Effects on High Concentration LiPF₆ Based Carbonate Ester Electrolyte for the Electrochemical Performance of High Voltage Layered LiN_{i0.6}Co_{0.2}Mn_{0.2}O₂ Cathode

Qi Liu^a, Hongliang Xu^a, Feng Wu^a, Daobin Mu^a*, Lili Shi^a*, Lei Wang, Jiaying Bi, Borong Wu^a

 ^a Beijing Key Laboratory of Environment Science and Engineering, School of Material Science and Engineering, Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081, China *corresponding author:

> E-mail: <u>mudb@bit.edu.cn</u>. E-mail: <u>shilili1307@163.com</u>

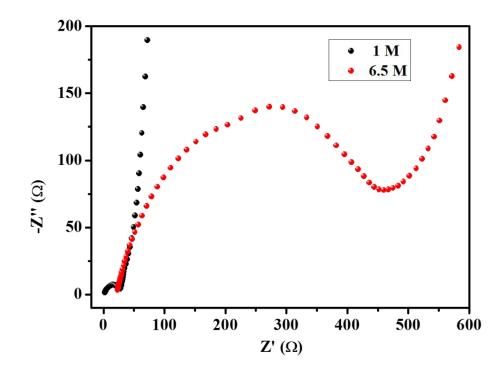


Figure. S1 Impedance plots of the $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ /electrolyte/Li cell with the 1M diluted electrolyte and 6.5 M high concentration electrolyte after the third cycle.

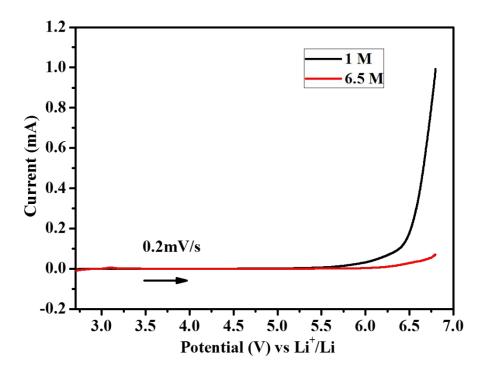


Figure. S2 Current-potential curve of Li/electrolyte/Pt cell: Pt as the working electrode and Li as the counter and the reference electrode, at a scan rate of 0.2 mV s^{-1} from 2.7 to 6.8V.

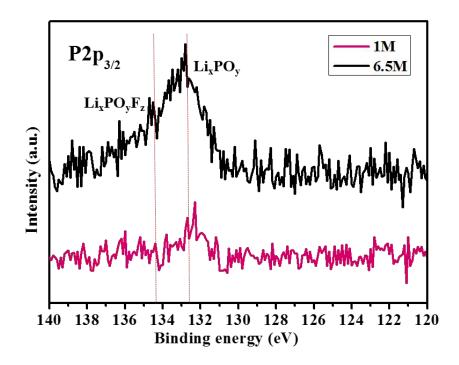


Figure. S3 XPS analyses on SEI formed on $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode surfaces in 1M and 6.5M EC/DMC-LiPF₆ electrolytes, P2p_{3/2} spectra are presented as indicated.

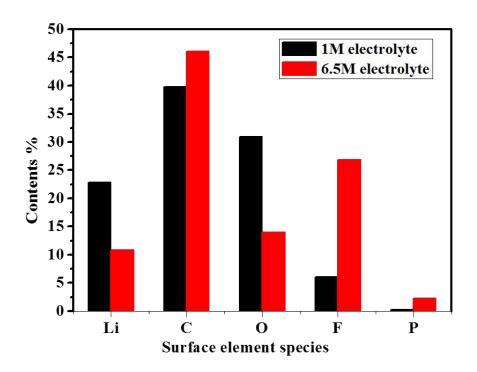


Figure. S4 The surface element distribution of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode by the XPS analysis.