Supporting Information

Design of a High-Performance Electrocatalyst for N₂ Conversion to NH₃ by

Trapping Single Metal Atoms on Stepped CeO2

Jiamin Qi,^a Liye Gao,^a Fenfei Wei,^a Qiang Wan,^{a,b} and Sen Lin^{a,*}

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China

^bDepartment of Chemistry, University of California, Riverside, CA 92521, United States

*Corresponding author. Email: <u>slin@fzu.edu.cn</u>

Energy		$E_{\rm b}$ / eV				
cutoff / eV						
	Sc	Ti	V	Cr		
400	-8.90	-9.48	-5.87	-4.84		
450	-8.89	-9.43	-5.86	-4.84		
	Mn	Fe	Со	Ni		
400	-4.72	-5.58	-5.41	-4.51		
450	-4.64	-5.58	-5.53	-4.58		
_	Cu	Zn	Y	Zr		
400	-3.96	-2.18	-8.72	-10.95		
450	-3.95	-2.20	-8.73	-10.93		
_	Nb	Мо	Ru	Rh		
400	-7.33	-5.49	-5.37	-4.82		
450	-7.34	-5.48	-5.28	-4.89		
-	Pd	Ag	Cd	Hf		
400	-3.70	-2.69	-1.00	-8.31		
450	-3.69	-2.67	-0.98	-8.40		
-	Та	W	Re	Os		
400	-11.49	-6.64	-5.60	-6.26		
450	-11.59	-6.59	-5.56	-6.26		
-	Ir	Pt	Au	Hg		
400	-6.23	-5.41	-3.20	0.13		
450	-6.27	-5.40	-3.20	0.06		

Table S1. The binding energy (*E*_b) of 28 M anchored on CeO₂-S with different cutoff energy.

Table S2. The binding energy (E_b) of Mo anchored on CeO₂-S and the adsorption energy (E_{ads}) of *N₂ with end-on configuration on Mo/CeO₂-S with different parameters such as lattice constant of the cell, *k*-point grids, and the criterion of force convergence.

Ma/CaOa S	Lattice constant	k point gride	Force convergence
10/02-3	Lattice constant	<i>k</i> -point grids	criterion
	<i>a</i> =7.65 Å, <i>b</i> =13.25 Å	2×2×1	0.05 eV/Å
$E_{\rm b}$ / ${ m eV}$	-5.49	-5.49	-5.49
$E_{ m ads}$ / ${ m eV}$	-1.09	-1.09	-1.09
	<i>a</i> =15.30 Å, <i>b</i> =13.25 Å	4×2×1	0.02 eV/Å
$E_{\rm b}$ / ${ m eV}$	-5.45	-5.47	-5.47
$E_{ m ads}$ / eV	-1.16	-1.07	-1.11

Table S3. Calculated vibrational frequencies, zero point energies and entropy of different adsorption species of Mo/CeO₂-S and Ru/CeO₂-S through distal, alternating and enzymatic mechanism, where the * denotes the adsorption site, therefore $N \equiv N$ and $N \equiv N$ represent the end-on and side-on configurations respectively.

	Mechanism	Adsorption Species	Vibrational Frequencies/cm ⁻¹		Ezpe / eV	TS / eV	
		*N≡N	2135.09	388.40 51.93	346.17 22.67	0.20	0.19
		*N=NH	3132.35 521.18	1574.01 518.47	1227.99 382.57	0.48	0.17
		*N-NH2	256.80 3481.24 1438.44 409.39	75.37 3374.49 1200.71 366.05	42.99 1594.47 538.43 243.60	0.80	0.15
	D' 1		171.08	57.76	054.50	0.10	0.04
	Distal	*N *NH	942.35 3426.20 367.89	365.99 893.90	254.79 708.57 124.40	0.10	0.04
Mo/CeO2-S		*NH2	3501.99 782.47 329.14	3212.30 615.82 127.15	1491.03 571.84	0.66	0.07
		*NH3	3410.06 1586.09 877.01 449.79	2653.00 1492.12 766.74 220.56	2591.39 1345.89 495.87 184.47	1.00	0.08
	Alternating	*NH=NH	3302.86 1360.06 551.26 213.71	3193.08 1266.13 449.42 71.97	1495.08 903.01 282.26 35.24	0.81	0.19
		*NH-NH2	3536.94 1603.15 1220.79 512.53 216.38	3408.06 1552.88 911.44 341.93 79.00	2633.20 1254.20 602.90 285.32	1.13	0.13
		*NH2-NH2	3380.01 3027.33 1466.03 1113.45 483.34 174.96	3244.76 1685.65 1382.18 874.53 440.68 126.37	3061.59 1610.13 1149.51 628.85 208.32	1.49	0.13

		*N≡*N	1753.42	582.80	402.00	0.18	0.11
			118.77	87.84		0.18	0.11
			3343.22	1127.35	1048.79		
		*N=*NH	637.10	516.76	431.88	0.47	0.15
			230.84	108.24	62.22		
			3336.08	3293.20	1317.89		
		*NH=*NH	1127.21	1011.62	733.44	0.91	0.15
			722.01	549.60	501.61	0.81	0.15
			248.81	110.88	49.23		
			3460.25	3357.04	2649.31		
			1639.29	1378.56	1173.63		
		*NH-*NH ₂	1137.06	1071.02	796.20	1.14	0.11
			688.75	419.11	264.98		
	Enzymatic		203.22	96.91			
			3529.25	3387.01	3376.03		
			2821.67	1494.82	1480.25		
		*NH2 *NH2	856.19	795.23	642.77	1 3 3	0.20
		INII2- INII2	627.39	599.71	491.71	1.55	0.20
			428.07	321.77	197.15		
			165.07	119.51	106.44		
		*NH2-*NH3	3482.34	3389.09	3362.90		
			2646.15	2590.92	1594.20		
			1540.11	1518.68	1376.30		
			881.88	811.94	713.59	1.67	0.20
			593.70	507.17	447.97		
			421.57	382.54	237.53		
			190.08	133.99	75.63		
		*N=N	2113.37	435.66	395.14	0.21	0.16
			366.32	74.52	41.45	0.21	0.10
			3188.90	1703.16	1162.44		
		*N=NH	552.74	511.31	391.47	0.49	0.17
			269.26	69.54	50.03		
			3433.05	2391.12	1518.51		
Ru/CeO2-S		*N-NH2	1476.65	1198.72	915.24	0.79	0.1
		11-1112	672.18	394.59	337.56	0.79	0.1
	Distal		170.81	158.86			
		*N	1052.66	190.13	133.50	0.09	0.08
		*NH	3394.80	954.41	709.47	0.35	0.05
		. INЦ	442.31	148.51		0.55	0.05
		*NH2	3478.51	3389.71	1473.61		
			815.19	714.52	555.95	0.69	0.14
			460.94	148.66	27.84		
		*NH3	3467.06	3399.98	3243.04	1.02	0.14
			1603.87	1581.07	1228.92	1.05	0.14

			714.83	644.12	395.12		
			163.00	144.64	86.87		
			3273.53	3109.68	1501.56		
		*	1430.90	1278.42	1163.88	0.92	0.12
		*NH=NH	503.55	467.54	275.67	0.82	0.13
			132.89	75.96			
			3412.35	3342.76	3193.92	1.14	
			1598.29	1403.98	1212.76		
		*NH-NH ₂	1114.81	886.01	627.54		0.12
	Alternating		597.14	338.85	294.11		
			208.20	94.60			
			3422.71	3343.17	3113.53		
			2847.58	1636.23	1594.61		
		****	1416.26	1287.78	1174.11	1 40	0.24
		*NH2-NH2	1091.44	881.43	704.78	1.49	0.24
			486.72	423.31	255.93		
			183.06	162.56	4.39		
			1967.21	451.77	202.24	0.10	0.11
		*N≡*N	143.61	131.19		0.18	0.11
		*N=*NH	3132.08	1447.12	994.69	0.45	0.11
			702.89	466.18	272.12		
			156.65	135.05			
		*NH=*NH	3243.39	3061.03	1412.58	0.83	0.12
			1259.99	1127.61	997.93		
			785.68	509.45	404.08		
			274.85	168.65	113.60		
			3341.08	3140.31	2826.21	1.16	0.16
			1603.17	1371.57	1177.60		
		*NH-*NH ₂	1105.08	1049.87	990.11		
			812.41	507.22	371.42		
	Enzymatic		239.62	151.63	38.80		
			3480.03	3389.78	3364.55		
			3308.80	1548.67	1457.24		0.20
		*	803.66	753.89	722.65		
		*NH2-*NH2	607.98	564.96	540.40	1.36	
			514.97	254.58	245.12		
			186.80	103.42	91.35		
			3434.97	3378.44	3322.53		0.21
			3120.18	3060.40	1608.81		
		*NH2-*NH3	1589.20	1453.46	1374.49	1.71	
			871.51	863.02	758.34		
			683.40	537.53	393.41		
			310.27	251.28	229.83		
			183.57	132.92	100.52		

(a)	~~~/		Mo-O1 / Å	Mo-O2 / Å
		*	1.795	1.840
		*N≡N	1.784	1.822
		*N=NH	1.854	1.904
		$*N-NH_2$	1.829	1.867
	1	*N	1.835	1.883
	Mo	*NH	1.837	1.878
	2	*NH ₂	1.786	1.798
		*NH3	1.796	1.820
(b)			Ru-O1 / Å	Ru-O2 / Å
()		*	1.915	1.949
		*N≡N	1.896	1.982
		*N=NH	1.861	1.893
		$*N-NH_2$	1.858	1.913
	1	*N	1.913	1.987
	Ru	*NH	1.812	1.922
	2	*NH ₂	1.820	1.865
		*NH3	1.867	1.920

Figure S1. The change of lengths of (a) Mo-O and (b) Ru-O bonds in NRR process through distal mechanism, in which the * denotes the adsorption site.

Figure S2. Free energy diagram for NRR on Os/CeO₂-S following (a) distal and (b) alternating pathway. The corresponding configurations of NRR intermediates are shown in the (c) and (d) respectively. Color scheme: N, navy blue; H, white; Ce, yellow; O, red; and Os, blue-green.

Figure S3. Charge variation for each moiety along the alternating pathway on Mo/CeO₂-S. Moieties 1, 2 and 3 represent the M/CeO₂-S, the adsorbed N_xH_y species, and the CeO₂-S substrate, respectively.