	-158.930	-38.532	-4.227	0.188	0.010	-42.560

Table 20: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	$>2 \mathrm{~B}$
Cage							
CCSD(T)-F12	-199.869	-159.828	-37.823	-2.217	0.041	0.000	-39.999
MB-pol	-200.204	-161.000	-37.363	-1.966	0.125	0.000	-39.204
DIFF-L3pol	-199.435	-154.967	-40.915	-3.686	0.160	-0.025	-44.467
DIFF-L2pol	-197.694	-154.743	-39.758	-3.356	0.188	-0.024	-42.951
DIFF-L1pol	-198.644	-156.088	-39.077	-3.528	0.072	-0.021	-42.555

Table 21: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	>2 B
Book-1							
CCSD(T)-F12	-198.070	-149.619	-43.764	-4.518	-0.167	0.000	-48.450
MB-pol	-196.648	-149.787	-42.927	-3.849	-0.041	0.000	-46.818
DIFF-L3pol	-197.651	-146.005	-44.903	-6.337	-0.355	-0.049	-51.645
DIFF-L2pol	-196.382	-145.936	-44.022	-6.068	-0.308	-0.044	-50.445
DIFF-L1pol	-198.735	-147.359	-44.480	-6.434	-0.409	-0.051	-51.376

Table 22: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	>2 B
Book-2							
CCSD(T)-F12	-196.899	-150.038	-42.593	-4.184	-0.083	0.000	-46.860
MB-pol	-195.853	-150.331	-41.965	-3.556	0.000	0.000	-45.521
DIFF-L3pol	-196.080	-145.769	-43.950	-6.043	-0.277	-0.039	-50.310
DIFF-L2pol	-194.686	-145.725	-42.989	-5.715	-0.221	-0.034	-48.961
DIFF-L1pol	-196.131	-147.212	-42.741	-5.860	-0.280	-0.036	-48.919

Table 23: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	$>2 \mathrm{~B}$
Bag							
CCSD(T)-F12	-195.016	-146.481	-43.639	-4.853	-0.083	0.041	-48.576
MB-pol	-193.719	-147.444	-42.467	-3.765	-0.041	0.000	-46.275
DIFF-L3pol	-195.552	-143.327	-44.970	-6.769	-0.531	0.047	-52.224
DIFF-L2pol	-193.862	-143.275	-43.878	-6.313	-0.441	0.047	-50.586
DIFF-L1pol	-195.347	-144.690	-43.828	-6.393	-0.481	0.044	-50.657

Table 24: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	$>$ 2B
Ring							
CCSD(T)-F12	-193.593	-135.645	-49.664	-7.447	-0.794	-0.041	-57.906
MB-pol	-190.915	-135.728	-48.701	-6.066	-0.418	0.000	-55.186
DIFF-L3pol	-192.801	-134.565	-47.909	-8.854	-1.340	-0.131	-58.236
DIFF-L2pol	-192.230	-134.785	-47.508	-8.563	-1.255	-0.118	-57.445
DIFF-L1pol	-197.511	-136.184	-49.872	-9.725	-1.557	-0.171	-61.327

Table 25: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	$>2 \mathrm{~B}$
Cyclic-boat-1							
CCSD(T)-F12	-189.367	-133.971	-47.864	-6.819	-0.669	-0.041	-55.354
MB-pol	-187.275	-133.971	-47.279	-5.648	-0.376	0.000	-53.304
DIFF-L3pol	-187.391	-131.902	-46.071	-8.154	-1.149	-0.112	-55.488
DIFF-L2pol	-187.222	-132.176	-45.916	-7.938	-1.087	-0.102	-55.046
DIFF-L1pol	-191.391	-133.581	-47.585	-8.783	-1.301	-0.139	-57.809

Table 26: Water hexamer isomer intermolecular energies and many-body decomposition. See the caption to Table 19 for an explanation of the columns.

Model	2B-6B	2B	3B	4B	5B	6B	$>2 \mathrm{~B}$
Cyclic-boat-2							
CCSD(T)-F12	-188.949	-133.720	-47.823	-6.736	-0.669	-0.041	-55.228
MB-pol	-187.275	-133.971	-47.237	-5.648	-0.376	0.000	-53.262
DIFF-L3pol	-187.961	-132.491	-46.165	-8.050	-1.141	-0.112	-55.469
DIFF-L2pol	-187.691	-132.736	-45.895	-7.865	-1.089	-0.103	-54.954
DIFF-L1pol	-192.553	-134.151	-48.133	-8.805	-1.320	-0.141	-58.401

5 Energies for 16-mers and 24-mers

Table 27: Decomposition of many-body energies up to four-body contributions, for each model using DIFF (i.e. $x=1$) damping compared with the SAMBA energies from Góra et al.. ${ }^{15}$ The final column gives the 3B non-additive energies where the molecular properties have been replaced by those from the water monomer in a conformation optimized using $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ using the Psi4 program.

Model	2B	3B	4B	5B	>5B	>4B	2B-4B	3B(opt.geom.)
4444-a								
SAMBA	-572.898	-135.662	-3.837	-	-	-	-712.397	-
DIFF-L3pol	-547.526	-155.976	-9.685	3.364	-0.245	3.119	-713.187	-151.447
DIFF-L2pol	-546.715	-148.381	-8.565	3.175	-0.301	2.875	-703.661	-144.902
DIFF-L1pol	-550.645	-157.518	-14.594	1.521	-0.320	1.201	-722.757	-153.392
4444-b								
SAMBA	-566.288	-141.013	-3.933	-	-	-	-711.234	-
DIFF-L3pol	-541.546	-160.606	-11.721	2.586	-0.161	2.424	-713.873	-155.949
DIFF-L2pol	-540.797	-152.345	-9.809	2.756	-0.159	2.596	-702.951	-148.789
DIFF-L1pol	-545.097	-162.315	-15.100	1.199	-0.181	1.018	-722.512	-158.058
boat-a								
SAMBA	-	-	-	-	-	-	-	-
DIFF-L3pol	-531.955	-167.257	-17.023	1.523	0.097	1.620	-716.235	-162.406
DIFF-L2pol	-531.351	-159.495	-15.345	1.670	0.077	1.746	-706.191	-155.735
DIFF-L1pol	-536.249	-166.501	-18.932	0.478	0.03	0.508	-721.682	-162.093
boat-b								
SAMBA	-556.493	-152.206	-8.481	-	-	-	-717.18	-
DIFF-L3pol	-530.607	-168.049	-17.790	1.220	0.164	1.384	-716.446	-163.180
DIFF-L2pol	-530.093	-160.155	-15.766	1.528	0.16	1.688	-706.014	-156.384
DIFF-L1pol	-535.048	-167.883	-18.851	0.561	0.179	0.740	-721.782	-163.425
anti-boat								
SAMBA	-553.288	-150.498	-11.979	-	-	-	-715.765	-
DIFF-L3pol	-530.969	-166.678	-18.956	1.207	0.288	1.495	-716.603	-161.912
DIFF-L2pol	-530.696	-159.556	-17.364	1.292	0.204	1.496	-707.616	-155.802
DIFF-L1pol	-534.791	-170.783	-23.615	-0.677	0.039	-0.638	-729.189	-166.228

Table 28: Decomposition of interaction energies for two variants of the $\left(\mathrm{H}_{2} \mathrm{O}\right)_{24}$ tetradecahedron isomers and the differences between them, using the DIFF models. We also present the CCpol23+, CC-pol-8s+NB and reference SAMBA results from Góra et al. ${ }^{15}$ In the DIFF-L3pol(opt) rows we present energies obtained using the DIFF-L3pol models with molecular properties (multipoles and polarizabilities) replaced with those from the water monomer in a conformation optimized using $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ using the Psi4 program.

Model	2B	3B	4B	5B	>5 B	2B-4B	$2 \mathrm{~B}-\infty$ B
ISOMER 316							
SAMBA	-801.370	-246.864	-29.292			-1077.526	
DIFF-L3pol	-769.749	-257.040	-43.971	-2.921	0.628	-1070.760	-1073.053
DIFF-L3pol(opt)		-249.883	-42.548	-2.809			
DIFF-L2pol	-769.741	-244.892	-39.843	-1.996	0.676	-1054.476	-1055.796
DIFF-L1pol	-778.151	-259.324	-45.453	-3.629	0.528	-1082.927	-1086.028
CC-pol-8s-NB	-769.254	-191.104	-27.882	-1.460	0.360	-988.240	
CCpol23+	-769.387	-214.434	-27.188	-1.339	0.314	-1011.009	
ISOMER 308							
SAMBA	-808.048	-241.798	-28.305			-1078.151	
DIFF-L3pol	-772.943	-255.382	-43.003	-2.473	0.728	-1071.328	-1073.074
DIFF-L3pol(opt)		-248.242	-41.597	-2.361			
DIFF-L2pol	-772.855	-243.089	-38.998	-1.667	0.707	-1054.941	-1055.902
DIFF-L1pol	-781.169	-255.401	-45.545	-3.772	0.439	-1082.115	-1085.448
CCpol-8s-NB	-773.203	-185.623	-30.882	-2.556	0.079	-989.708	
CCpol23+	-773.576	-210.497	-28.125	-1.929	0.126	-1012.197	
Difference: 316-308							
SAMBA	6.678	-5.067	-0.987			0.625	
DIFF-L3pol	3.194	-1.658	-0.968	-0.448	-0.100	0.568	0.021
DIFF-L3pol(opt)		-1.641	-0.951	-0.448		0.463	
DIFF-L2pol	3.114	-1.803	-0.845	-0.329	-0.031	0.465	0.106
DIFF-L1pol	3.018	-3.923	0.092	0.143	0.089	-0.812	-0.580
CCpol-8s-NB	3.954	-5.481	2.996	1.092	0.280	1.469	
CCpol23+	4.188	-3.941	0.937	0.590	0.188	1.188	

References

(1) Misquitta, A. J.; Stone, A. J. Ab Initio Atom-Atom Potentials Using CamCASP: Theory and Application to Many-Body Models for the Pyridine Dimer. J. Chem. Theory Comput. 2016, 12, 4184-4208, PMID: 27467814.
(2) Van Vleet, M. J.; Misquitta, A. J.; Stone, A. J.; Schmidt, J. R. Beyond Born-Mayer: Improved Models for Short-Range Repulsion in Ab Initio Force Fields. J. Chem. Theory Comput. 2016, 12, 3851-3870.
(3) Van Vleet, M. J.; Misquitta, A. J.; Schmidt, J. R. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy. J. Chem. Theory Comput. 2018, 14, 739-758.
(4) Stone, A. J. The Theory of Intermolecular Forces, 2nd ed.; Oxford University Press, Oxford, 2013.
(5) Tang, K. T.; Toennies, J. P. An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients. J. Chem. Phys. 1984, 80, 3726-3741.
(6) Misquitta, A. J.; Stone, A. J. Accurate induction energies for small organic molecules: I. Theory. J. Chem. Theory Comput. 2008, 4, 7-18.
(7) Misquitta, A. J.; Stone, A. J.; Price, S. L. Accurate induction energies for small organic molecules: II. Models and Numerical details. J. Chem. Theory Comput. 2008, 4, 19-32.
(8) Tang, K. T.; Toennies, J. P. The damping function of the van der Waals attraction in the potential between rare gas atoms and metal surfaces. Surf. Sci. Lett. 1992, 279, 203-206.
(9) Stone, A. J.; Dullweber, A.; Engkvist, O.; Fraschini, E.; Hodges, M. P.; Meredith, A. W.; Nutt, D. R.; Popelier, P. L. A.; Wales, D. J. ORIENT: a program for studying interactions
between molecules, version 5.0. University of Cambridge, 2019; http://www-stone.ch. cam.ac.uk/programs.html
\#Orient, Accessed: Aug 2019.
(10) Mas, E. M.; Bukowski, R.; Szalewicz, K.; Groenenboom, G. C.; Wormer, P. E. S.; van der Avoird, A. Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients. J. Chem. Phys. 2000, 113, 6687-6701.
(11) Liu, C.; Qi, R.; Wang, Q.; Piquemal, J.-P.; Ren, P. Capturing many-body interactions with classical dipole induction models. J. Chem. Theory Comput. 2017, 13, 2751-2761.
(12) Akin-Ojo, O.; Szalewicz, K. How Well Can Polarization Models of Pairwise Nonadditive Forces Describe Liquid Water? J. Chem. Phys. 2013, 138, 024316.
(13) Bates, D. M.; Tschumper, G. S. CCSD (T) complete basis set limit relative energies for lowlying water hexamer structures. J. Phys. Chem. A 2009, 113, 3555-3559.
(14) Yoo, S.; Xantheas, S. S. Structures, energetics, and spectroscopic fingerprints of water clusters $\mathrm{n}=2$-24. Handbook of Computational Chemistry 2017, 1139-1173.
(15) Góra, U.; Cencek, W.; Podeszwa, R.; van der Avoird, A.; Szalewicz, K. Predictions for Water Clusters from a First-Principles Two- and Three-Body Force Field. J. Chem. Phys. 2014, 140, 194101.
(16) Medders, G. R.; Götz, A. W.; Morales, M. A.; Bajaj, P.; Paesani, F. On the Representation of Many-Body Interactions in Water. J. Chem. Phys. 2015, 143, 104102.

