Supporting Information for:

Site-Specific Conjugation of the Indolinobenzodiazepine DGN549 to Antibodies Affords Antibody-Drug Conjugates with an Improved Therapeutic Index As Compared With Lysine Conjugation

Chen Bai¹, Emily Reid¹, Alan Wilhelm¹, Manami Shizuka^{1,2}, Erin K. Maloney¹, Rassol Laleau¹, Lauren Harvey^{1,3}, Katie E. Archer¹, Dilrukshi Vitharana^{1,4}, Sharlene Adams¹, Yelena Kovtun¹, Michael L. Miller¹, Ravi Chari¹, Thomas A. Keating¹, Nicholas C. Yoder¹*

*Correspondence to: palmitoylated@gmail.com

3. Current address: Kaleido Biosciences; 65 Hayden Ave., Lexington MA 02421

4. Current address: Anokion; 50 Hampshire Street; Cambridge, MA 02139

Contents:

Supplementary Methods:
Synthesis and Characterization of DGN549-C (Compound 1b)2
Supplementary Figure 1
Affinity Capture of ADCs from Plasma Samples2
Supplementary Data:
Supplementary Figure 2. Intact LC-MS Characterization of ADCs 2c, 3a, and 3b
Supplementary Table 1. Characterization of ADCs4
Supplementary Figure 3. Identification of FGN849 as the catabolite released from ADC 2b5
Supplementary Figure 4. Bystander cytotoxicity of mAb1 ADCs
Supplementary Table 2. Binding of ADCs7
Supplementary Figure 5. Affinity capture of ADC 2b from mouse plasma
References

^{1.} Science, Technology, and Translation; ImmunoGen, Inc.; 830 Winter Street, Waltham MA 02451

^{2.} Current address: Pharmaron; 404 Wyman Street; Waltham, MA 02451

Supplementary Methods: Synthesis and Characterization of DGN549-C (Compound 1b)

Supplementary Figure 1. Synthesis of compound DGN549-C (1b) from DGN549-L (1a).

Methods:

Compound 1a¹ (80 mg, 0.074 mmol) and N-(2-aminoethyl)maleimide hydrochloride (2.17 mg, 0.011 mmol) were dissolved in anhydrous dichloromethane (2976 ul). N.Ndiisopropylethylamine (DIPEA, 25.9 µl, 0.149 mmol) was added and the reaction stirred for 4 hours at room temperature. The crude reaction was checked by LC-MS and there was no remaining starting material. The reaction was concentrated under nitrogen and redissolved in 3:1:1 anhydrous THF/ACN/water and purified by reverse phase semi-prep HPLC (C18 column, ACN/H₂O). Fractions containing the desired product were frozen and lyophilized to obtain compound **1b** (18 mg, y=21%, 97% pure). HRMS (ESI⁺): calc. for C60H61N9O12 (M + H) 1100.4440, found 1100.4449. ¹H NMR (400 MHz, DMSO- d_6) δ 10.01 (s, 1H), 8.14 (d, J = 8.0Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.96 – 7.89 (m, 2H), 7.77 (t, J = 6.0 Hz, 1H), 7.65 (m, 2H), 7.36 (s, 1H), 7.28 - 7.03 (m, 7H), 7.00 - 6.91 (m, 4H), 6.36 (s, 1H), 6.25 (d, J = 6 Hz, 1H), 5.69(s, 2H), 5.13 (m, 2H), 4.99 (s, 2H), 4.50 – 4.21 (m, 4H), 3.80 (s, 2H), 3.60 (s, 3H), 3.68 – 3.40 (m, 5H), 3.25 – 2.94 (m, 4H), 2.75 (dd, J = 17.1, 4.3 Hz, 1H), 2.03 (m, 2H), 1.85 (m, 2H), 1.35 (m, 4H), 1.24 (d, J = 6.8 Hz, 3H), 1.13 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 172.3, 172.2, 172.0, 171.4, 171.0, 165.6, 164.9, 163.1, 152.0, 150.5, 147.4, 142.9, 142.1, 141.8, 140.8, 140.0, 139.4, 137.5, 137.4, 134.4, 130.8, 130.3, 127.3, 127.0, 125.1, 124.7, 124.4, 123.3, 121.7. 120.0, 117.9, 116.3, 115.7, 115.1, 111.8, 110.8, 109.7, 102.3, 70.0, 69.5, 57.4, 56.0, 55.8, 54.9, 53.2, 49.0, 47.9, 37.2, 36.7, 35.1, 34.8, 32.8, 31.7, 24.8, 24.7, 18.0, 17.9.

Supplementary Methods: Affinity Capture of ADCs from Plasma Samples

To affinity purify ADCs from plasma samples, xMag-Streptavidin Microparticles (Biochain, CA) were washed with 50 mM tris(hydroxymethyl)aminomethane (Tris), 0.15 M sodium chloride pH 8.0 washing buffer twice and resuspended in the same washing buffer to their original volume. ~ 100 ug of biotinylated FR α -Fc (ImmunoGen, Inc.) was then added to 200 μ L of streptavidin particles and rotated at room temperature for 2 h. The beads were washed 3 times with washing buffer and re-suspended to their original volume in washing buffer with 0.4% Tween-20. 200 µL plasma sample containing ADC was then added to the FRα-Fc coated particles along with 40 μ L washing buffer and Tween-20 to a final concentration of 0.2%. After gentle shaking at room temperature for 2 h, the particles were washed 3 times with 1 mL washing buffer and eluted using 50 μ L of 0.1 M sodium citrate pH 3.0 buffer with 50% ethylene glycol. eluent was immediately neutralized with The 9 μL of 1 Μ tris(hydroxymethyl)aminomethane pH 8.5, and then analyzed by SEC-MS as previously described.²

Supplementary Figure 2. Intact LC-MS Characterization of ADCs (A) 2c; (B) 3a, and (C) 3b

ADC	DAR	Monomer (%)	Free Drug (%)	Yield (%)
2a	2.5	99.5	0.5	77
2b	1.9	97.2	0.2	94
2c	3.5	98.5	0.8	84
3a	2.6	99.0	<1.0	80
3b	2.0	98.1	2.8	80

Supplementary Table 1. Characterization of ADCs

Supplementary Figure 3. Identification of FGN849 as the catabolite released from ADC **2b**. (A) Extracted ion chromatograms for ADC **2b** catabolite (bottom) compared to a FGN849 standard (top) are shown. (B) Structures and masses of other plausible catabolites not detected.

Supplementary Figure 4. Bystander cytotoxicity of mAb1 ADCs on FR α -negative 300.19 cells in the presence of FR α + 300.19 cells transfected with the gene encoding human FR α : (A) ADC **2a**, (B) ADC **2b**.

(B)

Supplementary Table 2. Binding of mAb1 ADCs to T47D cells expressing FR α and of mAb2 ADCs to HNT-34 cells expressing CD123 assayed by flow cytometry.

ADC or Ab	EC ₅₀ (M)	Cell Line
mAb1	2 x 10 ⁻¹⁰	T47D
2a	7 x 10 ⁻¹⁰	T47D
2b	2 x 10 ⁻¹⁰	T47D
2c	1 x 10 ⁻¹⁰	T47D
mAb2	2 x 10 ⁻¹⁰	HNT-34
3a	1 x 10 ¹⁰	HNT-34
3b	8 X 10 ⁻¹¹	HNT-34

References

(1) Reid, E. E., Archer, K. E., Shizuka, M., Wilhelm, A., Yoder, N. C., Bai, C., Fishkin, N. E., Harris, L., Maloney, E. K., E., H. *et al.* (2019) Effect of linker stereochemistry on the antitumor activity of anti-body-drug conjugates (ADCs) containing indolinobenzodiazepine payloads. *ACS Medicinal Chemistry Letters* 10 (8), 1193-1197.

(2) Lazar, A. C., Wang, L., Blättler, W. A., Amphlett, G., Lambert, J. M. & Zhang, W. (2005) Analysis of the composition of immunoconjugates using size-exclusion chromatography coupled to mass spectrometry. *Rapid Communications in Mass Spectrometry* 19 (13), 1806-1814.