Covalently Immobilized Polyethylenimine for CO_{2} Adsorption

Joel M. Kolle and Abdelhamid Sayari*

Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
 * Corresponding author

 Electronic Supporting Information

 Electronic Supporting Information}

Material Preparation

Aluminosilica was prepared as follows: 4 g of TMAOH was diluted with water (38.5 g) before adding 5.7 g CTAB under vigorous stirring. After $15 \mathrm{~min}, 0.2 \mathrm{~g}$ of NaAlO_{2} was added and stirring continued for 30 min , after which 2.1 g Cab-O-Sil was added. The composition of the synthesis mixture was $1.0 \mathrm{SiO}_{2}: 0.317$ TMAOH:0.45 CTAB:0.035 $\mathrm{Al}_{2} \mathrm{O}_{3}: 67 \mathrm{H}_{2} \mathrm{O}$, with a nominal $\mathrm{Si} / \mathrm{Al}$ ratio of ca. 15. The mixture was then sealed in an autoclave and placed in an oven preheated at $80^{\circ} \mathrm{C}$ for 40 h . The obtained material was filtered, washed extensively and dried under ambient conditions to afford as-synthesized aluminosilica. Partial surfactant (CTAB) extraction was carried out in EtOH and room temperature. Pore expansion was carried out through hydrothermal treatment of the resultant dried powder in the presence of DMDA. To a mixture of DMDA (1 g) and water (30 g) at RT, 0.8 g of the as-synthesized sample was added. After stirring for an hour, the mixture was heated at $120^{\circ} \mathrm{C}$ for 2 days under autogenous pressure. The solid material was collected by filtration, dried at ambient temperature and calcined in flowing N_{2} at $550{ }^{\circ} \mathrm{C}$ by raising the temperature at $1^{\circ} \mathrm{C} / \mathrm{min}$. The gas was then switched to air at $550^{\circ} \mathrm{C}$ and kept for 5 h to remove any remaining carbonaceous material, to afford $\mathrm{PE}-\mathrm{AlSiO}_{2}$.

Figure S1. Nitrogen adsorption-desorption isotherms of pristine and functionalized supports.

Figure $\mathrm{S} 2 .{ }^{27} \mathrm{Al}$ NMR spectra of $\mathrm{PE}-\mathrm{AlSiO}_{2}$

Figure $\mathrm{S} 3 .{ }^{13} \mathrm{C}$ NMR spectra of PEI in $\mathrm{D}_{2} \mathrm{O}$

Figure S4. ${ }^{13}$ C NMR of solid materials, with higher grafting agent-to-PEI ratio, dissolved in 10% $\mathrm{NaOH}\left(\mathrm{D}_{2} \mathrm{O}\right)$.

Figure S5. ${ }^{13} \mathrm{C}$ CP-MAS NMR spectra of GPS (top) and TPI (botton) immobilized on PE-AISIO ${ }_{2}$ in anhydrous toluene

(a)

(b)

Scheme S1. Reaction of (a) isocyanate and (b) 2-(propoxymethyl)oxirane with water to form urea and diol, respectively

Table S1. Changes in CO_{2} capacity and organic content following leaching in EtOH

		CO_{2} uptake (mmol/g)			Organic content (wt\%)		
Entry	Material	Fresh	EtOH-leached	\% difference	Fresh	EtOH-leached	\% difference
1	M1-68	2.76	0.48	83	47.18	23.63	50
2	M2	2.76	1.17	58	52.32	30.39	42
3	M3-59	2.89	1.34	54	47.31	32.07	32
4	M4	2.31	1.51	35	49.79	40.46	19
5	M5	2.28	1.39	39	49.82	38.78	22
6	M6	2.34	1.68	28	51.20	43.73	15
7	M7	2.46	1.83	26	51.58	45.59	12
8	M8	2.44	2.01	18	53.44	49.5	7
9	M9	2.19	1.56	29	49.15	45.24	8
10	M10	2.19	1.65	25	50.12	45.61	9
11	M11-62	2.75	1.15	59	51.64	36.47	29

Leaching test procedure: 0.5 g of material stirred in 50 mLEtOH for 2 h

Table S2. Variation of CO_{2} uptake following thermal oxidation degradation at $100^{\circ} \mathrm{C}$ over time

Entry	Material	Thermal oxidation duration			
		$\mathbf{0} \mathbf{~}$	$\mathbf{1 6} \mathbf{~}$	$\mathbf{2 4} \mathbf{~}$	$\mathbf{4 0} \mathbf{~ h}$
1	M 1	2.76	-	0.63	-
2	M 2	2.76	2.21	0.97	0.23
3	M 7	2.46	1.84	1.05	0.34
4	M 8	2.44	2.19	1.97	1.13
5	M 9	2.19	1.95	1.55	0.76
6	M 10	2.19	2.09	1.82	0.98
7	M 11	2.75	-	1.05	-

