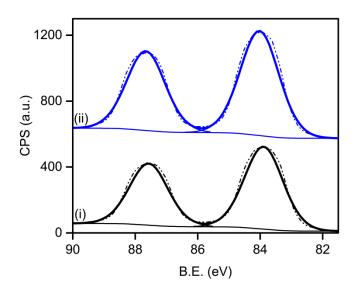
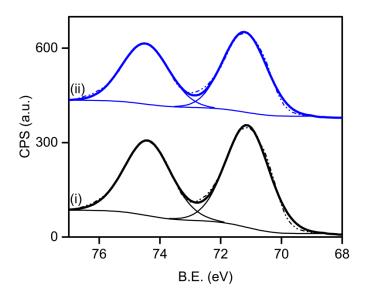
Supporting Information


Strong Metal-Adsorbate Interactions Increase the
Reactivity and Decrease the Orientational Order of OHfunctionalized N-Heterocyclic Carbene Monolayers

Shahar Dery^a, Iris Berg^a, Suhong Kim^b, Albano Cossaro^c, Alberto Verdini^c, Luca Floreano^c, F. Dean Toste^b and Elad Gross**^a


^a Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel

^b Department of Chemistry, University of California, Berkeley, California 94720, United States

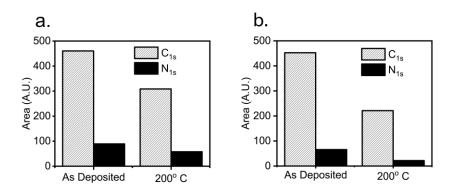

^c CNR-IOM, Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy

Figure S1. Au4f XPS signal of OH-NHCs/Au(111) before (i) and after (ii) annealing to 200 °C.

Figure S2. Pt4f XPS signal of OH-NHCs/Pt(111) before (i) and after (ii) annealing to 200 °C.

Figure S3. Comparative area analysis of C1s and N1s XPS peaks of the anchored OH-functionalized NHCs on (a) Au (111) and (b) Pt (111) before (left) and following (right) the annealing process.