Supporting Information

Enhancing bi-functional catalytic activity via a nanostructured La(Sr)Fe(Co)O_{3-δ} @Pd matrix as an efficient electrocatalyst for Li-O₂ batteries

Mi Young Oh^{a,†}, Jung Hyun Kim^{a,†}, Young Wook Lee^a, Kyeong Joon Kim^b, Hong Rim Shin^b, Hyeokjun Park^c, Kang Taek Lee^{b,*}, Kisuk Kang^{c,*} and Tae Ho Shin^{a,*}

^a Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju-si Gyeongsangnam-do 52851, Republic of Korea. (Present: New & Renewable Energy Division, Jeonbuk Technopark, Jeollabuk-do 55316, Republic of Korea)

^b Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea

^c Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

*Corresponding author: *E-mail address:* ths@kicet.re.kr(Tae Ho Shin), ktlee@dgist.ac.kr (Kang Taek Lee), matlgen1@snu.ac.kr (Kisuk Kang)

[†]These authors contributed equally to this work.

Contents:

1.	Supplemental experiment results: Table S1	S2
2.	Supplemental experiment results: Figure S1	S4
3.	Supplemental experiment results: Figure S2	S5
4.	Supplemental experiment results: Figure S1	S6

	ORR			OER		Oxygen electrode		
Sample	Half-wave potential (V)	Limiting Current (mA/cm ²)	Tafel slope (mA/dec)	Potential (V) at 10mA/cm ²	Tafel slope (mA/dec)	$\Delta \mathbf{E} (\mathbf{V})$ $(\mathbf{E}_{OER} - \mathbf{E}_{ORR})$	Reference	
PBSC@Ni ₃ S ₂ NFs	0.77	5.65	-	1.60	78	0.83	[1]	
H ₂ -CMNO	0.66	5.9	80	1.78	98	1.12	[2]	
LSCM-60	0.686	-	90	1.736	113	1.05	[3]	
$LaMn_{0.7}Co_{0.3}O_3$	0.73	-	110	1.82	151	1.09	[4]	
LSM60	0.714	-	96	1.817*	234	1.010*	[5]	
LFP-5	0.66	6.41	-	1.69	-		[6]	
SSC-HG	0.80		76	1.63	115	0.83	[7]	
$LaNi_{0.85}Mg_{0.15}O_{3} \\$	0.69	-	105	1.68	95	0.99	[8]	
Ag/LMO-NR/RGO	0.6906	5.08	-	-	-	1.06	[9]	
Nano-LSCF@Pd	0.780	5.417	81	1.716	146	0.936	This Work	

Table S1. ORR and OER activity of other perovskites

- Zhang, Z.; Tan, K.; Gong, Y.; Wang, H.; Wang, R.; Zhao, L.; He, B. An integrated bifunctional catalyst of metal-sulfide/perovskite oxide for lithium-oxygen batteries. *J. Power Sources.* 2019, 437, 226908.
- [2] Lyu, Y. Q.; Ciucci, F. Activating the Bifunctionality of a Perovskite Oxide toward Oxygen Reduction and Oxygen Evolution Reactions. ACS Appl. Mater. Interfaces.
 2017, 9, 35829-35836
- [3] Wang, Q.; Xue, Y.; Sun, S.; Li, S.; Miao, H.; Liu, Z. La0.8Sr0.2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. *Electrochim Acta*. 2017, 254, 14-24.
- [4] Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U.; Lee, J. H. Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. ACS Nano. 2017, 11, (1), 347–357.

- [5] Yan, S.; Xue, Y.; Li, S.; Shao, G.; Liu, Z. Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Appl. Mater. Interfaces. 2019, 11, (29), 25870-25881
- [6] Li, Z.; Lv, L.; Wang, J.; Ao, X.; Ruan, Y.; Zha, D.; Hong, G.; Wu, Q.; Lan, Y.; Wang, C.; Jiang, J.; Liu, M. Engineering phosphorus-doped LaFeO3-δperovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. *Nano Energy*. 2018, 47, 199-209.
- [7] Bu, Y.; Nam, G.; Kim, S.; Choi, K.; Zhong, Q.; Lee, J.; Qin, Y.; Cho, J.; Kim, G. A Tailored Bifunctional Electrocatalyst: Boosting Oxygen Reduction/Evolution Catalysis via Electron Transfer Between N-Doped Graphene and Perovskite Oxides. *Small.* 2018, 14, 1802767.
- [8] Bian, J.; Su, Rui.; Yao, Y.; Wang, J.; Zhou, J.; Li, F.; Wang, Z. L.; Sun, C. Mg Doped Perovskite LaNiO3 Nanofibers as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. ACS Appl. Energy Mater. 2019, 2, 923-931.
- [9] Hu, J.; Liu, Q.; Shi, L.; Shi, Z.; Huang, H. Silver decorated LaMnO3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes. *Appl Surf Sci.* 2017, 402, 61-69.

Figure S1. FE-SEM and TEM images of Nano-LSCF and FE-SEM corresponding elements (La, Sr, Fe, Co) mapping images of Nano-LSCF

$$i_k = \frac{i_L \times i_m}{i_L - i_m}$$
 i_k : kinetic current
 i_L : Limit current
 i_m : current potential for ORR

Specific Activity = i_k /Surface area of working Electrode **Mass catalytic Activity** = i_k / mass of catalyst **Intrinsic catalytic Activity** = i_k / surface area of catalyst

Figure S2. Equation of specific, mass and intrinsic catalytic activity.

Figure S3. (a) Overall LSV curves: potential difference (ΔE) between the ORR and the OER, (b) corresponding ΔE values, from the potential at 2.5 mA cm⁻² which approximates the half-wave potential for the ORR and at 10 mA cm⁻² which required to oxidize water for the OER.