Cytotoxic 20,22-Dihydrodigitoxigenin Glycosides and Other Constituents of *Vallaris glabra* Stems

Sudarat Kruakaew, Chonticha Seeka, Jantana Yahuafai, Pongpun Siripong, and Somyote

Sutthivaiyakit

Supporting Information

Structural Identification of 7-10

Compound 7 was isolated as an amorphous solid with molecular formulas of $C_{42}H_{68}O_{18}$ based on its HRESIMS data. The ¹H and ¹³C NMR spectra of 7 exhibited resonances rather similar to those of 3, except that 7 possesses an acofriopyranosyl unit instead of a vallarosyl group, together with recognizable resonances of two glucopyranosyl units in 7 (Table S1, Supporting Information), respectively. On the basis of previous study² and HMBC spectra of 7 showing cross-peaks between H-1'/C-3, H-1''/C-4' and H-1'''/C-6'', compound 7 was 20,22dihydrodigitoxigenin-3-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -Lacofriopyranoside.

Compound **8** was isolated as an amorphous solid exhibiting a molecular formula of C₄₄H₇₀O₁₉. The ¹H and ¹³C NMR spectra showed resonances similar to those of **7** (Table S1, Supporting Information), but with additional resonances of an acetyl group ($\delta_{\rm H}$ 2.10, s) and a less-shielded H-2' resonance at $\delta_{\rm H}$ 5.17 (dd, J = 3.2 and 1.8 Hz). Based on the 2-D NMR data, **8** was thus proposed as 20,22-dihydrodigitoxigenin-3-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-2'-*O*-acetylacofriopyranoside.

Compound **9** was obtained as an amorphous solid, its HRESIMS exhibited a $[M+Na]^+$ ion at m/z 897.4056 (calcd for C₄₂H₆₆O₁₉Na, 897.4077). The ¹H and ¹³C NMR spectra showed rather complex sets of resonances, although the characteristic resonances of a gitoxigenin and vallarosyl groups could be recognized (Table S2, Supporting Information). Additional resonances, particularly of the two anomeric $[\delta_H 4.39 (d, J = 7.8 \text{ Hz, H-1"}, \text{ and } \delta_C 102.5, \text{ C-1"})$ and $\delta_H 4.39 (d, J = 7.8 \text{ Hz, H-1"}, \text{ and } \delta_C 102.5, \text{ C-1"})$ and $\delta_H 4.39 (d, J = 7.8 \text{ Hz, H-1"}, \text{ and } \delta_C 102.5, \text{ C-1"})$ and $\delta_H 4.39 (d, J = 7.8 \text{ Hz, H-1"}, \text{ and } \delta_C 102.5, \text{ C-1"})$ and $\delta_H 4.39 (d, J = 7.8 \text{ Hz, H-1"}, \text{ and } \delta_C 105.0, \text{ C-1"})$] and two oxymethylene groups $[\delta_H 4.14 (dd, J = 11.8 \text{ and } 1.9 \text{ Hz}), \delta_C 70.2, \text{ C-6"}, \text{ and } \delta_H 3.86 (dd, J = 11.5 \text{ and } 1.8 \text{ Hz}), \text{ and } 3.66 (dd, J = 11.5 \text{ and } 5.3 \text{ Hz})$ and $\delta_C 62.8, \text{ C-6"'}$], indicated the presence of two glucosyl groups in **9**. The connectivities of C-3-*O* to C-1', C-4'-*O* to C-1" and C-6"-*O* to C-1" were based on the HMBC cross-peaks between H-1'/C-3; H-1"/C-4', and H-1"'/C-6", respectively. On the basis of previous report which provided L-vallarose, L-acofriose and D-glucose after acid hydrolyses of oleandrigenin-3-*O*- α -L-2'-*O*-acetylacofriopyranoside and oleandrigenin-3-*O*- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-2'-*O*-acetylacofriopyranoside, ² **9** was thus proposed as gitoxigenin-3-*O*- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-2'-*O*-acetylacofriopyranosyl-(1 \rightarrow 4)- α -L-vallaropyranoside.

Compound 10 was isolated as an amorphous colorless solid with same molecular mass as of 9. The 1 H and 13 C NMR spectra exhibited resonances similar to those of 9 (Table S2, Supporting Information), although the resonances for a vallarosyl moiety were replaced by those of an

acofriosyl group, showing an indicative resonance for H-5' at somewhat higher-field than that of a vallarosyl group in 9. Based on its spectroscopic data and a previous study, 10 was therefore concluded to be gitoxigenin-3-O- β -D-glucopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranosyl- $(1\rightarrow 4)$ - α -L-acofriopyranoside.

Isolation of Compounds 7-16

EXPERIMENTAL SECTION

General Experimental Procedures. Melting points were measured using an Electrothermal melting point apparatus and are uncorrected. Optical rotations were recorded on a JASCO DIP 1020 polarimeter. The IR spectra were obtained on a Perkin-Elmer 1760x FT-IR spectrophotometer. The ¹H and ¹³C NMR spectra were recorded with a Bruker AVANCE III HD 400 MHz NMR spectrometer. Chemical shifts are referenced to the residual solvent signals (MeOH- d_4 : $\delta_{\rm H}$ 3.30 and $\delta_{\rm C}$ 49.0 ppm). HRESIMS were recorded on a Bruker Daltonic smicroTOF mass spectrometer.

Plant Material. The plant investigated, *Vallaris glabra*, was obtained as previously reported. A voucher specimen (SSVG-1/2012) is maintained at the Department of Chemistry, Ramkhamhaeng University.²

Extraction and Isolation. Dried *V. glabra* stems (4.5 kg) were ground and extracted successively with hexanes (8 L), CH_2Ch_2 (8 L) and MeOH (8 L), respectively, using a Soxhlet extractor. The resultant hexanes (70.0 g), CH_2Ch_2 (59.9 g) and MeOH (95.2 g) extracts were obtained after removal of solvent.

The CH₂Cl₂ extract (59.9 g) was fractionated by column chromatography (CC, silica gel, hexanes- CH₂Cl₂ 65:35 to CH₂Cl₂-MeOH 85:15) to obtain ten fractions. Fraction 3 (3.65 g) was fractionated by CC (Sephadex LH-20, MeOH) to give four subfractions (3.1-3.4). Subfraction 3.3 (1.37 g) was fractionated (CC, silica gel, hexanes-EtOAc 70-30) to give seven subfractions (3.3.1-3.3.7). Subfraction 3.3.1 provided ursolic acid (30.8 mg) and subfraction 3.3.2 provided 3,27-dihydroxyursolic acid (19.1 mg) after recrystallization from CH₂Cl₂/MeOH. Subfraction 3.3.3 (134.0 mg) was purified using CC (silica gel, hexanes-EtOAc 70:30) to give three subfractions (3.3.3.1-3.3.3.3), and subfraction 3.3.3.2 (42.4 mg) was further purified by CC (silica gel, CH₂Cl₂-MeOH 99:1) to afford 15 (8.3 mg), 11 (4.2 mg) and 13 (13.8 mg). Subfraction 3.3.5 (190.3 mg) was subjected to CC (silica gel, hexanes-EtOAc 70:30) to give 16 (22.0 mg). Fraction 4 (1.65 g), after fractionation (CC, Sephadex LH-20, MeOH), provided three subfractions (4.1-4.3). Subfraction 4.2 (703.6 mg) was further fractionated (Sephadex LH-20, MeOH, then CC, silica gel, CH₂Cl₂-MeOH 98:2) to give additional amount of 11 (10.9 mg) and 13 (3.8 mg), and also 14 (39.5 mg) and 12 (31.7 mg).

The MeOH extract (95.2 g) was fractionated by CC (Dianion HP-20, MeOH-H₂O, 0:100 to 100:0) to obtain five fractions. The water-soluble fractions 1-3, containing mostly sugars, were not investigated further. The less polar fraction 5 (6.35 g) was fractionated by reversed-phase CC (RP-18, MeOH-H₂O 30:70 to 100:0) to obtain six subfractions (5.1-5.6). Subfraction 5.2 (820.3 mg) was purified by CC (silica gel, CH₂Cl₂-MeOH, 88:12 to 85:15) and provided three subfractions (5.2.1- 5.2.3). Subfraction 5.2.2 (79.2 mg) after reversed-phase CC (RP-18, MeOH-H₂O 40:60 to 100:0) furnished oleandrigenin-3-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-2'-*O*-acetylacofriopyranoside (48.3 mg) and **8** (4.2 mg). Subfraction 5.4 (1.29 g) was fractionated by CC (RP-18, MeOH-H₂O 10:90 to 100:0) to give eight

subfractions (5.4.1-5.4.8). Oleandrigenin-3-O- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl- $(1\rightarrow 4)$ - α -L-vallaropyranoside² (38.1 mg) was obtained from subfraction 5.4.3.4. Subfraction 5.4.5 (147.1 mg) was CC (silica gel, CH₂Cl₂-MeOH 88:12 to 86:14, then RP-18, MeOH-H₂O 45:55 to 100:0) to give oleandrigenin-3-O- β -D-glucopyranosyl- $(1 \rightarrow 4)$ - α -L-O-acofriopyranoside (11.2 mg) and oleandrigenin-3-O- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-O-vallaropyranoside (2.3 mg). Subfraction 5.4.6 (243.5 mg) was purified by CC (silica gel, CH₂Cl₂-MeOH 88:12 to 86:14) to give five subfractions (5.4.6.1-5.4.6.5). Subfraction 5.4.6.5 (33.9 mg) after further purification (CC, RP-18, MeOH-H₂O 40:60 to 100:0) provided 7 (4.7 mg). Subfraction 5.4.8 (270.5 mg) was subjected to CC (silica gel, CH₂Cb-MeOH 85:15 to 80:20) to give four subfractions (5.4.8.1-5.4.8.4). Subfraction 5.4.8.1 (12.6 mg) afforded 3 (2.9 mg) and 4 (1.7 mg) after CC (RP-18, MeOH-H₂O 50:50 to 100:0). Subfraction 5.4.8.3 (29.0 mg) was further purified by CC (RP-18, MeOH-H₂O 55:50 to 100:0) to give additional quantity of 8 (6.3 mg). The polar fraction 4 (2.25 g) was fractionated using CC (silica gel, CH₂Cl₂-MeOH 88:12 to 84:16) to obtain eleven subfractions (4.1-4.11). Selection of compounds based on TLC identity led to 9 (5.3 mg) and 10 (4.0 mg) being obtained from subfraction 4.11 (45.2 mg) after reversed-phase CC (RP-18, MeOH-H₂O 40:60 to 100:0).

20,22-Dihydrodigitoxigenin-3-O- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -Lacofriopyranoside (7): $[\alpha]^{25}_{D}$ -42.3 (c 0.23, MeOH); FT-IR (ATR) ν_{max} 3366, 2922, 2873, 2855, 1746, 1450, 1379, 1234, 1199, 1105, 1068, 1045, 1016, 986 cm⁻¹; ¹H NMR (MeOH- d_4 , 400 MHz) and ¹³C NMR (MeOH- d_4 , 100 MHz) data see Table S1, Supporting Information; HRESIMS m/z 883.4315 [M + Na]⁺ (calcd for C₄₂H₆₈NaO₁₈, 883.4284).

20,22-Dihydrodigitoxigenin-3-O- β -D-glucopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-2'-O-acetylacofriopyranoside (8): $[\alpha]^{25}_{D}$ -40.7 (c 0.34, MeOH); FT-IR (ATR) ν_{max} 3369, 2928, 2884, 2865, 1732, 1723, 1447, 1376, 1236, 1214, 1122, 1094, 1067, 1038, 1019, 987 cm⁻¹; ¹H NMR (MeOH- d_4 , 400 MHz) and ¹³C NMR (MeOH- d_4 , 100 MHz) data see Table S1, Supporting Information; HRESIMS m/z 925.4407 [M + Na]⁺ (calcd for C₄₄H₇₀NaO₁₉, 925.4389).

Gitoxigenin-3-O-β-D-glucopyranosyl-(1→6)-β-D-glucopyranosyl-(1→4)-α-Lvallaropyranoside (9): $[\alpha]^{25}{}_{\rm D}$ -35.9 (*c* 0.26, MeOH); FT-IR (ATR) $\nu_{\rm max}$ 3333, 2922, 2882, 2858, 1732, 1627, 1603,1453, 1349, 1269, 1165, 1068, 1027, 1014 cm⁻¹; ¹H NMR (MeOH-*d*₄, 400 MHz) and ¹³C NMR (MeOH-*d*₄, 100 MHz) data see Table S2, Supporting Information; HRESIMS m/z 897.4056 [M + Na]⁺ (calcd for C₄₂H₆₆NaO₁₉, 897.4077).

Gitoxigenin-3-O-β-D-glucopyranosyl-($1 \rightarrow 6$)- β -*D-glucopyranosyl-*($1 \rightarrow 4$)- α -*L-acofriopyranoside* (**10**): $[\alpha]^{25}_{D}$ -26.4 (*c* 0.22, MeOH); FT-IR (ATR) ν_{max} 3359, 2922, 2854, 1730, 1627, 1449, 1377, 1288, 1243, 1164, 1103, 1068, 1023, 987 cm⁻¹; ¹H NMR (MeOH- d_4 , 400 MHz) and ¹³C NMR (MeOH- d_4 , 100 MHz) data see Table S2, Supporting Information; HRESIMS m/z 897.4062 [M + Na]⁺ (calcd for C₄₂H₆₆NaO₁₉, 897.4077).

	7		8	
position	$\delta_{ m H}$ (J in Hz)	$\delta_{\rm C}$, type	$\delta_{ m H}$ (J in Hz)	$\delta_{\rm C}$, type
1	1.74, 1.38	30.9, CH ₂	1.83, 1.55	31.0, CH ₂
2	1.78, 1.15	27.9, CH ₂	1.90, 1.25	27.4, CH ₂
3	3.83 brs ($W_{1/2} = 7.5$ Hz)	74.0, CH	$3.93 (W_{1/2} = 8.0 \text{ Hz})$	74.7, CH
4	1.42, 1.30	31.6, CH ₂	1.39	31.6, CH ₂
5	1.51	38.2, CH	1.65	38.2, CH
6	1.48	27.4, CH ₂	1.58	27.8, CH ₂
7	1.66	22.4, CH ₂	1.77	22.4, CH ₂
8	1.56	42.3, CH	1.64	42.4, CH
9	1.60	36.8, CH	1.64	36.4, CH
10	-	36.5, C	-	36.4, C
11	1.28, 1.15	22.1, CH ₂	1.25, 1.35	22.1, CH ₂
12	1.33, 1.25	42.0, CH ₂	1.33, 1.42	42.0, CH ₂
13	-	48.5, C	-	48.3, C
14	-	86.8, C	-	86.8, C
15	1.88, 1.45	32.4, CH ₂	1.98, 1.56	32.4, CH ₂
16	1.83, 1.43	25.3, CH ₂	1.93, 1.51	26.2, CH ₂
17	1.62	55.3, CH	1.73	55.3, CH
18	0.88 s	16.9, CH ₃	0.94 s	16.9, CH ₃
19	0.87 s	24.4, CH ₃	0.96 s	24.4, CH ₃
20	2.77 quint-like (8.7)	40.4, CH	2.86 quint-like (8.8)	40.3, CH
21	4.33 t (8.7), 4.00 t (9.1) ^a	73.9, CH ₂	4.41 t (8.8), 4.08 t (9.1)	73.9, CH ₂
22	2.57 dd (17.6, 8.5), 2.15 dd (17.6, 10.0)	36.5, CH ₂	2.65 dd (17.6, 9.9), 2.23 dd (17.6, 8.5)	36.5, CH ₂
23	-	180.8, C	-	180.7, C
1'	4.71 d (2.0)	99.8, CH	4.79 d (1.8)	97.3, CH
2'	3.87 dd (2.0, 3.1)	68.5, CH	5.17 dd (3.2, 1.8)	70.2, CH
3'	3.50 dd (3.1, 8.9)	82.6, CH	$3.72 \text{ dd} (9.4, 3.2)^d$	81.0, CH
4'	$3.64 \text{ t} (8.9)^b$	79.0, CH	3.62 t (9.4)	79.4, CH
5'	$3.62 \mathrm{dq} (8.9, 5.8)^b$	68.7, CH	$3.75 \mathrm{dq} (6.3, 9.4)^d$	68.8, CH
6'	1.18 d (5.4)	18.3, CH ₃	1.29 d (6.3)	18.3, CH ₃
OCH ₃	3.34 s	56.3, CH ₃	3.39 s	57.7, CH ₃
1″	4.51 d (7.8)	104.9, CH	4.58 d (7.8)	104.9, CH
2″	3.11 t (8.4)	75.2, CH	3.14 t (8.6)	75.6, CH
3″	3.25	77.9, CH	$3.36 \text{ t} (8.9)^e$	77.7, CH
4″	3.24	71.6, CH	$3.34 \text{ t} (9.2)^e$	71.8, CH
5"	3.29^{c}	77.0, CH	3.42 ddd (5.7, 3.5, 1.9)	76.9, CH

Table S1. ¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data of **7** and **8** (in MeOH- d_4)

6″	4.04 dd (11.8, 1.8) ^{<i>a</i>} , 3.67 ^{<i>b</i>}	70.5, CH ₂	4.13 dd (11.7, 1.9), 3.78 dd (11.7, 5.7) ^d	70.5, CH ₂
1‴′	4.28 d (7.8)	105.0, CH	4.37 d (7.8)	105.0, CH
2"''	3.08 t (8.1)	75.7, CH	3.21 dd (8.9, 7.8)	75.2, CH
3‴′	3.25^{c}	77.8, CH	$3.36 \text{ t} (8.9)^e$	78.0, CH
4‴′	3.24 t (6.9)	71.8, CH	3.27 t^{f}	71.6, CH
5'"	3.17	77.9, CH	3.26 ^{<i>f</i>}	78.0, CH
6"'	3.77 d (11.1), 3.58 dd (5.0, 11.7)	62.7, CH ₂	3.86 dd (12.1, 1.7), 3.66 dd (11.9, 5.1)	62.8, CH ₂
OCOCH ₃ -2			2.10 s	20.9, CH ₃ 172.2, C
<i>a-f</i> Overlappe	ed signals.			

	9		10	
position	$\delta_{ m H}$ (J in Hz)	$\delta_{ m C}$, type	$\delta_{ m H}$ (J in Hz)	$\delta_{\rm C}$, type
1	1.87, 1.47	31.5, CH ₂	1.87, 1.47	31.6, CH ₂
2	1.60	27.9, CH ₂	1.60	27.4, CH ₂
3	$3.92 (W_{1/2} = 8.0 \text{ Hz})^a$	74.8, CH	$3.94 (W_{1/2} = 9.0 \text{ Hz})$	74.1, CH
4	1.84, 1.52	31.5, CH ₂	1.52, 1.40	31.0, CH ₂
5	1.77	38.1, CH	1.64	38.2, CH
6	1.98, 1.26	27.6, CH ₂	1.90	27.8, CH ₂
7	1.43	22.5, CH ₂	1.43, 1.24	22.1, CH ₂
8	1.58	42.9, CH	1.60	42.9, CH
9	1.66	36.8, CH	1.66	36.8, CH
10	-	36.3, C	-	36.3, C
11	1.80, 1.24	22.1, CH ₂	1.83	22.4, CH ₂
12	1.56, 1.40	41.0, CH ₂	1.55, 1.39	41.0, CH ₂
13	-	51.3, C	-	51.3, C
14	-	85.7, C	-	85.6, C
15	2.61 dd (8.4, 14.8),	43.8, CH ₂	2.62 dd (8.5, 15.0),	43.8, CH ₂
	1.70 dd (2.3, 14.8)		1.70 dd (2.2, 15.0)	
16	$4.64 \text{ dd} (8.0, 2.0)^b$	73.2, CH	4.64 dt $(7.9, 2.3)^e$	73.1, CH
17	3.12 d (7.8)	57.9, CH	3.12 d (7.9)	59.7, CH
18	0.91 s	17.1, CH ₃	0.91 s	17.1, CH ₃
19	0.94 s	24.4, CH ₃	0.95 s	24.4, CH ₃
20	-	173.6, C	-	173.6, C
21	5.16 dd (1.6, 16.8),	77.9, CH ₂	5.16 dd (18.4, 1.7),	77.9, CH ₂
	5.09 dd (1.6, 16.9)		5.09 dd (18.5, 1.6)	
22	5.93 t (1.6)	120.6, CH ₂	5.93 t (1.6)	120.6, CH ₂
23	-	177.3, C	-	177.3, C
1'	$4.66 d (2.9)^b$	100.3, CH	4.80 d (1.7)	99.8, CH
2'	$3.93 \text{ dd} (5.4, 3.4)^a$	69.3, CH	3.97 dd (3.1, 1.9)	68.6, CH
3'	3.63 dd (5.2, 3.3)	79.0, CH	3.59 dd (8.9, 3.2)	82.7, CH
4'	3.95 dd (7.6, 3.2)	76.8, CH	3.72^{f}	79.1, CH
5'	4.20 quintet (7.1)	67.2, CH	3.71^{f}	68.8, CH
6′	1.24 d (6.6)	17.9, CH ₃	1.27 d (5.3)	18.3, CH ₃
OCH ₃	3.48 s	59.7, CH ₃	3.43 s	59.9, CH ₃
1″	$4.39 ext{ d} (7.8)^c$	102.5, CH	$4.60 ext{ d} (7.8)^e$	104.9, CH
2″	3.21 t (7.9)	75.2, CH	3.16 t (8.6)	75.8, CH

Table S2. ¹H (400 MHz) and ¹³C (100 MHz) NMR Spectroscopic Data of 9 and 10 (in MeOH- d_4)

3″	$3.36 t (8.8)^d$	77.7, CH	3.34 t (8.6)	77.9, CH
4″	3.31^{d}	71.7, CH	3.33 t (9.5)	71.9, CH
5″	3.45 ddd (8.4, 6.3, 2.0)	77.3, CH	3.40 ddd (9.8, 4.9, 2.6)	77.0, CH
6″	4.14 dd (11.8, 1.9)	70.2, CH ₂	4.13 dd (11.6, 1.9),	70.5, CH ₂
			$3.75 \text{ dd} (11.7, 6.0)^{f}$	
1‴′	4.39 d (7.8) ^c	105.0, CH	4.37 d (7.8)	105.0, CH
2"''	3.19 t (7.9)	75.3, CH	3.19 t (7.8)	75.2, CH
3‴′	3.36^{d}	77.8, CH	3.34 t (7.7)	77.9, CH
4‴′	3.28	71.7, CH	3.28^{g}	71.6, CH
5'"	3.26	78.0, CH	3.26^{g}	78.0, CH
6‴′	3.86 dd (11.5, 1.8),	62.8, CH ₂	3.85 dd (11.9, 1.8),	62.8, CH ₂
	3.66 dd (11.5, 5.3)		3.66 dd (11.9, 5.3)	

^{*a-g*}Overlapped signals.

compound	HT-29	A 549	HeLa	Vero
11	>10	2.3 ± 0.1	6.1 ± 0.8	>10
12	>10	2.2 ± 0.3	8.0 ± 1.6	>10
13	0.6 ± 0.1	>10	>10	>10
14	>10	6.5 ± 0.8	7.2 ± 0.5	>10
15	>10	>10	>10	>10
16	>10	6.8 ± 0.1	9.8 ± 0.01	>10
doxorubicin ^b	0.44 ± 0.15	1.0 ± 0.1	0.12 ± 0.05	3.5 ± 0.7
^a Values indica	ated are IC ₅₀ value	s in µM, data are	means \pm SD of thre	e independent
experiments, e	each performed in	six replicates. ^b Post	itive control	