Cytotoxic 20,22-Dihydrodigitoxigenin Glycosides and Other Constituents of Vallaris glabra Stems

Sudarat Kruakaew, Chonticha Seeka, Jantana Yahuafai, Pongpun Siripong, and Somyote

Sutthivaiyakit

Supporting Information

Structural Identification of 7-10

Compound 7 was isolated as an amorphous solid with molecular formulas of $\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{O}_{18}$ based on its HRESIMS data. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 exhibited resonances rather similar to those of $\mathbf{3}$, except that $\mathbf{7}$ possesses an acofriopyranosyl unit instead of a vallarosyl group, together with recognizable resonances of two glucopyranosyl units in 7 (Table S1, Supporting Information), respectively. On the basis of previous study ${ }^{2}$ and HMBC spectra of 7 showing cross-peaks between $\mathrm{H}-1^{\prime} / \mathrm{C}-3, \mathrm{H}-1^{\prime \prime} / \mathrm{C}-4^{\prime}$ and $\mathrm{H}-1^{\prime \prime \prime} / \mathrm{C}-6^{\prime \prime}$, compound 7 was 20,22-dihydrodigitoxigenin-3-O- β-D-glucopyranos yl- $(1 \rightarrow 6)$ - β-D-glucopyranosyl-($1 \rightarrow 4$)- α-Lacofriopyranoside.

Compound $\mathbf{8}$ was isolated as an amorphous solid exhibiting a molecular formula of $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{O}_{19}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed resonances similar to those of 7 (Table S1, Supporting Information), but with additional resonances of an acetyl group ($\delta_{\mathrm{H}} 2.10, \mathrm{~s}$) and a less-shielded $\mathrm{H}-2^{\prime}$ resonance at $\delta_{\mathrm{H}} 5.17$ (dd, $J=3.2$ and 1.8 Hz). Based on the 2-D NMR data, $\mathbf{8}$ was thus proposed as 20,22-dihydrodigitoxigenin-3- $O-\beta$ - D -glucopyranosyl-($1 \rightarrow 6$)- β - D -glucopyranos yl$(1 \rightarrow 4)-\alpha$-L-2'- O-acetylacofriopyranoside.

Compound 9 was obtained as an amorphous solid, its HRESIMS exhibited a $[\mathrm{M}+\mathrm{Na}]^{+}$ion at $m / z 897.4056$ (calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{19} \mathrm{Na}, 897.4077$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra showed rather complex sets of resonances, although the characteristic resonances of a gitoxigenin and vallarosyl groups could be recognized (Table S2, Supporting Information). Additional resonances, particularly of the two anomeric $\left[\delta_{\mathrm{H}} 4.39\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right.\right.$, and $\left.\delta_{\mathrm{C}} 102.5, \mathrm{C}-1^{\prime \prime}\right)$ and $\delta_{\mathrm{H}} 4.39\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime \prime}\right.$, and $\left.\delta_{\mathrm{C}} 105.0, \mathrm{C}-1^{\prime \prime \prime}\right)$] and two oxymethylene groups [$\delta_{\mathrm{H}} 4.14$ (dd, $J=11.8$ and 1.9 Hz), $\delta_{\mathrm{C}} 70.2, \mathrm{C}-6^{\prime \prime}$, and $\delta_{\mathrm{H}} 3.86(\mathrm{dd}, J=11.5$ and 1.8 Hz), and $3.66(\mathrm{dd}, J=$ 11.5 and 5.3 Hz) and $\left.\delta_{\mathrm{C}} 62.8, \mathrm{C}-6^{\prime \prime \prime}\right]$, indicated the presence of two glucosyl groups in 9 . The connectivities of $\mathrm{C}-3-O$ to $\mathrm{C}-1^{\prime}, \mathrm{C}-4^{\prime}-O$ to $\mathrm{C}-1^{\prime \prime}$ and $\mathrm{C}-6^{\prime \prime}-O$ to $\mathrm{C}-1^{\prime \prime \prime}$ were based on the HMBC cross-peaks between $\mathrm{H}-1^{\prime} / \mathrm{C}-3$; $\mathrm{H}-1^{\prime \prime} / \mathrm{C}-4^{\prime}$, and $\mathrm{H}-1^{\prime \prime \prime} / \mathrm{C}-6^{\prime \prime}$, respectively. On the basis of previous report which provided L-vallarose, L-acofriose and D-glucose after acid hydrolyses of oleandrigenin-3- $O-\alpha-\mathrm{L}-2^{\prime}-O$-acetylvallaropyranoside and oleandrigenin-3-O- β-D-glucopyranosyl- $(1 \rightarrow 4)-\alpha$-L-2'-O-acetylacofriopyranoside, ${ }^{2} 9$ was thus proposed as gitoxigenin-3O - β-D-glucopyranosyl- $(1 \rightarrow 6)$ - β-D-glucopyranosyl-($1 \rightarrow 4$)- α-L-vallaropyranoside.

Compound $\mathbf{1 0}$ was isolated as an amorphous colorless solid with same molecular mass as of $\mathbf{9}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra exhibited resonances similar to those of 9 (Table S2, Supporting Information), although the resonances for a vallarosyl moiety were replaced by those of an
acofriosyl group, showing an indicative resonance for $\mathrm{H}-5^{\prime}$ at somewhat higher-field than that of a vallarosyl group in $\mathbf{9}$. Based on its spectroscopic data and a previous study, $\mathbf{1 0}$ was therefore concluded to be gitoxigenin-3-O- β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl-($1 \rightarrow 4$)- α-Lacofriopyranoside.

Isolation of Compounds 7-16

EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were measured using an Electrothermal melting point apparatus and are uncorrected. Optical rotations were recorded on a JASCO DIP 1020 polarimeter. The IR spectra were obtained on a Perkin-Elmer 1760x FT-IR spectrophotometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker AVANCE III HD 400 MHz NMR spectrometer. Chemical shifts are referenced to the residual solvent signals (MeOH- $d_{4}: \delta_{\mathrm{H}} 3.30$ and $\delta_{\mathrm{C}} 49.0 \mathrm{ppm}$). HRESIMS were recorded on a Bruker DaltonicsmicroTOF mass spectrometer.

Plant Material. The plant investigated, Vallaris glabra, was obtained as previously reported. A voucher specimen (SSVG-1/2012) is maintained at the Department of Chemistry, Ramkhamhaeng University. ${ }^{2}$

Extraction and Isolation. Dried V. glabra stems (4.5 kg) were ground and extracted successively with hexanes (8 L), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~L})$ and $\mathrm{MeOH}(8 \mathrm{~L})$, respectively, using a Soxhlet extractor. The resultant hexanes $(70.0 \mathrm{~g}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(59.9 \mathrm{~g})$ and $\mathrm{MeOH}(95.2 \mathrm{~g})$ extracts were obtained after removal of solvent.

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract (59.9 g) was fractionated by column chromatography (CC , silica gel, hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2} 65: 35$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 85: 15\right)$ to obtain ten fractions. Fraction $3(3.65 \mathrm{~g})$ was fractionated by CC (Sephadex LH-20, MeOH) to give four subfractions (3.1-3.4). Subfraction $3.3(1.37 \mathrm{~g})$ was fractionated (CC, silica gel, hexanes-EtOAc 70-30) to give seven subfractions (3.3.1-3.3.7). Subfraction 3.3 .1 provided ursolic acid (30.8 mg) and subfraction 3.3 .2 provided 3,27-dihydroxyursolic acid (19.1 mg) after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. Subfraction 3.3.3 (134.0 mg) was purified using CC (silica gel, hexanes-EtOAc 70:30) to give three subfractions (3.3.3.1-3.3.3.3), and subfraction $3.3 .3 .2(42.4 \mathrm{mg})$ was further purified by CC (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 99: 1\right)$ to afford $\mathbf{1 5}(8.3 \mathrm{mg}), \mathbf{1 1}(4.2 \mathrm{mg})$ and $\mathbf{1 3}(13.8 \mathrm{mg})$. Subfraction 3.3 .5 (190.3 mg) was subjected to CC (silica gel, hexanes-EtOAc 70:30) to give $\mathbf{1 6}$ $(22.0 \mathrm{mg})$. Fraction $4(1.65 \mathrm{~g})$, after fractionation (CC, Sephadex $\mathrm{LH}-20, \mathrm{MeOH}$), provided three subfractions (4.1-4.3). Subfraction $4.2(703.6 \mathrm{mg})$ was further fractionated (Sephadex LH-20, MeOH , then CC , silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 98: 2\right)$ to give additional amount of $\mathbf{1 1}(10.9 \mathrm{mg})$ and $\mathbf{1 3}(3.8 \mathrm{mg})$, and also $\mathbf{1 4}(39.5 \mathrm{mg})$ and $\mathbf{1 2}(31.7 \mathrm{mg})$.

The MeOH extract (95.2 g) was fractionated by CC (Dianion HP-20, MeOH- $\mathrm{H}_{2} \mathrm{O}, 0: 100$ to $100: 0$) to obtain five fractions. The water-soluble fractions $1-3$, containing mostly sugars, were not investigated further. The less polar fraction $5(6.35 \mathrm{~g})$ was fractionated by reversed-phase CC (RP-18, MeOH-H2O 30:70 to 100:0) to obtain six subfractions (5.1-5.6). Subfraction 5.2 (820.3 mg) was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 88: 12$ to $85: 15$) and provided three subfractions (5.2.1-5.2.3). Subfraction $5.2 .2(79.2 \mathrm{mg})$ after reversed-phase CC (RP-18, MeOH$\mathrm{H}_{2} \mathrm{O} 40: 60$ to 100:0) furnished oleandrigenin-3-O- β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl- $(1 \rightarrow 4)$ - α-L-2'- O-acetylacofriopyranoside (48.3 mg) and $8(4.2 \mathrm{mg})$. Subfraction $5.4(1.29 \mathrm{~g})$ was fractionated by $\mathrm{CC}\left(\mathrm{RP}-18, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 10: 90\right.$ to $\left.100: 0\right)$ to give eight
subfractions (5.4.1-5.4.8). Oleandrigenin-3- O - β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl$(1 \rightarrow 4)-\alpha$-L-vallaropyranoside ${ }^{2}(38.1 \mathrm{mg})$ was obtained from subfraction 5.4 .3 .4 . Subfraction 5.4.5 (147.1 mg) was CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 88: 12$ to $86: 14$, then $\mathrm{RP}-18, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ 45:55 to 100:0) to give oleandrigenin-3- $O-\beta$-D-glucopyranosyl-($1 \rightarrow 4$)- α - $\mathrm{L}-O$-acofriopyranoside $(11.2 \mathrm{mg})$ and oleandrigenin-3- O - β-D-glucopyranosyl-($1 \rightarrow 4$)- α-L- O-vallaropyranoside $(2.3 \mathrm{mg})$. Subfraction $5.4 .6(243.5 \mathrm{mg})$ was purified by CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 88: 12$ to $86: 14$) to give five subfractions (5.4.6.1-5.4.6.5). Subfraction $5.4 .6 .5(33.9 \mathrm{mg})$ after further purification (CC, RP-18, MeOH- $\mathrm{H}_{2} \mathrm{O} 40: 60$ to $100: 0$) provided $7(4.7 \mathrm{mg})$. Subfraction $5.4 .8(270.5 \mathrm{mg})$ was subjected to CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 85: 15$ to $80: 20$) to give four subfractions (5.4.8.15.4.8.4). Subfraction $5.4 .8 .1(12.6 \mathrm{mg})$ afforded $3(2.9 \mathrm{mg})$ and $4(1.7 \mathrm{mg})$ after CC (RP-18, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 50: 50$ to $100: 0$). Subfraction 5.4 .8 .3 (29.0 mg) was further purified by CC (RP-18, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 55: 50$ to $100: 0$) to give additional quantity of $\mathbf{8}(6.3 \mathrm{mg})$. The polar fraction 4 (2.25 g) was fractionated using CC (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 88: 12$ to $84: 16$) to obtain eleven subfractions (4.1-4.11). Selection of compounds based on TLC identity led to 9 (5.3 mg) and $\mathbf{1 0}$ $(4.0 \mathrm{mg})$ being obtained from subfraction $4.11(45.2 \mathrm{mg})$ after reversed-phase CC (RP-18, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 40: 60$ to $100: 0$).

20,22-Dihydrodigitoxigenin-3-O- β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl-($1 \rightarrow 4$)- α-Lacofriopyranoside (7): $[\alpha]^{25}{ }_{\mathrm{D}}-42.3(c 0.23, \mathrm{MeOH})$; FT-IR (ATR) $v_{\max } 3366,2922,2873,2855$, 1746, 1450, 1379, 1234, 1199, 1105, 1068, 1045, 1016, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (MeOH- $d_{4}, 400$ MHz) and ${ }^{13} \mathrm{C}$ NMR (MeOH- $d_{4}, 100 \mathrm{MHz}$) data see Table S1, Supporting Information; HRESIMS $\mathrm{m} / \mathrm{z} 883.4315[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{68} \mathrm{NaO}_{18}, 883.4284$).

20,22-Dihydrodigitoxigenin-3-O- β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl-($1 \rightarrow 4$)- $\alpha-L$ -2^{\prime}-O-acetylacofriopyranoside (8): $[\alpha]^{25}-40.7$ (c 0.34, MeOH); FT-IR (ATR) $v_{\max } 3369$, 2928, 2884, 2865, 1732, 1723, 1447, 1376, 1236, 1214, 1122, 1094, 1067, 1038, 1019, $987 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (MeOH- $\left.d_{4}, 400 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR (MeOH- $d_{4}, 100 \mathrm{MHz}$) data see Table S 1 , Supporting Information; HRESIMS m/z $925.4407[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{44} \mathrm{H}_{70} \mathrm{NaO}_{19}, 925.4389$).

Gitoxigenin-3-O- β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl-($1 \rightarrow 4$)- $\alpha-L$ -
vallaropyranoside (9): $[\alpha]^{25}{ }_{\mathrm{D}}-35.9(c 0.26, \mathrm{MeOH}) ;$ FT-IR (ATR) $v_{\text {max }} 3333,2922,2882,2858$, 1732, 1627, 1603,1453, 1349, 1269, 1165, 1068, 1027, $1014 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (MeOH- $d_{4}, 400$ MHz) and ${ }^{13} \mathrm{C}$ NMR (MeOH- $d_{4}, 100 \mathrm{MHz}$) data see Table S2, Supporting Information; HRESIMS m/z $897.4056[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{NaO}_{19}$, 897.4077).

Gitoxigenin-3-O- β-D-glucopyranosyl-($1 \rightarrow 6$)- β-D-glucopyranosyl-($1 \rightarrow 4$)- $\alpha-L$ acofriopyranoside (10): $[\alpha]^{25}{ }_{\mathrm{D}}-26.4$ (c 0.22 , MeOH); FT-IR (ATR) $v_{\max } 3359,2922,2854$, 1730, 1627, 1449, 1377, 1288, 1243, 1164, 1103, 1068, 1023, $987 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (MeOH- d_{4}, $400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (MeOH- $\left.d_{4}, 100 \mathrm{MHz}\right)$ data see Table S2, Supporting Information; HRESIMS $m / z 897.4062[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{NaO}_{19}, 897.4077$).

Table S1. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR Spectroscopic Data of 7 and 8 (in $\left.\mathrm{MeOH}-d_{4}\right)$

position	7		8	
	$\delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$, type	$\delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$, type
1	1.74, 1.38	$30.9, \mathrm{CH}_{2}$	1.83, 1.55	31.0, CH_{2}
2	1.78, 1.15	27.9, CH_{2}	1.90, 1.25	27.4, CH_{2}
3	$3.83 \mathrm{brs}\left(\mathrm{W}_{1 / 2}=7.5 \mathrm{~Hz}\right)$	74.0, CH	3.93 ($\left.\mathrm{W}_{1 / 2}=8.0 \mathrm{~Hz}\right)$	74.7, CH
4	1.42, 1.30	31.6, CH_{2}	1.39	31.6, CH_{2}
5	1.51	38.2, CH	1.65	38.2, CH
6	1.48	27.4, CH_{2}	1.58	27.8, CH_{2}
7	1.66	22.4, CH_{2}	1.77	22.4, CH_{2}
8	1.56	42.3, CH	1.64	42.4, CH
9	1.60	36.8 , CH	1.64	36.4, CH
10	-	36.5, C	-	36.4, C
11	1.28, 1.15	22.1, CH_{2}	1.25, 1.35	22.1, CH_{2}
12	1.33, 1.25	42.0, CH_{2}	1.33, 1.42	42.0, CH_{2}
13	-	48.5, C	-	48.3, C
14	-	86.8, C	-	86.8, C
15	1.88, 1.45	$32.4, \mathrm{CH}_{2}$	1.98, 1.56	32.4, CH_{2}
16	1.83, 1.43	25.3, CH_{2}	1.93, 1.51	26.2, CH_{2}
17	1.62	$55.3, \mathrm{CH}$	1.73	55.3, CH
18	0.88 s	16.9, CH_{3}	0.94 s	16.9, CH_{3}
19	0.87 s	24.4, CH_{3}	0.96 s	24.4, CH_{3}
20	2.77 quint-like (8.7)	40.4, CH	2.86 quint-like (8.8)	40.3, CH
21	$4.33 \mathrm{t}(8.7), 4.00 \mathrm{t}(9.1)^{a}$	73.9, CH_{2}	4.41 t (8.8), 4.08 t (9.1)	73.9, CH_{2}
22	$\begin{aligned} & 2.57 \mathrm{dd}(17.6,8.5) \\ & 2.15 \mathrm{dd}(17.6,10.0) \end{aligned}$	$36.5, \mathrm{CH}_{2}$	$\begin{aligned} & 2.65 \mathrm{dd}(17.6,9.9), \\ & 2.23 \mathrm{dd}(17.6,8.5) \end{aligned}$	$36.5, \mathrm{CH}_{2}$
23	-	180.8, C	-	180.7, C
1^{\prime}	4.71 d (2.0)	99.8, CH	4.79 d (1.8)	97.3, CH
2^{\prime}	$3.87 \mathrm{dd}(2.0,3.1)$	68.5, CH	$5.17 \mathrm{dd}(3.2,1.8)$	70.2, CH
3^{\prime}	$3.50 \mathrm{dd}(3.1,8.9)$	82.6, CH	$3.72 \mathrm{dd}(9.4,3.2)^{d}$	81.0, CH
4^{\prime}	3.64 t (8.9) ${ }^{\text {b }}$	79.0, CH	3.62 t (9.4)	79.4, CH
5^{\prime}	$3.62 \mathrm{dq}(8.9,5.8)^{\text {b }}$	68.7, CH	$3.75 \mathrm{dq}(6.3,9.4)^{d}$	68.8, CH
6^{\prime}	1.18 d (5.4)	18.3, CH_{3}	1.29 d (6.3)	18.3, CH_{3}
OCH_{3}	3.34 s	$56.3, \mathrm{CH}_{3}$	3.39 s	57.7, CH_{3}
1 "	4.51 d (7.8)	104.9, CH	4.58 d (7.8)	104.9, CH
$2^{\prime \prime}$	3.11 t (8.4)	75.2, CH	3.14 t (8.6)	75.6, CH
$3^{\prime \prime}$	3.25	77.9, CH	$3.36 \mathrm{t}(8.9)^{e}$	77.7, CH
$4^{\prime \prime}$	3.24	71.6, CH	$3.34 \mathrm{t}(9.2)^{e}$	71.8, CH
5"	$3.29{ }^{\text {c }}$	77.0, CH	3.42 ddd (5.7, 3.5, 1.9)	76.9, CH

$6^{\prime \prime}$	$4.04 \mathrm{dd}(11.8,1.8)^{a}, 3.67^{b}$	$70.5, \mathrm{CH}_{2}$	$4.13 \mathrm{dd}(11.7,1.9)$,	$70.5, \mathrm{CH}_{2}$
$1^{\prime \prime \prime}$	$4.28 \mathrm{~d}(7.8)$		$3.78 \mathrm{dd}(11.7,5.7)^{d}$	
$2^{\prime \prime \prime}$	$3.08 \mathrm{t}(8.1)$	$105.0, \mathrm{CH}$	$4.37 \mathrm{~d}(7.8)$	$105.0, \mathrm{CH}$
$3^{\prime \prime \prime}$	3.25^{c}	$75.7, \mathrm{CH}$	$3.21 \mathrm{dd}(8.9,7.8)$	$75.2, \mathrm{CH}$
$4^{\prime \prime \prime}$	$3.24 \mathrm{t}(6.9)$	$77.8, \mathrm{CH}$	$3.36 \mathrm{t}(8.9)^{e}$	$78.0, \mathrm{CH}$
$5^{\prime \prime \prime}$	3.17	$71.8, \mathrm{CH}$	$3.27 \mathrm{t}^{f}$	$71.6, \mathrm{CH}$
$6^{\prime \prime \prime}$	$3.77 \mathrm{~d}(11.1)$,	$77.9, \mathrm{CH}$	3.26^{f}	$78.0, \mathrm{CH}$
	$3.58 \mathrm{dd}(5.0,11.7)$	$62.7, \mathrm{CH}_{2}$	$3.86 \mathrm{dd}(12.1,1.7)$,	$62.8, \mathrm{CH}_{2}$
$\mathrm{OCOCH}_{3}-2^{\prime}$			$3.66 \mathrm{dd}(11.9,5.1)$	
		2.10 s	$20.9, \mathrm{CH}_{3}$	
			$172.2, \mathrm{C}$	

${ }^{a-f}$ Overlapped signals.

Table S2. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR Spectroscopic Data of $\mathbf{9}$ and $\mathbf{1 0}$ (in MeOHd_{4})

position	9		10	
	$\delta_{\text {H }}(J$ in Hz)	$\delta_{\text {C }}$, type	$\delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$, type
1	1.87, 1.47	31.5, CH_{2}	1.87, 1.47	31.6, CH_{2}
2	1.60	27.9, CH_{2}	1.60	27.4, CH_{2}
3	$3.92\left(\mathrm{~W}_{1 / 2}=8.0 \mathrm{~Hz}\right)^{a}$	74.8, CH	$3.94\left(\mathrm{~W}_{1 / 2}=9.0 \mathrm{~Hz}\right)$	74.1, CH
4	1.84, 1.52	31.5, CH_{2}	1.52, 1.40	31.0, CH_{2}
5	1.77	38.1 , CH	1.64	38.2, CH
6	1.98, 1.26	27.6, CH_{2}	1.90	27.8, CH_{2}
7	1.43	22.5, CH_{2}	1.43, 1.24	22.1, CH_{2}
8	1.58	$42.9, \mathrm{CH}$	1.60	42.9, CH
9	1.66	36.8 , CH	1.66	36.8, CH
10	-	36.3, C	-	36.3, C
11	1.80, 1.24	22.1, CH_{2}	1.83	22.4, CH_{2}
12	1.56, 1.40	41.0, CH_{2}	1.55, 1.39	41.0, CH_{2}
13	-	51.3, C	-	51.3, C
14	-	85.7, C	-	85.6, C
15	$\begin{aligned} & 2.61 \mathrm{dd}(8.4,14.8), \\ & 1.70 \mathrm{dd}(2.3,14.8) \end{aligned}$	43.8, CH_{2}	$\begin{aligned} & 2.62 \mathrm{dd}(8.5,15.0), \\ & 1.70 \mathrm{dd}(2.2,15.0) \end{aligned}$	43.8, CH_{2}
16	$4.64 \mathrm{dd}(8.0,2.0)^{\text {b }}$	73.2, CH	$4.64 \mathrm{dt}(7.9,2.3)^{e}$	73.1, CH
17	3.12 d (7.8)	$57.9, \mathrm{CH}$	3.12 d (7.9)	59.7, CH
18	0.91 s	17.1, CH_{3}	0.91 s	17.1, CH_{3}
19	0.94 s	24.4, CH_{3}	0.95 s	24.4, CH_{3}
20	-	173.6, C	-	173.6, C
21	$\begin{aligned} & 5.16 \mathrm{dd}(1.6,16.8), \\ & 5.09 \mathrm{dd}(1.6,16.9) \end{aligned}$	77.9, CH_{2}	$\begin{aligned} & 5.16 \mathrm{dd}(18.4,1.7), \\ & 5.09 \mathrm{dd}(18.5,1.6) \end{aligned}$	77.9, CH_{2}
22	5.93 t (1.6)	120.6, CH_{2}	5.93 t (1.6)	120.6, CH_{2}
23	-	177.3, C	-	177.3, C
1^{\prime}	$4.66 \mathrm{~d}(2.9){ }^{\text {b }}$	100.3, CH	4.80 d (1.7)	99.8, CH
2^{\prime}	$3.93 \mathrm{dd}(5.4,3.4)^{a}$	69.3, CH	$3.97 \mathrm{dd}(3.1,1.9)$	68.6, CH
3^{\prime}	$3.63 \mathrm{dd}(5.2,3.3)$	79.0, CH	$3.59 \mathrm{dd}(8.9,3.2)$	82.7, CH
4^{\prime}	3.95 dd (7.6, 3.2)	76.8, CH	$3.72{ }^{\text {f }}$	79.1, CH
5'	4.20 quintet (7.1)	67.2, CH	$3.71{ }^{\text {f }}$	68.8, CH
6^{\prime}	1.24 d (6.6)	17.9, CH_{3}	1.27 d (5.3)	18.3, CH_{3}
OCH_{3}	3.48 s	59.7, CH_{3}	3.43 s	59.9, CH_{3}
1 "	$4.39 \mathrm{~d}(7.8)^{c}$	102.5, CH	$4.60 \mathrm{~d}(7.8)^{e}$	104.9, CH
$2^{\prime \prime}$	3.21 t (7.9)	75.2, CH	3.16 t (8.6)	75.8, CH

$3^{\prime \prime}$	$3.36 \mathrm{t}(8.8)^{d}$	$77.7, \mathrm{CH}$	$3.34 \mathrm{tt}(8.6)$	$77.9, \mathrm{CH}$
$4^{\prime \prime}$	3.31^{d}	$71.7, \mathrm{CH}$	$3.33 \mathrm{t}(9.5)$	$71.9, \mathrm{CH}$
$5^{\prime \prime}$	$3.45 \mathrm{ddd}(8.4,6.3,2.0)$	$77.3, \mathrm{CH}$	$3.40 \mathrm{ddd}(9.8,4.9,2.6)$	$77.0, \mathrm{CH}$
$6^{\prime \prime}$	$4.14 \mathrm{dd}(11.8,1.9)$	$70.2, \mathrm{CH}_{2}$	$4.13 \mathrm{dd}(11.6,1.9)$,	$70.5, \mathrm{CH}_{2}$
			$3.75 \mathrm{dd}(11.7,6.0)^{f}$	
$1^{\prime \prime \prime}$	$4.39 \mathrm{~d} \mathrm{(7.8)}^{c}$	$105.0, \mathrm{CH}$	$4.37 \mathrm{~d}(7.8)$	$105.0, \mathrm{CH}$
$2^{\prime \prime \prime}$	$3.19 \mathrm{t}(7.9)$	$75.3, \mathrm{CH}$	$3.19 \mathrm{t}(7.8)$	$75.2, \mathrm{CH}$
$3^{\prime \prime \prime}$	3.36^{d}	$77.8, \mathrm{CH}$	$3.34 \mathrm{t}(7.7)$	$77.9, \mathrm{CH}$
$4^{\prime \prime \prime}$	3.28	$71.7, \mathrm{CH}$	3.28^{g}	$71.6, \mathrm{CH}$
$5^{\prime \prime \prime}$	3.26	$78.0, \mathrm{CH}$	3.26^{g}	$78.0, \mathrm{CH}$
$6^{\prime \prime \prime}$	$3.86 \mathrm{dd}(11.5,1.8)$,	$62.8, \mathrm{CH}_{2}$	$3.85 \mathrm{dd}(11.9,1.8)$,	$62.8, \mathrm{CH}_{2}$
	$3.66 \mathrm{dd}(11.5,5.3)$		$3.66 \mathrm{dd}(11.9,5.3)$	

${ }^{a-g}$ Overlapped signals.

Table S3. Cytotoxic Activity of Compounds 11-16 ${ }^{a}$

compound	HT-29	A 549	HeLa	Vero
$\mathbf{1 1}$	>10	2.3 ± 0.1	6.1 ± 0.8	>10
$\mathbf{1 2}$	>10	2.2 ± 0.3	8.0 ± 1.6	>10
$\mathbf{1 3}$	0.6 ± 0.1	>10	>10	>10
$\mathbf{1 4}$	>10	6.5 ± 0.8	7.2 ± 0.5	>10
$\mathbf{1 5}$	>10	>10	>10	>10
$\mathbf{1 6}$	>10	6.8 ± 0.1	9.8 ± 0.01	>10
doxorubicin b	0.44 ± 0.15	1.0 ± 0.1	0.12 ± 0.05	3.5 ± 0.7
${ }^{a}$ Values indicated are IC ${ }_{50}$ values in $\mu \mathrm{M}$, data are means $\pm \mathrm{SD}$ of three independent				
experiments, each performed in six replicates. ${ }^{b}$ Positive control				

