Supporting Information

PEGylation near a patch of non-polar surface residues increases the conformational stability of the WW domain

Steven R. E. Draper, Dallin S. Ashton, Benjamin M. Conover, Anthony J. Carter, Kimberlee L. Stern, Qiang Xiao and Joshua L. Price*

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States

jlprice@chem.byu.edu

1.	ESI-TOF MS Spectra	S2
2.	Analytical HPLC Chromatograms	S10
3.	Variable Temperature CD Experiments	S34

1. ESI-TOF MS spectra

Sequences, molecular formulas, and expected and observed m/z ratios for each WW variant are given in Table S1. ESI-TOF MS spectra for each variant appear in Figures S1–S24.

Protein	Sequence	Molecular Formula	z	Expected [M+z·H]/z	Observed [M+z·H]/z
LL	$H_2N\text{-}KLPPGW\textbf{L}K\textbf{L}MSRSSGRV\textbf{Z}YFNHITNASQFERPSG\text{-}OH$	$C_{181}H_{273}N_{51}O_{48}S$	4	991.2633	991.2594
LA	H_2N -•••••LKAMSRSSGRVZ••••••OH	$C_{178}H_{267}N_{51}O_{48}S$	4	980.7516	980.7500
AL	H_2N -•••••• A K L MSRSSGRV Z ••••••••OH	$C_{178}H_{267}N_{51}O_{48}S$	4	980.7516	980.7511
AA	$H_2N\text{-}\cdots\text{-}AK\textbf{A}MSRSSGRV\textbf{Z}\cdots\text{-}OH$				
pLL	$H_2N-\cdots-LKLMSRSSGRVZ$ OH	C190H292N54O52S	4	1049.5477	1049.5450
pLA	H_2N -••••• L KAMSRSSGRV Z ••••••OH	$C_{187}H_{286}N_{54}O_{52}S$	4	1039.0360	1039.0326
pAL	H_2N -••••••AKLMSRSSGRVZ	C187H286N54O52S	4	1039.0360	1039.0357
рАА	H_2N -•••••AKAMSRSSGRVZ				
FF	H ₂ N-•••• F K F MSRSSGRV Z ••••••OH	$C_{187}H_{269}N_{51}O_{48}S$	4	1008.2555	1008.2572
FA	H_2N -•••• F K A MSRSSGRV Z ••••••OH	$C_{181}H_{265}N_{51}O_{48}S$	4	989.2476	989.2472
AF	H_2N -••••• A K F MSRSSGRV Z ••••••••••••••••••••••••••••••••••••	$C_{181}H_{265}N_{51}O_{48}S$	4	989.2476	989.2480
pFF	H_2N -•••• F K F MSRSSGRV Z ••••••OH	C196H288N54O52S	4	1066.5399	1066.5338
pFA	$H_2N-\cdots-FKAMSRSSGRVZ-\cdots-OH$	$C_{190}H_{284}N_{54}O_{52}S$	4	1047.5321	1047.5375
pAF	H ₂ N-••••• A K F MSRSSGRV Z ••••••OH	$C_{190}H_{284}N_{54}O_{52}S$	4	1047.5321	1047.5337
XX	H ₂ N-••••• X K X MSRSSGRV Z ••••••OH	$C_{187}H_{281}N_{51}O_{48}S$	4	1011.2790	1011.2825
XA	H_2N -••••• X K A MSRSSGRV Z •••••••OH	$C_{181}H_{271}N_{51}O_{48}S$	4	990.7594	990.7580
AX	$H_2N-\cdots$ $AKXMSRSSGRVZ \cdots$ OH	$C_{181}H_{271}N_{51}O_{48}S$	4	990.7594	990.7629
pXX	$H_2N-\cdots \times XKXMSRSSGRVZ \cdots OH$	C196H300N54O52S	4	1069.5634	1069.5557
pXA	H ₂ N-••••• X K A MSRSSGRV Z ••••••OH	$C_{190}H_{290}N_{54}O_{52}S$	4	1049.0438	1049.0425
pAX	H ₂ N-••••• A K X MSRSSGRV Z •••••••OH	$C_{190}H_{290}N_{54}O_{52}S$	4	1049.0438	1049.0381
XL	H_2N -••••• X KLMSRSSGRV Z ••••••••••••••••••••••••••••••••••••	$C_{184}H_{277}N_{51}O_{48}S$	4	1001.2711	1001.2705
FL	$H_2N-\cdots FKLMSRSSGRVZ\cdots OH$	$C_{184}H_{271}N_{51}O_{48}S$	4	999.7594	999.7586
LF	H_2N -•••••LKFMSRSSGRVZ•••••••••OH	$C_{184}H_{271}N_{51}O_{48}S$	4	999.7594	999.7577
pXL	$H_2N-\cdots \times KLMSRSSGRVZ \cdots OH$	C193H296N54O52S	4	1059.5555	1059.5534
pFL	$H_2N-\cdots FKLMSRSSGRVZ\cdots OH$	$C_{193}H_{290}N_{54}O_{52}S$	4	1058.0438	1058.0419
pLF	$H_2N-\cdots-LKFMSRSSGRVZ-\cdots-OH$	$C_{193}H_{290}N_{54}O_{52}S$	4	1058.0438	1058.0412

Table S1. Sequences, molecular formulas, expected and observed m/z ratios for WW variants.

Figure S1. ESI-TOF MS data for LL (SD1075#1). Expected $[M+4H^+]/4 = 991.2633$.

Figure S2. ESI-TOF MS data for LA (DA1018#2). Expected $[M+4H^+]/4 = 980.7516$.

Figure S3. ESI-TOF MS data for AL (DA1018#1). Expected $[M+4H^+]/4 = 980.7516$

Figure S4. ESI-TOF MS data for pLL (SD1075#1C). Expected $[M+4H^+]/4 = 1049.5477$.

Figure S5. ESI-TOF MS data for pLA (DA1018#4). Expected $[M+4H^+]/4 = 1039.0360$.

Figure S6. ESI-TOF MS data for pAL (DA1018#3). Expected $[M+4H^+]/4 = 1039.0360$.

Figure S7. ESI-TOF MS data for FF (DA1037#1). Expected $[M+4H^+]/4 = 1008.2555$.

Figure S8. ESI-TOF MS data for FA (SD2176#1). Expected $[M+4H^+]/4 = 989.2476$.

Figure S9. ESI-TOF MS data for AF (DS2176#2). Expected $[M+4H^+]/4 = 989.2476$.

Figure S10. ESI-TOF MS data for pFF (DA1037#3). Expected $[M+4H^+]/4 = 1066.5399$.

Figure S11. ESI-TOF MS data for pFA (SD2176#1p). Expected $[M+4H^+]/4 = 1047.5321$.

Figure S12. ESI-TOF MS data for pAF (SD2176#2p). Expected $[M+4H^+]/4 = 1047.5321$.

Figure S13. ESI-TOF MS data for XX (DA1037#2). Expected $[M+4H^+]/4 = 1011.2790$.

Figure S14. ESI-TOF MS data for XA (SD2184#2). Expected $[M+4H^+]/4 = 990.7594$.

Figure S15. ESI-TOF MS data for AX (SD2184#1). Expected $[M+4H^+]/4 = 990.7594$.

Figure S16. ESI-TOF MS data for pXX (DA1037#4). Expected [M+4H⁺]/4 = 1069.5634.

Figure S18. ESI-TOF MS data for pAX (SD2184#1p). Expected $[M+4H^+]/4 = 1049.0438$.

Figure S19. ESI-TOF MS data for XL (BC1039#1). Expected $[M+4H^+]/4 = 1001.2711$.

Figure S20. ESI-TOF MS data for LF (BC1039#3). Expected $[M+4H^+]/4 = 999.7594$.

Figure S21. ESI-TOF MS data for FL (BC1039#4). Expected $[M+4H^+]/4 = 999.7594$.

Figure S22. ESI-TOF MS data for pXL (BC1039#1p). Expected $[M+4H^+]/4 = 1059.5555$.

Figure S23. ESI-TOF MS data for pLF (BC1039#3p). Expected $[M+4H^+]/4 = 1058.0438$.

Figure S24. ESI-TOF MS data for pFL (BC1039#4p). Expected $[M+4H^+]/4 = 1058.0438$.

2. Analytical HPLC Chromatograms

Peptide solution was injected onto a C18 analytical column and eluted with a linear gradient of 10–60% B (A = H2O, 0.1% TFA; B= MeCN, 0.1% TFA) over 50 min.; 10-min. rinse (95% B); and 10-min. column re-equilibration. Chromatograms appear in Figures S25–S48.

Figure S25. Analytical HPLC data for LL (SD1075#1). Retention time = 31.658 minutes.

Figure S26. Analytical HPLC data for LA (DA1018#2). Retention time = 36.18 minutes.

Figure S27. Analytical HPLC data for AL (DA1018#1). Retention time = 36.28 minutes.

Figure S28. Analytical HPLC data for pLL (SD1075#1C). Retention time = 28.217 minutes.

Figure S29. Analytical HPLC data for pLA (DA1018#4). Retention time = 35.68 minutes.

Figure S30. Analytical HPLC data for pAL (DA1018#3). Retention time = 35.52 minutes.

Figure S31. Analytical HPLC data for FF (DA1037#1). Retention time = 45.98 minutes.

Figure S32. Analytical HPLC data for FA (SD2176#1). Retention time = 40.26 minutes.

Figure S33. Analytical HPLC data for FA (SD2176#2). Retention time = 42.31 minutes.

Figure S34. Analytical HPLC data for pFF (DA1037#3). Retention time = 30.47 minutes.

Figure S35. Analytical HPLC data for pFA (SD2176#1p). Retention time = 33.167 minutes.

Figure S36. Analytical HPLC data for pAF (SD2176#2p). Retention time = 24.408 minutes.

Figure S37. Analytical HPLC data for XX (DA1037#2). Retention time = 36.18 minutes.

Figure S38. Analytical HPLC data for XA (SD2184#2). Retention time = 37.70 minutes.

Figure S39. Analytical HPLC data for AX (SD2184#1). Retention time = 37.70 minutes.

Figure S40. Analytical HPLC data for pXX (DA1037#4). Retention time = 32.78 minutes.

Figure S41. Analytical HPLC data for pXA (SD2184#2p). Retention time = 36.81 minutes.

Figure S42. Analytical HPLC data for pAX (SD2184#1p). Retention time = 37.35 minutes.

Figure S43. Analytical HPLC data for XL (BC1039#1). Retention time = 38.86 minutes.

Figure S44. Analytical HPLC data for FL (BC1039#4). Retention time = 37.67 minutes.

Figure S45. Analytical HPLC data for LF (BC1039#3). Retention time = 37.91 minutes.

Figure S46. Analytical HPLC data for pXL (BC1039#1p). Retention time = 38.26 minutes.

Figure S47. Analytical HPLC data for pFL (BC1039#4p). Retention time = 36.54 minutes.

Figure S48. Analytical HPLC data for pLF (BC1039#3p). Retention time = 37.05 minutes.

3. Fitting of Variable Temperature CD data

Variable temperature CD data were obtained at least in triplicate (one sample was made and then aliquoted into three different cuvettes) by monitoring the molar ellipticity [θ] at 227 nm of 50 µM solutions of each WW variant in 20 mM sodium phosphate (pH 7) from 1 to 95 °C at 2 °C intervals, with 120 s equilibration time between data points and 30 s averaging time. Triplicate variable temperature CD data for each peptide were fit globally to a two-state model for thermally induced unfolding. This approach treats the observed [θ] of a peptide solution at a given temperature as the average of the [θ] values for the folded state and the unfolded ensemble, weighted according to their relative concentrations at that temperature, as shown in the following equation:

$$[\theta] = (a + bT)(F_{\text{folded}}) + (c + dT)(1 - F_{\text{folded}})$$
(S1)

In equation S1, T is the temperature in Kelvin; a and b are the intercept and slope of the pre-transition baseline (which represents the linear dependence of the folded ensemble CD signal [θ] on temperature); c and d are the intercept and slope of the post-transition baseline (which represents the linear dependence of the unfolded ensemble CD signal [θ] on temperature); and F_{folded} is the fraction of the total protein concentration that is folded as at temperature T.

 F_{fit} is a function of the folding equilibrium constant; folding of WW involves an equilibrium between an unfolded monomer (U) and a folded monomer (F) with the temperature-dependent equilibrium constant K as defined below:

$$\mathbf{U} \rightleftharpoons \mathbf{F}; \ \mathbf{K} = \frac{[\mathbf{F}]}{[\mathbf{U}]}$$
 (S2)

The constant total concentration of peptide in solution P is defined by equation S3:

S19

$$\mathbf{P} = [\mathbf{U}] + [\mathbf{F}] = [\mathbf{U}] + \mathbf{K}[\mathbf{U}] \tag{S3}$$

F_{folded} of the monomer folding equilibrium is defined as follows:

$$F_{\text{folded}} = \frac{K}{1+K} \tag{S4}$$

In each of these cases, **K** is related to the change in free energy upon folding (ΔG_f):

$$\mathbf{K} = \mathrm{e}^{-\frac{\Delta G_{\mathrm{f}}}{\mathrm{RT}}} \tag{S5}$$

In turn, the temperature-dependence of ΔG_f for can be expressed as a polynomial expansion about the melting temperature T_m (i.e., the temperature at which $F_{folded} = 0.5$, K = 1, and $\Delta G_f = 0$):

$$\Delta G_{\rm f} = \Delta G_1 (T - T_{\rm m}) + \Delta G_2 (T - T_{\rm m})^2 \tag{S6}$$

where ΔG_1 , ΔG_2 , and T_m are parameters to be determined via least-squares regression (though ΔG_2 was excluded from the fits of all the WW variants described here, because attempts to use it resulted in corresponding parameter standard error values that were too high). We used least-squares regression to fit the variable temperature CD for each variant to these equations. Far-UV CD spectra and variable temperature CD data for these compounds are shown below in Figures S49-S74, along with the parameters of the fits (and their standard errors and p-values) and fit statistics (including R² and sum of the squared residuals).

Figure S49. CD data for **LL** (SD1075#1).

Figure S50. CD data for LA (DA1018#2).

Figure S51. CD data for AL (DA1018#1).

Figure S52. CD data for AA.

Figure S53. CD data for pLL (SD1075#1C).

Figure S54. CD data for pLA (DA1018#4).

Figure S55. CD data for pAL (DA1018#3).

Figure S56. CD data for pAA.

Figure S57. CD Data for FF (DA1037#1).

Figure S58. CD Data for FA (SD2176#1).

Figure S59. CD data for AF (DS2176#2).

Figure S60. CD data for pFF (DA1037#3).

Figure S61. CD data for pFA (SD2176#1p).

Figure S62. CD data for pAF (SD2176#2p).

Figure S63. CD data for XX (DA1037#4).

FigureS64. CD data for XA (SD2184#2).

[9]/(deg cm ⁻² dmol ⁻¹ x 10 ⁻³) 9]/(deg cm ⁻² dmol ⁻¹ x 10 ⁻³) 9 10 10 10 10 10 10 10 10 10 10	ο 220 230 240 250 2 λ (nm)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	B 330 350 370	C C C C C C C C C C C C C C	C 0 0 C 0 C			
Parameters	Values	Units	P–Values					
ΔG_1	0.0844 ± 0.0016	kcal/mol/K	<0.001					
ΔG_2			<0.001					
T _m	325.5 ± 0.2	К	<0.001					
al	16.8 ± 0.5	deg cm² dmol ⁻¹ x 10 ⁻³	<0.001	$R^2 - 0$	99985			
b1	-0.0346 ± 0.0016	deg cm² dmol ⁻¹ K ⁻¹ x 10 ⁻³	<0.001	1 = 0.00000				
c1	3.89 ± 0.90	deg cm² dmol ⁻¹ x 10 ⁻³	<0.001	sum residua	ls ² = 0.42627			
d1	-0.0159 ± 0.0025	$\deg {\rm cm}^2 {\rm dmol}^{-1} {\rm K}^{-1} {\rm x} { m 10}^{-3}$	<0.001					
a2	18.1 ± 0.4	deg cm ⁻² dmol ⁻¹ x 10 ⁻³	<0.001					
b2	-0.0395 ± 0.0016	deg cm ⁻² dmol ⁻¹ K ⁻¹ x 10 ⁻³	<0.001	For AX , at	t 325.5 K			
c2	4.21 ± 0.88	deg cm ⁻² dmol ⁻¹ x 10 ⁻³	<0.001	$\Lambda C_{1} = 0.00 \pm 0.02$ kcal/mol	0.02 kcal/mal			
d2	2 -0.0170 ± 0.0024 deg cm ² dmol ⁻¹ K ⁻¹ x 10 ⁻³			$\Delta \Theta_{\rm f} = 0.00 \pm 0.02 \text{kcal/mol}$				
a3	17.9 ± 0.4	deg cm² dmol ⁻¹ x 10 ⁻³	<0.001					
b3	-0.0390 ± 0.0016	deg cm² dmol $^{-1}$ K $^{-1}$ x 10 $^{-3}$	<0.001					
c3	4.67 ± 0.88	deg cm $^{-2}$ dmol $^{-1}$ x 10 $^{-3}$	<0.001					
d3	-0.0184 ± 0.0024	$\deg cm^2 dmol^{-1} {\rm K}^{-1} x 10^{-3}$	<0.001					

Figure S65. CD data for **AX** (SD2184#1).

Figure S66. CD data for pXX (DA1037#4).

Figure S67. CD data for pXA (SD2184#2p).

Figure S68. CD data for pAX (SD2184#1p).

Figure S69. CD data for **XL** (BC1039#1).

Figure S70. CD data for FL (BC1039#4).

Figure S71. CD data for LF (BC1039#3).

Figure S72. CD data for pXL (BC1039#1p).

Figure S73. CD data for pFL (BC1039#4p).

Figure S74. CD data for pLF (BC1039#3p).