Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes

Sheng Feng, ${ }^{\dagger}$ Hua Hao, ${ }^{\dagger}$ Peng Liu, ${ }^{*}+{ }^{\ddagger}$ and Stephen L. Buchwald ${ }^{*}, \dagger$
${ }^{\dagger}$ Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
${ }^{\ddagger}$ Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

Table of Contents

1. General Information 2
2. Optimization and General Procedures for Hydroamination Reactions 3
3. Characterization Data for Hydroamination Products 10
4. Preparation of Alkene Substrates and Amination Reagents 22
5. Computational Details 33
6. References and Notes 86
7. Spectroscopic Data 87
8. SFC Traces 125

1. General Information

1.1 General Analytical Information

All new compounds were characterized by NMR spectroscopy, IR spectroscopy, elemental analysis or high resolution mass spectrometry, optical rotation (if chiral and non-racemic) and melting point analysis (if solids). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded in CDCl_{3} on a Bruker 400 or 500 MHz spectrometer. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift in reference to residual CHCl_{3} at $7.26 \mathrm{ppm}(\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, br s $=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, sex $=$ sextet, sep $=$ septet, $\mathrm{dd}=$ double of doublets, td $=$ triplet of doublets, $m=$ multiplet), coupling constant (Hz), and integration. Chemical shifts for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift in reference to the CDCl_{3} solvent signal (77.16 ppm). Chemical shifts for ${ }^{19} \mathrm{~F}$ NMR are reported in ppm relative to CFCl_{3} (0.00 ppm). IR spectra were recorded on a Thermo Scientific Nicolet iS5 spectrometer (iD5 ATR, diamond) and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Melting points were measured on a Mel-Temp capillary melting point apparatus. Optical rotations were measured using a Jasco P-1010 digital polarimeter. Elemental analyses were performed by Atlantic Microlabs Inc., Norcross, GA. High-resolution mass spectra were recorded on a JEOL AccuTOF LC-Plus 46 DART system. Enantiomeric excesses (ee's) were determined by chiral SFC analysis using a Waters Acquity UPC2 instrument; specific columns and analytical methods are provided in the experimental details for individual compounds; the wavelengths of light used for chiral analyses are provided with the associated chromatograms. Thin-layer chromatography (TLC) was performed on silica gel $60 \AA \mathrm{~F}_{254}$ plates (SiliaPlate from Silicycle) and visualized with UV light, iodine or potassium permanganate stain. Preparatory thin-layer chromatography (PrepTLC) was performed on silica gel GF with UV $254(20 \times 20 \mathrm{~cm}, 1000$ microns, catalog \# TLG-R10011B-341 from Silicycle) and visualized with UV light. Isolated yields reported reflect the average values from two independent runs.

1.2 General Reagent Information

All reactions were performed under a nitrogen atmosphere using the indicated method in the general procedures. Tetrahydrofuran (THF) was purchased from J.T. Baker in CYCLETAINER ${ }^{\circledR}$ solvent delivery kegs and purified by passage under argon pressure through two packed columns of neutral alumina and copper(II) oxide. Anhydrous 1,4-dioxane was purchased from Aldrich Chemical Company in a Sure-Seal ${ }^{\text {TM }}$ bottle and used as received. Copper(II) acetate was purchased from Strem and was used as received. 1,2-Bis((2S,5S)2,5diphenylphospholano)ethane, 1,2-Bis((2R,5R)2,5-diphenylphospholano)ethane (Ph-BPE) ligands were purchased from Namena Corp. and stored in a nitrogen-filled glove box. DTBMSEGPHOS was purchased from Takasago International Co. and used as received. Diethoxymethylsilane was purchased from TCI America. Dimethoxy(methyl)silane (DMMS) was purchased from Tokyo Chemical Industry Co. (TCI). Both silanes were stored in a nitrogenfilled glove box at $-20^{\circ} \mathrm{C}$ for long-term storage. (Caution: Dimethoxy(methyl)silane (DMMS, CAS\#16881-77-9) is listed by several vendors (TCI, Alfa Aesar) SDS or MSDS as a H318, a category 1 Causes Serious Eye Damage Other vendors (Sigma-Aldrich, Gelest) list DMMS as a H319, a category II Eye Irritant. DMMS should be handled in a well-ventilated fumehood using proper precaution as outlined for the handling of hazardous materials in prudent practices in the laboratory ${ }^{1}$. At the end of the reaction either ammonium fluoride in methanol, aqueous sodium hydroxide (1 M) or aqueous hydrochloric acid (1 M) should be carefully added to the reaction mixture. This should be allowed to stir for at least 30 min or the time indicated in the detailed
reaction procedure). 1,2-Benzisoxazole was purchased from Tokyo Chemical Industry Co. (TCI) and stored in a refrigerator at $4^{\circ} \mathrm{C}$. All other solvents and commercial reagents were used as received from Sigma Aldrich, Alfa Aesar, Acros Organics, TCI and Combi-Blocks, unless otherwise noted. Flash column chromatography was performed using $40-63 \mu \mathrm{~m}$ silica gel (SiliaFlash® F60 from Silicycle), or with the aid of a Biotage Isolera Automated Flash Chromatography System using prepacked SNAP silica cartridges (10-100 g). Organic solutions were concentrated in vacuo using a Buchi rotary evaporator.

2. Optimization and General Procedures for Hydroamination Reactions

2.1 Optimization of $\mathbf{C u H}$-Catalyzed Hydroamination of 1-Arylcyclobutenes

Table S1. Effect of Solvent and Temperature on Hydroamination of 1-Arylcyclobutenes ${ }^{a}$

${ }^{a}$ Reactions were conducted on 0.1 mmol scale. Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture using 1,1,2,2-tetrachloroethane as the internal standard.

Table S2. Evaluation of Different Amination Reagents and Concentrations ${ }^{a}$

${ }^{a}$ Reactions were conducted on 0.1 mmol scale. Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture using 1,1,2,2-tetrachloroethane as the internal standard.
2.2 Optimization of $\mathbf{C u H}$-Catalyzed Hydroamination of 1-Arylcyclobutenes Table S3. Evaluation of Different Amination Reagents ${ }^{a}$

${ }^{a}$ Reactions were conducted on 0.1 mmol scale. Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture using 1,1,2,2-tetrachloroethane as the internal standard.

2.3 General Procedures for $\mathbf{C u H}$-Catalyzed Hydroamination Reactions ${ }^{2}$

General Procedure A

An oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) containing a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{OAc})_{2}(5.9 \mathrm{mg}, 0.033 \mathrm{mmol})$, (R)-DTBM-SEGPHOS ($21.1 \mathrm{mg}, 0.018 \mathrm{mmol}$), and (S)-DTBM-SEGPHOS ($21.1 \mathrm{mg}, 0.018$ mmol). The reaction tube was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into a nitrogen-filled glovebox. Anhydrous THF (0.65 mL) was added to the tube via a 1 mL syringe. The tube was capped and the mixture was stirred for 15 min at rt . Then dimethoxymethylsilane (DMMS) ($0.24 \mathrm{~mL}, 1.95 \mathrm{mmol}$) was added in one portion via a 1 mL syringe and the stirring was continued for another 10 min at rt to prepare an orange CuH stock solution.

A separate oven-dried screw-cap reaction tube (Fisherbrand, $16 * 125 \mathrm{~mm}$, part no. 1495935A) containing a magnetic stir bar was loosely capped (cap: Kimble Chase Open Top S/T Closure catalog no. 73804-15425; Septum: Thermo Scientific B7995-15), and then transferred into the glovebox. The alkene ($0.5 \mathrm{mmol}, 1.0$ equiv) and the amine electrophile ($0.6 \mathrm{mmol}, 1.2$ equiv) were added to the reaction tube. Then the CuH stock solution (0.68 mL) was added via a 1 mL syringe to the reaction tube in one portion. The reaction tube was capped and then removed from the glove box. The reaction mixture was allowed to stir at $30^{\circ} \mathrm{C}$ for 36 h .

General Procedure B

An oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) containing a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{OAc})_{2}(5.4 \mathrm{mg}, 0.030 \mathrm{mmol})$ and (R)-DTBM-SEGPHOS ($38.9 \mathrm{mg}, 0.033 \mathrm{mmol}$). The reaction tube was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into a nitrogen-filled glovebox. Anhydrous THF (1.20 mL) was added to the tube via syringe. The tube was capped and the mixture was stirred for 15 min at rt . Then DMMS $(0.22 \mathrm{~mL}, 1.80 \mathrm{mmol})$ was added in one portion via a 1 mL syringe and the stirring was continued for another 10 min at rt to prepare an orange CuH stock solution.

A separate oven-dried screw-cap reaction tube (Fisherbrand, 16*125 mm, part no. 1495935A) containing a magnetic stir bar was loosely capped (cap: Kimble Chase Open Top S/T Closure catalog no. 73804-15425; Septum: Thermo Scientific B7995-15), and then transferred into the glovebox. The alkene ($0.5 \mathrm{mmol}, 1.0$ equiv) and the amine electrophile (0.6 mmol or 0.75 mmol , as indicated for each substrate) were added to the reaction tube. Then the CuH stock
solution (1.18 mL) was added via syringe to the reaction tube in one portion. The reaction tube was capped and then removed from the glove box. The reaction mixture was allowed to stir at 40 ${ }^{\circ} \mathrm{C}$ for 36 or 46 h as indicated for each substrate.

General Procedure C

An oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) containing a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{OAc})_{2}(5.4 \mathrm{mg}, 0.030 \mathrm{mmol})$ and (R)-DTBM-SEGPHOS ($38.9 \mathrm{mg}, 0.033 \mathrm{mmol}$). The reaction tube was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into a nitrogen-filled glovebox. Anhydrous 1,4 -dioxane $(0.60 \mathrm{~mL})$ was added to the tube with a 1 mL syringe. The tube was capped and the mixture was stirred for 10 min at rt . Then DMMS $(0.22$ $\mathrm{mL}, 1.80 \mathrm{mmol}$) was added in one portion via a 1 mL syringe and the stirring was continued for another 15 min at rt to prepare a dark red CuH stock solution.

A separate oven-dried screw-cap reaction tube (Fisherbrand, $16 * 125 \mathrm{~mm}$, part no. 1495935A) containing a magnetic stir bar was loosely capped (cap: Kimble Chase Open Top S/T Closure catalog no. 73804-15425; Septum: Thermo Scientific B7995-15), and then transferred into the glovebox. The alkene ($0.5 \mathrm{mmol}, 1.0$ equiv), the amine electrophile ($0.6 \mathrm{mmol}, 1.2$ equiv), and anhydrous 1,4 -dioxane (0.50 mL) were added to the reaction tube. Then the CuH stock solution (0.68 mL) was added via a 1 mL syringe to the reaction tube in one portion. The reaction tube was capped and then taken out of the glove box. The reaction mixture was allowed to stir at rt for 18 h .

General Procedure D
An oven-dried screw-cap reaction tube (Fisherbrand, $13 * 100 \mathrm{~mm}$, part no. 1495935C) containing a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{OAc})_{2}(5.4 \mathrm{mg}, 0.030 \mathrm{mmol})$ and (R)-DTBM-SEGPHOS ($38.9 \mathrm{mg}, 0.033 \mathrm{mmol}$). The reaction tube was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into a nitrogen-filled glovebox. Anhydrous 1,4 -dioxane $(0.60 \mathrm{~mL})$ was added to the tube with a 1 mL syringe. The tube was capped and the mixture was stirred for 10 min at rt . Then DMMS $(0.22$ $\mathrm{mL}, 1.80 \mathrm{mmol}$) was added in one portion via a 1 mL syringe and the stirring was continued for another 15 min at rt to prepare a dark red CuH stock solution.

A second oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into the glovebox. 1,2-Benzisoxazole ($92 \mu \mathrm{~L}$) and anhydrous 1,4-dioxane $(0.35 \mathrm{~mL})$ were added to the tube to prepare the 1,2 -benzisoxazole stock solution. The tube was capped and then gently swirled to mix the solution.

A third oven-dried screw-cap reaction tube (Fisherbrand, 16*125 mm, part no. 1495935A) containing a magnetic stir bar was loosely capped (cap: Kimble Chase Open Top S/T Closure catalog no. 73804-15425; Septum: Thermo Scientific B7995-15), and then transferred into the glovebox. The alkene ($0.5 \mathrm{mmol}, 1.0$ equiv) and anhydrous 1,4 -dioxane (0.50 mL) were added to the reaction tube. Then the CuH stock solution $(0.68 \mathrm{~mL})$ was added via a 1 mL syringe to the reaction tube in one portion. (Note: The CuH solution should be added directly into the alkene solution instead of along the wall of the reaction tube, otherwise the remaining CuH solution on the wall of the reaction tube may cause decomposition of the 1,2-benzisoxazole that was subsequently added slowly along the wall of the reaction tube.) The reaction mixture was stirred at rt for 30 s . Then while the reaction mixture was stirred at rt , 1,2-benzisoxazole ($10 \mu \mathrm{~L}$)
was added over 1 min via microsyringe. The reaction tube was capped and the septum was punctured with a long needle attached to a 1 mL syringe containing the 1,2-benzisoxazole stock solution $(0.32 \mathrm{~mL})$. The reaction tube was then taken out of the glove box. While the reaction mixture was stirred at rt , the 1,2-benzisoxazole solution was added slowly via syringe pump at a rate of 0.13 or $0.16 \mathrm{~mL} / \mathrm{h}$ (as indicated for each substrate). (Note: The tip of the needle should touch the wall of the reaction tube during the slow addition of 1,2-benzisoxazole.) The reaction mixture was allowed to stir at rt for 18 h .

Workup A
After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred at rt , sat. $\mathrm{NH}_{4} \mathrm{~F}$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at rt for 30 min and transferred to a 100 mL round bottom flask with the aid of EtOAc. A small aliquot of the solution was transferred to a 20 mL scintillation vial, concentrated in vacuo, analyzed by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} to determine the diastereomeric ratio (dr), and then the NMR sample was transferred backed to the 100 mL round bottom flask. The combined solution was concentrated in vacuo. The resulting mixture was dissolved in EtOAc, filtered through a short plug of Celite, and washed with additional EtOAc. The collected EtOAc solution was concentrated in vacuo, and the crude material was immediately purified by silica gel column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column $\sim 2 \mathrm{~cm}$, length of the packed column $\sim 18 \mathrm{~cm}$).

Workup B

After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred at rt , sat. $\mathrm{NH}_{4} \mathrm{~F}$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at rt for 30 min , and then transferred to a 20 mL scintillation vial. The reaction tube was rinsed four times with additional EtOAc ($5-10 \mathrm{~mL}$ in total). The combined EtOAc solution was concentrated in vacuo, and the crude material was immediately purified by silica gel column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column $\sim 2 \mathrm{~cm}$, length of the packed column $\sim 18 \mathrm{~cm}$).

Workup C

After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred vigorously at rt , sat. LiOH in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at rt for 1 h , transferred to a 100 mL round bottom flask with the aid of EtOAc, and concentrated in vacuo. The resulting mixture was dissolved in EtOAc, sonicated for 5 min , filtered through a pad of Celite, and washed with additional EtOAc. The collected EtOAc solution was concentrated in vacuo, and the crude material was immediately purified by silica gel column chromatography (\sim 30 g silica gel, diameter of the column $\sim 2 \mathrm{~cm}$, length of the packed column $\sim 18 \mathrm{~cm}$).

Workup D

After the reaction was completed, the cap of the reaction tube was removed, and the reaction mixture was diluted with $\operatorname{EtOAc}(1.5 \mathrm{~mL})$. While the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$, sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at $0{ }^{\circ} \mathrm{C}$ for 5 min , and then at rt for 30 min . The mixture was transferred with the aid of EtOAc to a 125 mL separatory funnel containing brine
$(30 \mathrm{~mL})$ and EtOAc (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 10-15 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting residue was transferred to a 20 mL scintillation vial with the aid of EtOAc, and then concentrated in vacuo. The crude material was immediately purified by silica gel column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column was $\sim 2 \mathrm{~cm}$, length of the packed column was $\sim 18 \mathrm{~cm}$).

2.4 Structural Determination of the Hydroamination Products
 Single Crystal X-ray Diffraction Data for Compound 7b (P19056)

A crystal of $\mathbf{7 b}$ was obtained by slowly evaporating the EtOH solution of $\mathbf{7 b}$ at $0{ }^{\circ} \mathrm{C}$ (in air). The absolute configuration of $\mathbf{7 b}$ was determined by X-ray crystallographic analysis. The absolute configuration of 10a, 7a-e, 12, and 15a-d was assigned by analogy to $\mathbf{7 b}$.
CCDC 1945177 contains the supplementary crystallographic data for 7b. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S4. Crystal data and structure refinement for 7b (P19056)
Identification code
P19056
Empirical formula
C25 H29 N S
Formula weight

Temperature	99(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P21
Unit cell dimensions	$a=13.0414(11) \AA \quad \mathrm{a}=90^{\circ}$.
	$\mathrm{b}=5.7208(4) \AA \quad \mathrm{A}=93.997(4)^{\circ}$.
	$\mathrm{c}=14.1145(12) \AA$ ¢ $\mathrm{A}=90^{\circ}$.
Volume	1050.48(15) \AA^{3}
Z	2
Density (calculated)	$1.187 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.163 \mathrm{~mm}^{-1}$
F(000)	404
Crystal size	$0.570 \times 0.165 \times 0.160 \mathrm{~mm}^{3}$
Theta range for data collection	1.446 to 30.541°.
Index ranges	$-18<=\mathrm{h}<=18,-8<=\mathrm{k}<=8,-20<=1<=20$
Reflections collected	89778
Independent reflections	$6421[\mathrm{R}(\mathrm{int})=0.0653]$
Completeness to theta $=25.242^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6421 / 366 / 309
Goodness-of-fit on F^{2}	1.125
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0440, \mathrm{wR} 2=0.1092$
R indices (all data)	$\mathrm{R} 1=0.0454, \mathrm{wR} 2=0.1098$
Absolute structure parameter	0.04(2)
Extinction coefficient	0.192(12)
Largest diff. peak and hole 0.365	438 e. \AA^{-3}

1D-NOESY Analysis of 4b (a 5:1 mixture of major and minor diastereomers)
The configuration of the major and minor diastereomers in $\mathbf{4 b}$ was determined by 1D-NOESY analysis of $\mathbf{4 b}$ (a 5:1 mixture of major and minor diastereomers). The configuration of the major diastereomers in 4a, 4c, 4g-i was assigned by analogy to $\mathbf{4 b}$.

3. Characterization Data for the Hydroamination Products

${ }^{\mathrm{Me}} \mathrm{Pm}$ Following general procedure \mathbf{A}, (3-methylcyclobut-1-ene-1,3-diyl)dibenzene (110 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOBz}(190 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. After Workup A and purification by column chromatography [hexanes (80 mL) followed by hexanes/EtOAc $=100: 1]$, the title compound was obtained as a white solid ($1^{\text {st }}$ run: $181 \mathrm{mg}, 87 \%$ yield, $13: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: $174 \mathrm{mg}, 83 \%$ yield, $13: 1$ dr). ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated 13:1 dr. ${ }^{1} \mathbf{H}$ NMR (major diastereomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-6.94(\mathrm{~m}, 18 \mathrm{H}), 3.39(\mathrm{~s}, 4 \mathrm{H}), 2.77(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (major diastereomer, 101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.22,141.73,141.14,128.93,128.01,127.79,127.48,127.36,126.37,126.28$, $125.12,125.02,62.72,55.02,44.97,36.07,33.25$. m.p. $128.0-129.7^{\circ} \mathrm{C}$. IR (thin film): 3063, 3024, 2842, 1600, 1491, 1454, 1272, 1029, 908, $692 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}: \mathrm{C}, 89.16 ; \mathrm{H}$, 7.48. Found: C, 88.96; H, 7.45.
($1 r, 3 r$)- N, N-dibenzyl-1-(4-methoxyphenyl)-3-methyl-3-phenylcyclobutan-1-amine (4b)
 Following general procedure A, 1-methoxy-4-(3-methyl-3-phenylcyclobut-1-en-1yl)benzene ($125 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOBz}(190 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. After the reaction was completed, the reaction mixture was transferred to a 100 mL round bottom flask, and the reaction tube was rinsed with additional EtOAc. Then HCl in $\mathrm{MeOH}(1.25 \mathrm{M}, 15 \mathrm{~mL})$ was added to the flask to quench the reaction mixture and acidify the mixture. The flask was swirled gently to mix the components, allowed to sit for 30 min , and then the resulting mixture was concentrated in vacuo. Hexanes ($\sim 20 \mathrm{~mL}$) was added. The precipitate was broken into small pieces using a spatula, and the resulting suspension was sonicated for $5-10 \mathrm{~min}$. The suspension was filtered through a Buchner funnel (porosity: fine) under reduced pressure. The 100 mL flask was rinsed with hexane ($\sim 20 \mathrm{~mL}$) and the suspension was poured into the funnel. The solid in the funnel was washed with additional hexanes ($\sim 10 \mathrm{~mL}$). Then the solid in the above 100 mL round bottom flask and Buchner funnel was dissolved with $1 \mathrm{M} \mathrm{NaOH}\left(\sim 50 \mathrm{~mL}\right.$ in total) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 50 \mathrm{~mL}$ in total). The resulting mixture was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solution was collected in a 500 mL round bottom flask. A small aliquot of the solution was transferred to a 20 mL scintillation vial, concentrated in vacuo, analyzed by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in CDCl_{3} to determine the diastereomeric ratio (dr), and then the NMR sample was transferred backed to the 500 mL round bottom flask. The combined solution was concentrated in vacuo, and immediately purified by column chromatography ($\sim 30 \mathrm{~g}$ silica gel) with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=[30: 1(90 \mathrm{~mL}) \rightarrow 20: 1(160 \mathrm{~mL})]$. The title compound was obtained as a white solid ($1^{\text {st }}$ run: $140 \mathrm{mg}, 62 \%$ yield, $5: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: $150 \mathrm{mg}, 67 \%$ yield, $5: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated 5:1 dr. ${ }^{1} \mathrm{H}$ NMR (major diastereomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.07(\mathrm{~m}, 13 \mathrm{H}), 6.94-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 4 \mathrm{H}), 2.87(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (major diastereomer, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.91,152.16,141.23$, $134.16,128.92,128.62,127.98,127.78,126.34,125.13,124.99,112.66,62.21,55.25,55.02$, $45.26,35.87$, 33.27 . m.p. $134.5-136.8^{\circ} \mathrm{C}$. IR (thin film): 3059, 3025, 2931, 2834, 1605, 1511, 1247, 1179, 1028, $698 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 448.2635; found 448.2655.

Following general procedure A, 1-chloro-3-(3-methyl-3-phenylcyclobut-1-en-1yl)benzene ($127 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOBz}(190 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. After Workup A and purification by column chromatography [hexanes $(200 \mathrm{~mL})$ followed by hexanes/EtOAc $=100: 1$], the title compound was obtained as a white solid ($1^{\text {st }}$ run: $180 \mathrm{mg}, 80 \%$ yield, $29: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $178 \mathrm{mg}, 78 \%$ yield, 29:1 dr). ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated 29:1 dr. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (major diastereomer, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.09(\mathrm{~m}, 19 \mathrm{H}), 3.50(\mathrm{~s}, 4 \mathrm{H}), 2.88-2.85(\mathrm{~m}, 2 \mathrm{H})$, 2.78-2.74 (m, 2H), $1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (major diastereomer, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.75$, $143.88,140.75,133.60,128.92,128.70,128.09,127.90,127.63,126.54,126.52,125.64,125.19$, $125.10,62.61,54.91,44.95,36.12,33.27$. m.p. $142.6-144.0^{\circ} \mathrm{C}$. IR (thin film): 3061, 3025, 2933, 2838, 1592, 1494, 1262, 1172, 1027, $695 \mathrm{~cm}^{-1}$. HRMS Calcd. m/z for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NCl}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 452.2140; found 452.2143.

N, N-dibenzyl-1-(2-fluorophenyl)cyclobutan-1-amine (4d)

Following general procedure B, 1-(cyclobut-1-en-1-yl)-2-fluorobenzene ($74 \mathrm{mg}, 0.50$

?$\mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOPiv}(178 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 36 h . After Workup B and purification by column chromatography with a gradient of hexanes $(150 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=[100: 1(100$ $\mathrm{mL}) \rightarrow 80: 1(240 \mathrm{~mL}) \rightarrow 60: 1(60 \mathrm{~mL})]$, the title compound was obtained as a colorless oil $\left(1^{\text {st }}\right.$ run: $124 \mathrm{mg}, 72 \%$ yield; $2^{\text {nd }}$ run: $123 \mathrm{mg}, 71 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.21$ $(\mathrm{m}, 8 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H}), 2.47-2.44(\mathrm{~m}, 4 \mathrm{H}), 2.28-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.36(\mathrm{~d}, J=246.4 \mathrm{~Hz}$), 141.51, $130.24(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 129.04(\mathrm{~d}, J=14.6 \mathrm{~Hz}), 128.61$, 128.53, 127.69, 126.22, $123.26(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}), 116.28(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 67.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 54.76(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 33.23(\mathrm{~d}, J=1.5$ Hz) , 16.30. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.85$. IR (thin film): 3062, 3027, 2943, 2839, 1483, 1446, 1212, 1141, 1028, $695 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NF}$: C, 83.44 ; H, 7.00. Found: C, 83.31; H, 7.14.

N, N-dibenzyl-1-(6-methoxypyridin-3-yl)cyclobutan-1-amine (4e)

Following general procedure B, 5-(cyclobut-1-en-1-yl)-2-methoxypyridine (81 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOPiv}$ ($178 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 36 h . After Workup B and purification by column chromatography with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=[50: 1(100$ $\mathrm{mL}) \rightarrow 40: 1(40 \mathrm{~mL}) \rightarrow$ 30:1 $(90 \mathrm{~mL}) \rightarrow 20: 1(100 \mathrm{~mL}) \rightarrow 15: 1(90 \mathrm{~mL}) \rightarrow 10: 1(100$ mL)], the title compound was obtained as a colorless oil ($1^{\text {st }}$ run: $134 \mathrm{mg}, 75 \%$ yield; $2^{\text {nd }}$ run: 136 $\mathrm{mg}, 76 \%$ yield). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{dd}, J=2.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.76 (dd, $J=8.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{dd}, J=8.6,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 4 \mathrm{H}), 2.35(\mathrm{qd}, J=9.3,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{tt}, J=8.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.13,146.23,141.02$, 138.71, 129.58, 128.82, 128.03, 126.67, 110.07, 66.31, 53.91, 53.56, 33.25, 14.80. IR (thin film): 3024, 2943, 2840, 1599, 1488, 1368, 1285, 1132, 1023, $696 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 80.41$; H, 7.31. Found: C, 80.71 ; H, 7.08.

$\boldsymbol{N}, \mathbf{N}$-dibenzyl-2-phenylspiro[3.5]nonan-2-amine (4f)

Following general procedure A, instead of using (R)-DTBM-SEGPHOS (21.1 mg) and (S)-DTBM-SEGPHOS (21.1 mg) to prepare the CuH stock solution, (R) -DTBM-SEGPHOS (42.2 mg) was used. 2-Phenylspiro[3.5]non-1-ene ($99 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOBz}(190 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were also used. After Workup A and purification by column chromatography with a gradient of hexanes (150 $\mathrm{mL}) \rightarrow$ hexanes/Et $2 \mathrm{O}=[100: 1(100 \mathrm{~mL}) \rightarrow 80: 1(240 \mathrm{~mL}) \rightarrow 60: 1(60 \mathrm{~mL})]$, the title compound was obtained as a white solid ($1^{\text {st }}$ run: $177 \mathrm{mg}, 89 \%$ yield; $2^{\text {nd }}$ run: $179 \mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{tt}, J=6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-$ $7.22(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 4 \mathrm{H}), 2.30(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22$ (d, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{p}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.15$ (m, 2H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.49,141.36,128.96,127.92,127.78,127.59$, $126.33,62.86,54.65,44.26,40.60,38.66,31.81,26.10,22.95,22.85$. m.p. 81.8-82.5 ${ }^{\circ} \mathrm{C}$. IR (thin film): $3060,3025,2920$, 2847, 1493, 1444, 1296, 1171, 1028, $693 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 396.2686$; found 396.2690.

2-(4-(($1 r, 3 r)$-3-methyl-1,3-diphenylcyclobutyl)piperazin-1-yl)pyrimidine (4g)

Following general procedure \mathbf{A}, (3-methylcyclobut-1-ene-1,3-diyl)dibenzene ($110 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and 4-(pyrimidin-2-yl)piperazin-1-yl benzoate ($171 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred at rt , sat. $\mathrm{NH}_{4} \mathrm{~F}$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at rt for 30 min and transferred to a 100 mL round bottom flask with the aid of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A small aliquot of the solution was transferred to a 20 mL scintillation vial, concentrated in vacuo, analyzed by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} to determine the diastereomeric ratio (dr), and then the NMR sample was transferred backed to the 100 mL round bottom flask. The combined solution was concentrated in vacuo. The resulting mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a cotton ball that was stuck in a pipette, and washed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. $\mathrm{The}^{\mathrm{CH}_{2} \mathrm{Cl}_{2} \text { solution }}$ was collected in a 20 mL scintillation vial, concentrated in vacuo, and the crude material and immediately purified by column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column ~ 2 cm , length of the packed column $\sim 18 \mathrm{~cm})$ with a gradient of hexanes/EtOAc $=[20: 1(60 \mathrm{~mL}) \rightarrow$ $15: 1(150 \mathrm{~mL}) \rightarrow 12: 1(60 \mathrm{~mL}) \rightarrow 10: 1(200 \mathrm{~mL}) \rightarrow 8: 1(80 \mathrm{~mL}) \rightarrow 5: 1(100 \mathrm{~mL}) \rightarrow 4: 1(100$ mL) (the above volumes refer to the volume of hexanes used)]. The resulting material was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), filtered through a short plug of basic activated alumina, and washed with additional EtOAc. The collected EtOAc solution was concentrated in vacuo to afford the pure product as a white solid ($1^{\text {st }}$ run: $128 \mathrm{mg}, 66 \%$ yield, $13: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: 128 mg , 66% yield, $13: 1 \mathrm{dr}) .{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated 13:1 dr. ${ }^{1} \mathbf{H}$ NMR (major diastereomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28-7.24 (m, 4H), 7.19-7.10 $(\mathrm{m}, 4 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{br}, 4 \mathrm{H}), 2.81(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{br}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (major diastereomer, 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.75,143.88,140.75,133.60,128.92,128.70,128.09,127.90,127.63,126.54$, $126.52,125.64,125.19,125.10,62.61,54.91,44.95,36.12,33.27$. m.p. 197.0-198.9 ${ }^{\circ} \mathrm{C}$. IR (thin film): 3021, 2932, 2853, 1584, 1493, 1357, 1261, 1181, 1012, $700 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 385.2387$; found 385.2396.

(5-((benzyl((1r,3r)-1-(4-fluorophenyl)-3-methyl-3-phenylcyclobutyl)amino)methyl)furan-2-

 yl)methanol (4h)

General procedure A was followed, except DMMS ($0.32 \mathrm{~mL}, 2.60 \mathrm{mmol}$) (Note: An extra equivalence of DMMS was used in order to silylate the alcohol in the amination reagent.) was used to prepare the CuH stock solution. The stock CuH solution $(0.74 \mathrm{~mL})$ was added to the reaction tube containing 1-fluoro-4-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (119 mg , $0.50 \quad \mathrm{mmol}$, 1.0 equiv) and (5-(((benzoyloxy)(benzyl)amino)methyl)furan-2-yl)methanol ($202 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv). After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred at rt , sat. $\mathrm{NH}_{4} \mathrm{~F}$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at rt for 1 h and transferred to a 100 mL round bottom flask with the aid of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A small aliquot of the solution was transferred to a 20 mL scintillation vial, concentrated in vacuo, analyzed by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} to determine the diastereomeric ratio (dr), and then transferred backed to the 100 mL round bottom flask. The combined solution was concentrated in vacuo. The resulting mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a cotton ball that was stuck in a pipette, and washed with additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was collected in a 20 mL scintillation vial, concentrated in vacuo, and the crude material was immediately purified by column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column $\sim 2 \mathrm{~cm}$, length of the packed column $\sim 18 \mathrm{~cm})$ with a gradient of hexanes/EtOAc $=[20: 1(60 \mathrm{~mL}) \rightarrow 15: 1(150 \mathrm{~mL}) \rightarrow 12: 1(60 \mathrm{~mL})$ $\rightarrow 10: 1(200 \mathrm{~mL}) \rightarrow 8: 1(80 \mathrm{~mL}) \rightarrow 5: 1(100 \mathrm{~mL}) \rightarrow 4: 1(100 \mathrm{~mL})$ (the above volumes refer to the volume of hexanes used)]. The resulting material was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), filtered through a short plug of basic activated alumina, and washed with additional EtOAc. The collected EtOAc solution was concentrated in vacuo to afford the pure product as a white solid ($1^{\text {st }}$ run: $173 \mathrm{mg}, 76 \%$ yield, $11: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $182 \mathrm{mg}, 80 \%$ yield, $11: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated 11:1 dr. ${ }^{1} \mathbf{H} \mathbf{N M R}$ (major diastereomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.33-7.30 (m, 2H), 7.28-7.10 (m, 10H), 7.06-7.00 (m, 2H), $5.96(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.78$ $(\mathrm{m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (major diastereomer, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.33(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 153.72,152.58,151.96,140.79,137.56(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 128.68$, $128.60,128.27,128.11,127.77,126.28,125.17,125.07,114.28(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 108.49(\mathrm{~d}, J=$ 19.7 Hz), 61.82, 57.55, 54.73, 46.93, 44.80, 35.81, 32.99. ${ }^{19}$ F NMR (major diastereomer, 376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.55$. m.p. 124.3-125.9 ${ }^{\circ} \mathrm{C}$. IR (thin film): 3359, 3025, 2932, 2866, 1601, 1508, 1224, 1157, 1010, $699 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{FNO}_{2}$: C, 79.09; H, 6.64. Found: C, 79.01; H, 6.62.

methyl

5-((benzyl((1r,3r)-3-methyl-1,3-diphenylcyclobutyl)amino)methyl)-2hydroxybenzoate (4i)

General procedure A was followed, except DMMS ($0.32 \mathrm{~mL}, 2.60 \mathrm{mmol}$) was used to prepare the CuH stock solution. The stock CuH solution (0.74 mL) was added to the reaction tube containing (3-methylcyclobut-1-ene-1,3-diyl)dibenzene ($110 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, 1.0$ equiv) and methyl 5-(((benzoyloxy)(benzyl)amino)methyl)-2-hydroxybenzoate ($235 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv). After Workup A (5 mL sat. $\mathrm{NH}_{4} \mathrm{~F}$ in MeOH was used to quench the reaction mixture) and purification by column chromatography with a gradient of hexanes $(200 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=[50: 1(100$
$\mathrm{mL}) \rightarrow$ 30:1 $(180 \mathrm{~mL}) \rightarrow$ 20:1 (100 mL)], the title compound was obtained as a white solid (1^{st} run: $190 \mathrm{mg}, 77 \%$ yield, $13: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: 190 mg , 77% yield, $13: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated $13: 1 \mathrm{dr} .{ }^{1} \mathbf{H}$ NMR (major diastereomer, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.55(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.06(\mathrm{~m}, 14 \mathrm{H}), 6.76(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}$, 3H). ${ }^{13}$ C NMR (major diastereomer, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.64,160.21,152.26,141.79$, $141.05,136.61,131.76,130.15,128.94,128.18,127.85,127.53,127.40,126.47,126.38,125.22$, $117.04,111.32,62.77,55.25,54.47,52.26,45.13,36.12,33.35$. m.p. $111.7-112.4{ }^{\circ} \mathrm{C}$. IR (thin film): 3023, 2951, 2836, 1674, 1441, 1207, 1087, 908, 731, $696 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{3}$: C, 80.62; H, 6.77. Found: C, 80.47; H, 6.84.

(1S,3R)-N, N-dibenzyl-2,2-dimethyl-3-phenylcyclopropan-1-amine (10a) + N,N-dibenzyl-2,2-dimethyl-1-phenylcyclopropan-1-amine (10b)

${ }^{\mathrm{Me}} X^{\mathrm{Me}} \quad{ }^{\mathrm{Me}} X^{\mathrm{Me}}$ Following general procedure $\mathbf{C}, 1,4$-dioxane was replaced with an equal volume of THF, and (3,3-dimethylcycloprop-1-en-1-yl)benzene (72 mg , $0.50 \mathrm{mmol}, 1.0$ equiv, freshly prepared) and $\mathrm{Bn}_{2} \mathrm{NOPiv}$ ($178 \mathrm{mg}, 0.60$ $\mathrm{mmol}, 1.2$ equiv) were used. After Workup \mathbf{A} and purification by column chromatography with a gradient of hexanes $(150 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=[120: 1(180 \mathrm{~mL}) \rightarrow$ 100:1 (150 mL) \rightarrow 80:1 (80 mL)] (the product on TLC was visualized with I_{2}), a 8:1 mixture of the title compound (a mixture of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}, 8: 1$ ratio) was obtained as a colorless oil ($1^{\text {st }}$ run: $101 \mathrm{mg}, 59 \%$ yield, 69:31 er for 10a; $2^{\text {nd }}$ run: $98 \mathrm{mg}, 57 \%$ yield, 69:31 er for 10a). EA Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}$: C, 87.93; H, 7.97. Found: C, 88.34; H, 7.96. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture indicated an $8: 1$ ratio of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$. To separately obtain characterization data and confirm the structure of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$, a small aliquot of the title compound was purified with preparative thin-layer chromatography ($20 \times 20 \mathrm{~cm}, 250$ microns, catalog \# TLG-R10014B-323 from Silicycle) eluting with hexane/EtOAc $=80: 1$ to give pure 10a and 10b.

Major regioisomer 10a: White solid. m.p. 48.0-49.4 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30$ $(\mathrm{m}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.68(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.52,138.72,129.68,128.66,128.14,127.93,126.97$, $125.58,58.41,53.80,36.76,27.80,21.41,20.58$. DEPT-135 NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.66$, 128.64, 128.12, 127.92, 126.96, 125.57, $58.41\left(\mathrm{CH}_{2}\right), 53.80,36.76,21.40,20.57$. SFC analysis: OJ-H (5:95 IPA: scCO_{2} to $30: 70 \mathrm{IPA}: \mathrm{scCO}_{2}$ linear gradient over 6 min with 1 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 3.96 min (minor), 4.84 min (major), $69: 31 \mathrm{er}$. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:+13.8(\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$). IR (thin film): $3061,3026,2919,1602,1494,1454,1373,1029,745,697 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}: \mathrm{C}, 87.93 ; \mathrm{H}, 7.97$. Found: C, 87.64; H, 8.04.

Minor regioisomer 10b: White solid. m.p. $88.4-90.8{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-$ $7.17(\mathrm{~m}, 15 \mathrm{H}), 4.13(\mathrm{br}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.53-0.50(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.31,132.14,129.22,128.00,127.63,126.87,126.63,70.74$, 56.33, 27.84, 25.25, 22.80, 21.43. DEPT-135 NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.15,129.22$, 128.04, 127.63, 126.87, 126.57, $70.74\left(\mathrm{CH}_{2}\right), 27.85\left(\mathrm{CH}_{2}\right), 25.25,21.43$. IR (thin film): 3026, 2925, 2865, 1494, 1454, 1377, 1122, 1027, 740, $697 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 342.2216$; found 342.2228 .
(1R,2R)-N,N-dibenzyl-2-(3-phenylpropyl)cyclobutan-1-amine (7a)

Following general procedure B, (3-(cyclobut-1-en-1-yl)propyl)benzene (86 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOC}(\mathrm{O}) \mathrm{Mes}(270 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 46 h . After Workup C and purification by column chromatography with a gradient of hexanes $(80 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=$ [100:1 (100 mL) \rightarrow 80:1 (until the majority of the product is eluted) $\rightarrow 40: 1(40 \mathrm{~mL}$)] (the product on TLC was visualized with I_{2}), the title compound was obtained as a colorless oil ($1^{\text {st }}$ run: $145 \mathrm{mg}, 78 \%$ yield, $>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: $147 \mathrm{mg}, 80 \%$ yield, $>99.5: 0.5 \mathrm{er},>$ 20:1 dr). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.16(\mathrm{~m}, 15 \mathrm{H}), 3.64(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J$ $=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.75(\mathrm{~m}$, $3 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $142.91,140.13,128.91,128.49,128.35,128.18$, 126.76, 125.70, 63.46, 54.88, 41.10, 36.10, 35.66, 29.22, 23.04, 21.16. SFC analysis: OJ-H (5:95 IPA: scCO_{2} to $40: 60 \mathrm{IPA}: \mathrm{scCO}_{2}$ linear gradient over 6 min with 2 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 5.27 min (major), 7.14 min (minor), > 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:-37.1\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. IR (thin film): 3060, 3025, 2929, 2854, 1602, 1493, 1452, 1143, 1028, $744 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}: \mathrm{C}, 87.75$; H, 8.46. Found: C, 87.49; H, 8.48.

(1R,2R)-N-benzyl-2-(3-phenylpropyl)- N -(thiophen-2-ylmethyl)cyclobutan-1-amine (7b)

Following general procedure B, (3-(cyclobut-1-en-1-yl)propyl)benzene (86
 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and N -benzyl- N -(thiophen- 2 -ylmethyl)- O -($2,4,6-$ trimethylbenzoyl)hydroxylamine ($274 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 46 h . After the reaction was completed, the reaction mixture was filtered through a short plug of silica gel, and washed with additional EtOAc. The EtOAc solution was collected in a 20 mL scintillation vial, and then solvent was carefully removed under high vacuum by fitting a red septum onto the vial, inserting a needle into the septum, connecting the needle to a liquid N_{2} trap, connecting the first liquid N_{2} trap to a second liquid N_{2} trap, and then connecting the second trap to the vacuum line on a Schlenk dual-manifold (Note: The liquid N_{2} traps are necessary to insure that DMMS is completely trapped. After the evaporation process, the traps were maintained inside a fumehood. After their contents were thawed, the traps were washed thoroughly with acetone and the waste was poured into a container designated for organic liquid waste). The crude material was immediately purified by column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column ~ 2 cm , length of the packed column $\sim 18 \mathrm{~cm}$) with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ $=[50: 1(100 \mathrm{~mL}) \rightarrow 40: 1(40 \mathrm{~mL}) \rightarrow 30: 1(150 \mathrm{~mL}) \rightarrow 20: 1(80 \mathrm{~mL}) \rightarrow 15: 1(60 \mathrm{~mL}) \rightarrow$ 10:1 (200 mL) (the above volumes refer to the volume of hexanes used)] (the product on TLC was visualized with I_{2}). The title compound was obtained as a white solid ($1^{\text {st }} \mathrm{run}: 146 \mathrm{mg}, 78 \%$ yield, > 99.5:0.5 er, > 20:1 dr; $2^{\text {nd }}$ run: $151 \mathrm{mg}, 80 \%$ yield, > 99.5:0.5 er, > 20:1 dr). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.19(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=3.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.28(\mathrm{~m}$, $1 \mathrm{H})$, 2.00-1.77 (m, 3H), 1.67-1.52 (m, 3H), 1.41-1.33 (m, 1H), 1.26-1.16 (m, 1H). ${ }^{13}$ C NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.03,142.86,139.73,128.95,128.50,128.35,128.25,126.88,126.41$, $125.74,125.70,124.65,62.95,54.20,48.71,41.33,36.09,35.73,29.16,23.32,21.08$. m.p. 50.6$51.3^{\circ} \mathrm{C}$. SFC analysis: CEL-1 (1:99 MeOH: scCO_{2} to $3: 97 \mathrm{MeOH}: \mathrm{scCO}_{2}$ linear gradient over 6 min with 1 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 5.18 min (minor), 5.46 min (major), > 99.5:0.5 er.

Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}$: $-39.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. $\mathbf{I R}$ (thin film): 3025, 2927, 2852, 1602, 1494, 1452, 1335, 1142, 1028, $694 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NS}: ~ \mathrm{C}, 79.95$; H, 7.78. Found: C, 79.67; H, 7.79.
(1R,2R)- N-benzyl- N-(2,2-dimethoxyethyl)-2-(3-phenylpropyl)cyclobutan-1-amine (7c)

Following general procedure B, (3-(cyclobut-1-en-1-yl)propyl)benzene ($86 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and N-benzyl- N-(2,2-dimethoxyethyl)- O -(2,4,6-trimethylbenzoyl)hydroxylamine ($268 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 46 h . After Workup C and purification by column chromatography with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=$ $[50: 1(100 \mathrm{~mL}) \rightarrow 40: 1(40 \mathrm{~mL}) \rightarrow 30: 1(90 \mathrm{~mL}) \rightarrow 20: 1(100 \mathrm{~mL}) \rightarrow 15: 1(150 \mathrm{~mL}) \rightarrow 10: 1$ (until the product is completely eluted)] (the product on TLC was visualized with I_{2}), the title compound was obtained as a colorless oil ($1^{\text {st }}$ run: $140 \mathrm{mg}, 76 \%$ yield, $>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $135 \mathrm{mg}, 74 \%$ yield, $\left.>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr}\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.24$ (m, 7H), 7.22-7.18 (m, 3H), $4.30(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.53(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{pd}, J=8.7$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{q}, J=9.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.32(\mathrm{~m}$, $1 \mathrm{H}), 1.18(\mathrm{p}, J=8.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.87,140.24,128.99$, $128.47,128.34,128.18,126.82,125.70,104.06,64.56,56.35,53.84,53.78,53.17,41.42,36.08$, 35.61, 29.18, 23.68, 20.89. SFC analysis: OJ-H (5:95 IPA (0.15% DEA): scCO2 to 15:85 IPA (0.15% DEA): scCO_{2} linear gradient over 6 min with 1 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 4.36 min (major), 4.81 min (minor), > 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:-50.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. IR (thin film): $3025,2930,2828,1495,1452,1368,1191,1123,1073,735 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, 78.43 ; H, 9.05. Found: C, 78.23 ; H, 9.16.
(1R,2S)-N,N-dibenzyl-2-(3-((tert-butyldiphenylsilyl)oxy)propyl)cyclobutan-1-amine (7d) Following general procedure \mathbf{B}, tert-butyl(3-(cyclobut-1-en-1yl)propoxy)diphenylsilane ($175 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, \quad 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOC}(\mathrm{O}) \mathrm{Mes}$ ($270 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 46 h . After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred at rt , sat. aq. $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred uncapped at rt for 30 min . The mixture was transferred with the aid of EtOAc to a 125 mL separatory funnel containing brine (30 mL) and EtOAc (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 10-15 \mathrm{~mL}$). The combined organic layers were concentrated in vacuo. The residue was redissolved in EtOAc, filtered through a short plug of $\mathrm{Na}_{2} \mathrm{SO}_{4}$, washed with additional EtOAc, and concentrated in vacuo. The crude material was immediately purified by column chromatography ($\sim 30 \mathrm{~g}$ silica gel, diameter of the column ~ 2 cm , length of the packed column $\sim 18 \mathrm{~cm}$) with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ $=[60: 1(120 \mathrm{~mL}) \rightarrow 50: 1(150 \mathrm{~mL}) \rightarrow 40: 1(80 \mathrm{~mL})]$ (the product on TLC was visualized with I_{2}), the title compound was obtained as a colorless oil ($1^{\text {st }}$ run: $205 \mathrm{mg}, 75 \%$ yield, > 99.5:0.5 er, $>20: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $199 \mathrm{mg}, 73 \%$ yield, $\left.>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr}\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.71-7.69 (m, 4H), 7.46-7.37 (m, 10H), 7.33-7.29 (m, 4H), 7.26-7.22 (m, 2H), 3.65-3.60 (m, 4H), $3.56(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.09$ (s, 9H). ${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 140.18,135.72,134.31,129.62,128.89,128.17,127.71$,
126.75, 64.18, 63.52, 54.93, 41.04, 32.16, 30.49, 27.04, 23.06, 21.18, 19.38. SFC analysis: CEL1 (1:99 MeOH ($0.1 \% \mathrm{DEA}$): $\mathrm{scCO}_{2}, 2.50 \mathrm{~mL} / \mathrm{min}$), 12.57 min (major), 13.68 min (minor), > 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{27}:-61.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$). IR (thin film): 3027, 2929, 2856, 1493, 1427, 1360, 1110, 1028, 823, $698 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{NOSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 548.3343; found 548.3369.
(1R,2S)-N,N-dibenzyl-2-(3-((5-(trifluoromethyl)pyridin-2-yl)oxy)propyl)cyclobutan-1amine (7e)

Following general procedure B, 2-(3-(cyclobut-1-en-1-yl)propoxy)-5(trifluoromethyl)pyridine $(129 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOC}(\mathrm{O}) \mathrm{Mes}(216 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv) were used. The reaction was run at $40^{\circ} \mathrm{C}$ for 46 h . After Workup B and purification by column chromatography with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes/Et $2 \mathrm{O}=[50: 1(100 \mathrm{~mL}) \rightarrow 30: 1(90 \mathrm{~mL}) \rightarrow 20: 1(160 \mathrm{~mL}) \rightarrow 15: 1(120 \mathrm{~mL}) \rightarrow 10: 1(80$ $\mathrm{mL}) \rightarrow 8: 1(80 \mathrm{~mL})$ (the above volumes refer to the volume of hexanes used)] (the product on TLC was visualized with I_{2}), the title compound was obtained as a colorless oil ($1^{\text {st }}$ run: 157 mg , 69% yield, $>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $161 \mathrm{mg}, 71 \%$ yield, $\left.>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr}\right) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (br, 1H), $7.77(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 4 \mathrm{H})$, $7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 1 \mathrm{H})$, 1.96-1.80 (m, 3H), 1.79-1.62 (m, 3H), 1.46-1.36 (m, 1H), 1.23-1.12 (m, 1H). ${ }^{13}$ C NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.15,145.06(\mathrm{q}, J=4.5 \mathrm{~Hz}), 140.08,135.62(\mathrm{q}, J=3.1 \mathrm{~Hz}), 128.88,128.20$, 126.81, $124.23(\mathrm{q}, J=271.2 \mathrm{~Hz}), 119.81(\mathrm{q}, J=32.9 \mathrm{~Hz}), 111.34,66.90,63.52,54.94,40.92$, 32.21, 26.80, 22.92, 21.16. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.47. SFC analysis: AD-H (8:92 IPA ($0.15 \% \mathrm{DEA}$): $\mathrm{scCO}_{2}, 2.50 \mathrm{~mL} / \mathrm{min}$), 5.19 min (major), 5.81 min (minor), $>99.5: 0.5$ er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{27}:-31.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. IR (thin film): 3028, 2938, 2798, 1613, 1500, 1315, 1291, 1122, 1077, $698 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.35 ; \mathrm{H}, 6.43$. Found: C, 71.35; H, 6.37.
(1R,2R)-N,N-dibenzyl-2-(4-methoxybenzyl)cyclopropan-1-amine (12)
MeO
An oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) containing a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{OAc})_{2}$ (5.4 $\mathrm{mg}, 0.030 \mathrm{mmol}$) and (R)-DTBM-SEGPHOS ($38.9 \mathrm{mg}, 0.033 \mathrm{mmol}$). The reaction tube was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60) , and then transferred into a nitrogen-filled glovebox. Anhydrous THF (0.60 mL) was added to the tube via a 1 mL syringe. The tube was capped and the mixture was stirred for 15 min at rt . Then DMMS $(0.22 \mathrm{~mL}, 1.80 \mathrm{mmol})$ was added in one portion via a 1 mL syringe and the stirring was continued for another 10 min at rt to prepare a dark red CuH stock solution.

A separate oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) containing a magnetic stir bar was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into the glovebox. 1-(Cycloprop-1-en-1-ylmethyl)-4-methoxybenzene ($53 \mathrm{mg}, 73 \%$ purity 3, $0.24 \mathrm{mmol}, 1.2$ equiv, freshly prepared), Bn_{2} NOPiv ($60 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), and anhydrous THF (0.20 mL) were added to the reaction tube. Then the CuH stock solution $(0.27 \mathrm{~mL})$ was added via a 1 mL syringe to the reaction tube in one portion. The reaction tube was capped and then removed from the glove box. The reaction mixture was allowed to stir at rt for 18 h .

After the reaction was completed, the cap of the reaction tube was removed. While the reaction mixture was stirred at rt , sat. $\mathrm{NH}_{4} \mathrm{~F}$ in $\mathrm{MeOH}(0.4 \mathrm{~mL})$ was added slowly to quench the reaction mixture (Caution: gas evolution observed). The mixture was stirred at rt for 30 min , and then transferred to a 20 mL scintillation vial with EtOAc. The solution was concentrated in vacuo, redissolved in hexane/EtOAc=2:1, and then passed through a short plug of silica gel eluting with hexane/EA=2:1. The resulting solution was collected in another 20 mL scintillation vial, concentrated in vacuo, and then CDCl_{3} and $1,1,2,2$-tetrachloroethane ($16.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) were added. ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture was carried out to determine the NMR yield. Then the solution in the NMR tube was transferred backed to the 20 mL vial with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was concentrated in vacuo. The residue was purified by preparative thin layer chromatography ($20 \times 20 \mathrm{~cm}, 1000$ microns, catalog \# TLG-R10011B-341 from Silicycle) eluting with hexane/EtOAc $=20: 1$, followed by another purification with preparative thin layer chromatography ($20 \times 20 \mathrm{~cm}$, 250 microns, catalog \# TLG-R10014B-323 from Silicycle) eluting with hexane/EtOAc $=15: 1$ to give the product. The title compound was obtained as a light yellow oil ($1^{\text {st }}$ run: $15.7 \mathrm{mg}, 22 \%$ yield, $55.5: 44.5 \mathrm{er},>20: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: $15.6 \mathrm{mg}, 22 \%$ yield, 55.5:44.5 er, > 20:1 dr). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.26(\mathrm{~m}, 10 \mathrm{H}), 7.06-7.04$ (m, 2H), 6.84-6.81 (m, 2H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J$ $=14.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=14.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dt}, J=6.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.97-0.92(\mathrm{~m}$, $1 \mathrm{H}), 0.60(\mathrm{dt}, J=8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.88, 139.07, 133.84, 129.51, 129.37, 128.10, 126.89, 113.77, 58.51, 55.36, 43.56, 37.59, 23.51, 14.67. SFC analysis: CEL-1 (1:99 MeOH: scCO_{2} to $2: 98 \mathrm{MeOH}: \mathrm{scCO}_{2}$ linear gradient over 16 min with 1 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 7.67 min (major), 10.17 min (minor), > 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:-6.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. IR (thin film): 3027, 2914, 2832, 1611, 1510, 1452, 1244, 1175, 1036, $747 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 358.2165 ; found 358.2177.
(1R,3R)-N,N-dibenzyl-3-(dimethyl(phenyl)silyl)-2,2-dimethylcyclopropan-1-amine (15a)
 column chromatography with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}=[100: 1$ (100 $\mathrm{mL}) \rightarrow$ 80:1 $(240 \mathrm{~mL}) \rightarrow$ 60:1 $(60 \mathrm{~mL})$] (the product on TLC was visualized with $\left.\mathrm{I}_{2}\right)$, the title compound was obtained as a white solid ($1^{\text {st }}$ run: $139 \mathrm{mg}, 70 \%$ yield, $98.5: 1.5 \mathrm{er},>20: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: $139 \mathrm{mg}, 70 \%$ yield, $98.5: 1.5 \mathrm{er},>20: 1 \mathrm{dr}) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.54$ (m, $2 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 13 \mathrm{H}), 3.71(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}),-0.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.21$, 139.16, 133.89, 129.52, 128.82, 128.10, 127.81, 126.90, 58.88, 54.76, 25.87, 23.77, 22.87, 19.43, -0.92, -1.20 . m.p. $57.5-58.3^{\circ} \mathrm{C}$. SFC analysis: AD-H ($5: 95 \mathrm{IPA}: \mathrm{scCO}_{2}$ to $20: 80 \mathrm{IPA}: \mathrm{scCO}_{2}$ linear gradient over 6 min with 1 min hold time, 2.50 $\mathrm{mL} / \mathrm{min}$), 2.68 min (major), 2.88 min (minor), 98.5:1.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:+6.6(\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$). IR (thin film): $3063,3027,2947,1453,1369,1247,1113,1072,812,728 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NSi}$: C, 81.14; H, 8.32. Found: C, 81.18; H, 8.31.

2-((E)-(((1R,3R)-3-(dimethyl(phenyl)silyl)-2,2-dimethylcyclopropyl)imino)methyl)phenol (15b)

An oven-dried screw-cap reaction tube (Fisherbrand, 13*100 mm, part no. 1495935C) containing a magnetic stir bar was charged with $\mathrm{Cu}(\mathrm{OAc})_{2}(2.2$ $\mathrm{mg}, 0.012 \mathrm{mmol})$ and (R)-DTBM-SEGPHOS ($15.6 \mathrm{mg}, 0.013 \mathrm{mmol}$). The reaction tube was loosely capped (cap: Thermo Scientific C4015-66; Septum: Thermo Scientific C4015-60), and then transferred into a nitrogen-filled glovebox. Anhydrous THF (0.60 mL) was added to the tube via a 1 mL syringe. The tube was capped and the mixture was stirred for 15 min at rt . Then DMMS ($0.22 \mathrm{~mL}, 1.80 \mathrm{mmol}$) was added in one portion via a 1 mL syringe and the stirring was continued for another 10 min at rt to prepare an orange CuH stock solution. A second oven-dried screw-cap reaction tube (Fisherbrand, 16*125 mm , part no. 1495935A) containing a magnetic stir bar was loosely capped (cap: Kimble Chase Open Top S/T Closure catalog no. 73804-15425; Septum: Thermo Scientific B7995-15), and then transferred into the glovebox. To the second reaction tube, (3,3-Dimethylcycloprop-1-en-1yl)dimethyl(phenyl)silane ($101 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) was added, and then the CuH stock solution (0.68 mL) was added via a 1 mL syringe in one portion. The reaction mixture was stirred at rt for 0.5 min , and then 1,2-benzisoxazole ($76 \mu \mathrm{~L}$) was added slowly over 2 min via microsyringe while the reaction mixture was stirred at rt . The reaction tube was capped and then removed from the glove box. The reaction mixture was allowed to stir at rt for 18 h . After Workup D and purification by column chromatography (silica gel was pretreated with hexanes containing $1 \% \mathrm{NEt}_{3}$) with a gradient of hexanes (contain $0.1 \% \mathrm{NEt}_{3}$) (100 mL) \rightarrow hexanes $\left(\right.$ contain $\left.0.1 \% \mathrm{NEt}_{3}\right) / \mathrm{Et}_{2} \mathrm{O}=[150: 1(75 \mathrm{~mL}) \rightarrow 100: 1(100 \mathrm{~mL}) \rightarrow 70: 1(70 \mathrm{~mL}) \rightarrow$ 60:1 (60 $\mathrm{mL}) \rightarrow 50: 1(100 \mathrm{~mL})]$, the title compound was obtained as a yellow oil ($1^{\text {st }}$ run: $103 \mathrm{mg}, 63 \%$ yield, 99.5:0.5 er, > 20:1 dr; $2^{\text {nd }}$ run: $100 \mathrm{mg}, 62 \%$ yield, 99.5:0.5 er, > 20:1 dr). ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.09(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.46(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) $\delta 161.97,160.57,139.34,133.86,131.62,130.62,129.13,127.99,119.48,118.80$, $116.88,57.25,26.74,24.36,23.74,23.62,-1.10,-1.18$. SFC analysis: OJ-H ($2: 98 \mathrm{MeOH}(0.1 \%$ DEA): scCO_{2} to $7: 93 \mathrm{MeOH}(0.1 \% \mathrm{DEA}): \mathrm{scCO}_{2}$ linear gradient over 10 min with 1 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 4.89 min (major), 7.50 min (minor), 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}$: 107.2 (c = 1.0, CHCl_{3}). IR (thin film): 2948, 1620, 1495, 1414, 1277, 1200, 1113, 955, 905, 698 cm^{-1}. EA Calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NOSi}$ C, $74.25 ; \mathrm{H}, 7.79$. Found: C, $74.42 ; \mathrm{H}, 7.98$.

2-((E)-(((2R,3R)-2-(dimethyl(phenyl)silyl)-1',3'-dihydrospiro[cyclopropane-1,2'-inden]-3yl)imino)methyl)phenol (15c)

Following general procedure \mathbf{D}, (1',3'-dihydrospiro[cyclopropane-1,2'-inden]-2-en-2-yl)dimethyl(phenyl)silane ($138 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) was used, and the 1,2-benzisoxazole solution was added slowly via syringe pump at a rate of $0.16 \mathrm{~mL} / \mathrm{h}$. After Workup \mathbf{D} and purification by column chromatography (silica gel was pretreated with hexanes containing 1% NEt_{3}) with a gradient of hexanes (contain $\left.0.1 \% \mathrm{NEt}_{3}\right)(100 \mathrm{~mL}) \rightarrow$ hexanes $\left(\right.$ contain $\left.0.1 \% \mathrm{NEt}_{3}\right) / \mathrm{Et}_{2} \mathrm{O}=[80: 1(80 \mathrm{~mL}) \rightarrow 60: 1(60 \mathrm{~mL}) \rightarrow 40: 1(80 \mathrm{~mL}) \rightarrow 30: 1(60 \mathrm{~mL}) \rightarrow$ 20:1 $(40 \mathrm{~mL}) \rightarrow$ 15:1 $(60 \mathrm{~mL}) \rightarrow 10: 1(40 \mathrm{~mL})$], the title compound was obtained as a yellow solid ($1^{\text {st }}$ run: $145 \mathrm{mg}, 73 \%$ yield, $99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $149 \mathrm{mg}, 75 \%$ yield, 99.5:0.5 er, $>20: 1 \mathrm{dr}){ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.96(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.36(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=5.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.77(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.43(\mathrm{~s}, 3 \mathrm{H}), 0.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.24,160.55,142.44,142.31,138.66,133.86,131.88,130.81,129.32$, $128.10,126.50,126.33,124.55,124.24,119.32,118.94,116.90,56.75,40.72,38.66,35.31$, 22.02, $-1.46,-1.75$. m.p. $123.4-124.1^{\circ} \mathrm{C}$. SFC analysis: AD-H (5:95 MeOH (0.1% DEA) : scCO_{2} to $20: 80 \mathrm{MeOH}(0.1 \% \mathrm{DEA})$: scCO_{2} linear gradient over 6 min with 1 min hold time, 2.50 $\mathrm{mL} / \mathrm{min}$), 4.34 min (major), 4.65 min (minor), 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:+67.8$ ($\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$). IR (thin film): 3066, 3019, 2951, 2891, 2836, 1619, 1426, 1277, 1113, $733 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NOSi}$: C, 78.54; H, 6.85. Found: C, 78.28; H, 6.70.

2-((E)-(((1R,2R)-2-(dimethyl(phenyl)silyl)-6-tosyl-6-azaspiro[2.5]octan-1yl)imino)methyl)phenol (15d)

Following general procedure D, 1-(dimethyl(phenyl)silyl)-6-tosyl-6-azaspiro[2.5]oct-1-ene ($199 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) was used, and the 1,2-benzisoxazole solution was added slowly via syringe pump at a rate of $0.13 \mathrm{~mL} / \mathrm{h}$. After Workup D and purification by column chromatography (silica gel was pretreated with hexanes containing $1 \% \mathrm{NEt}_{3}$) with a gradient of hexanes (contain $\left.0.1 \% \mathrm{NEt}_{3}\right) / \mathrm{CH}_{2} \mathrm{Cl}_{2}=50: 1(100 \mathrm{~mL}) \rightarrow$ hexanes $\left(\right.$ contain $\left.0.1 \% \mathrm{NEt}_{3}\right) / \mathrm{EtOAc}=[30: 1(60 \mathrm{~mL}) \rightarrow 25: 1(50 \mathrm{~mL}) \rightarrow 20: 1(40 \mathrm{~mL}) \rightarrow 15: 1(60 \mathrm{~mL})$ \rightarrow 12:1 $(60 \mathrm{~mL}) \rightarrow 10: 1(80 \mathrm{~mL}) \rightarrow 8: 1(80 \mathrm{~mL}) \rightarrow 7: 1(140 \mathrm{~mL}) \rightarrow 6: 1(60 \mathrm{~mL}) \rightarrow 5: 1(100$ $\mathrm{mL}) \rightarrow 4: 1(40 \mathrm{~mL})$ (the above volumes refer to the volume of hexanes used)], the title compound was obtained as a yellow solid ($1^{\text {st }}$ run: $163 \mathrm{mg}, 63 \%$ yield, $98: 2 \mathrm{er},>20: 1 \mathrm{dr}$; $2^{\text {nd }}$ run: $147 \mathrm{mg}, 57 \%$ yield, $98: 2 \mathrm{er},>20: 1 \mathrm{dr}) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}$, $1 \mathrm{H}), 7.60$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.48-7.46 (m, 2H), 7.40-7.28 (m, 6H), 7.23 (dd, $J=7.6,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dt}, J=9.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (dt, $J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.04$ (ddd, $J=$ $13.5,9.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dt}, J=13.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{ddd}, J=13.4,9.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ (dt, $J=13.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.43(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.33(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.95,160.38,143.42,138.28,133.70,133.61,132.05,130.82,129.77,129.42,128.12,127.68$, $119.16,119.00,116.92,55.55,46.15,45.80,32.66,32.62,31.02,23.21,21.65,-1.24,-1.36$. m.p. 60.1-62.8 ${ }^{\circ}$ C. SFC analysis: AD-H ($\left.20: 80 \mathrm{MeOH}(0.1 \% \mathrm{DEA}): \mathrm{scCO}_{2}, 2.50 \mathrm{~mL} / \mathrm{min}\right), 4.60 \mathrm{~min}$ (major), 5.80 min (minor), $98: 2 \mathrm{er}$. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:+13.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$. IR (thin film): 2953, 2844, 1619, 1427, 1334, 1276, 1163, 1090, 908, $722 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}, 67.15 ; \mathrm{H}, 6.61$. Found: C, 67.54; H, 6.65.
tert-butyl (2S,3R)-3-(dibenzylamino)-2-(dimethyl(phenyl)silyl)azetidine-1-carboxylate (7f)
 Following general procedure B, tert-butyl 4-(dimethyl(phenyl)silyl)azete-1 $(2 \mathrm{H})$ carboxylate ($145 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Bn}_{2} \mathrm{NOC}(\mathrm{O}) \mathrm{Mes}(270 \mathrm{mg}, 0.75$ mmol, 1.5 equiv) were used. The reaction was run at $40{ }^{\circ} \mathrm{C}$ for 46 h . After Workup \mathbf{D} and purification by column chromatography with a gradient of hexanes $(100 \mathrm{~mL}) \rightarrow$ hexanes/acetone $=[80: 1(80 \mathrm{~mL}) \rightarrow 70: 1(70 \mathrm{~mL}) \rightarrow 50: 1(100 \mathrm{~mL}) \rightarrow 30: 1(180 \mathrm{~mL})]$ (the product on TLC was visualized with I_{2}), the title compound was obtained as a colorless oil ($1^{\text {st }}$ run: $223 \mathrm{mg}, 92 \%$ yield, $>99.5: 0.5 \mathrm{er},>20: 1 \mathrm{dr} ; 2^{\text {nd }}$ run: $223 \mathrm{mg}, 92 \%$ yield, $>99.5: 0.5 \mathrm{er},>$ 20:1 dr). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 12 \mathrm{H}), 4.16(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.45(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.40(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.64$, 138.99, 136.27, 134.30, 129.42, 128.76, 128.33, 127.90, 127.09, 79.38, 57.41, 53.94, 52.87, 52.61, 28.56, -4.15, -4.68. SFC analysis: OJ-H (5:95 IPA:
scCO_{2} to 20:80 IPA: scCO_{2} linear gradient over 6 min with 1 min hold time, $2.50 \mathrm{~mL} / \mathrm{min}$), 2.87 min (major), 3.17 min (minor), > 99.5:0.5 er. Specific rotation $[\alpha]_{\mathrm{D}}{ }^{23}:+11.1$ (c $=1.0, \mathrm{CHCl}_{3}$). IR (thin film): 2973, 1691, 1408, 1364, 1248, 1154, 1111, 1028, 832, $696 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$: C, 74.03; H, 7.87. Found: C, 73.75; H, 8.04.

4. Preparation of Alkene Substrates and Amination Reagents

4.1 Synthesis of 1-Arylcyclobutenes

All the 1-arylcyclobutenes used in this paper are listed below. $\mathbf{2 a - c} \mathbf{c}^{5}, \mathbf{2 f}-\mathbf{g}^{5}$ are known compounds and were prepared by following previously reported procedures.

2a

2b

2c

2d

2e

$2 f$

2g

Synthesis of 2d, 2e.

General Procedure \mathbf{E}^{6}
A 250 mL round bottom flask containing a magnetic stir bar was charged with the corresponding aryl bromide ($21.0 \mathrm{mmol}, 1.05$ equiv) and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous THF (63 mL) was added, and then the mixture was cooled to $-78{ }^{\circ} \mathrm{C} .{ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 1.1 equiv, 8.8 mL$)$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min , and then cyclobutanone ($20.0 \mathrm{mmol}, 1.0$ equiv, 1.40 g) in anhydrous THF (20 mL) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , and was allowed to warm to rt and stirred for an additional 30 min . Then the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{Ac}_{2} \mathrm{O}(40.0 \mathrm{mmol}$, 2.0 equiv, 4.08 g) was added dropwise. The reaction mixture was allowed to warm to rt and stirred for 2 h . The septum was removed, and the reaction mixture was concentrated in vacuo. $\mathrm{Et}_{2} \mathrm{O}$ and aq. NaHCO_{3} were added. The layers were separated, and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and then purified by column chromatography on silica gel to afford the corresponding 1-arylcyclobutyl acetate.

A 50 mL round bottom flask containing a magnetic stir bar was charged with the corresponding 1 -arylcyclobutyl acetate (1.0 equiv) and LiBr (10.0 equiv), and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous DMF (13 mL) was added, and then the reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 1 h or overnight (as indicated for each substrate). The mixture was allowed to cool to rt , and was immediately quenched with water. $\mathrm{Et}_{2} \mathrm{O}$ and aq. NaHCO_{3} were added. The layers were separated, and the organic layer was extract with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and then purified by column chromatography on silica gel to afford the corresponding 1-arylcyclobutene (Note: 2d and 2e are very air-sensitive, and therefore need to be immediately stored under nitrogen in the glovebox freezer at $-30{ }^{\circ} \mathrm{C}$ once prepared).

1-(cyclobut-1-en-1-yl)-2-fluorobenzene (2d)
Following general procedure E, 1-(2-fluorophenyl)cyclobutyl acetate (6.29 mmmol , 1.31 g) was used. The title compound was obtained as a colorless oil ($0.47 \mathrm{~g}, 36 \%$ yield over two steps) after purification by column chromatography on silica gel (eluting with pentane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.28-7.19 (m, 2H), 7.14-7.03 (m, 2H), 6.42-6.40 (m, 1H), 2.91-2.89 (m, 2H), 2.64-2.63 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.25$ (d, $J=251.3 \mathrm{~Hz}), 140.96,133.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 128.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 127.01(\mathrm{~d}, J=4.4 \mathrm{~Hz})$, $123.97(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 123.04(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 115.61(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 30.00,27.96 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.94$. IR (thin film): $3070,2918,2834,1490,1446,1237,1214,1176$, 1031, $747 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 149.0761 ; found 149.0757.

5-(cyclobut-1-en-1-yl)-2-methoxypyridine (2e)

Following general procedure \mathbf{E}, 1-(6-methoxypyridin-3-yl)cyclobutyl acetate (6.60 $\mathrm{mmmol}, 1.46 \mathrm{~g})$ was used. The title compound was obtained as a white solid (0.26 $\mathrm{g}, 18 \%$ yield over two steps) after purification by column chromatography on silica gel (eluting with pentane \sim pentane $/ \mathrm{Et}_{2} \mathrm{O}=30: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.11(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.54(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 163.50,143.39,143.12,134.78,126.64,124.65,110.69,77.48,77.16,76.84,53.60,28.90$, 26.91. m.p. 46.7-48.0 ${ }^{\circ} \mathrm{C}$. IR (thin film): 2948, 2840, 1723, 1681, 1601, 1492, 1372, 1288, 1020, $832 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 162.0913$; found 162.0905.

4.2 Synthesis of 1-Arylcyclopropene

(3,3-dimethylcycloprop-1-en-1-yl)benzene (8)

${ }_{\mathrm{Ph}}^{\mathrm{Me}} X^{\mathrm{Me}}$A 25 mL round bottom flask containing a magnetic stir bar was charged with (1-bromo-2-methylprop-1-en-1-yl)benzene ${ }^{7}$ (5.05 mmol , 1.0 equiv, 1.07 g), $\mathrm{BnEt}_{3} \mathrm{NCl}$ ($0.505 \mathrm{mmol}, 0.1$ equiv, 115 mg), and bromoform ($40.4 \mathrm{mmol}, 8.0$ equiv, 3.5 mL). While the reaction mixture was stirred vigorously at $\mathrm{rt}, \mathrm{NaOH}(40.4 \mathrm{mmol}, 8.0$ equiv, 1.62 g$)$ in water (1.6 mL) was added dropwise. Then the flask was capped with a septum and attached to a balloon filled with air. The reaction mixture was stirred vigorously at $60{ }^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was allowed to cool to rt , and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water (50 mL). The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \times 70 \mathrm{~mL}$). The combined organic layers were filtered through a short plug of silica gel and washed with $\mathrm{Et}_{2} \mathrm{O}$. The resulting solution was concentrated in vacuo, and then purified by column chromatography on silica gel eluting with hexanes to give (1,2,2-tribromo-3,3-dimethylcyclopropyl)benzene.
A 25 mL round bottom flask containing a magnetic stir bar was charged with (1,2,2-tribromo-3,3-dimethylcyclopropyl)benzene ($2.0 \mathrm{mmol}, 1.0$ equiv, 766 mg) and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added, and then the mixture was cooled to $-78{ }^{\circ} \mathrm{C} .{ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 2.1 equiv, 1.68 mL) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to slowly warmed to rt over 2 h while being stirred. Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and water $(0.2 \mathrm{~mL})$ was added dropwise. The reaction mixture was allowed to warm to rt and was stirred at rt for 10 min . Then
saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added dropwise, and the reaction mixture was stirred at rt for 5 min . The septum on the flask was removed. The reaction mixture was diluted with pentane $(50 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with pentane (50 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo and purified by column chromatography on silica gel (eluting with pentane) to give the title compound as a colorless oil ($0.25 \mathrm{~g}, 53 \%$ yield over two steps) (Note: $\mathbf{8}$ was stored under nitrogen in the glovebox freezer at $-30{ }^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 132.23,129.58,128.87,128.73,128.52,115.19,27.02,19.41$. IR (thin film): 2924, 2861, 1675, 1598, 1493, 1444, 1371, 1308, 1024, $700 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 145.1012; found 145.1022 .

4.3 Synthesis of 1-Alkylcyclobutenes ${ }^{8,9}$

5a

(3-(cyclobut-1-en-1-yl)propyl)benzene (5a)

A 100 mL round bottom flask containing a magnetic stir bar was transferred into a nitrogen-filled glovebox. $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(1.2 \mathrm{mmol}, 0.1$ equiv, 351 mg) was added to the flask. The flask was capped with a septum, removed from the glovebox, and then attached to a balloon filled with argon. Anhydrous THF (24 mL) was added. While the reaction mixture was stirred at $\mathrm{rt}, \mathrm{EtMgBr}(1 \mathrm{M}$ in $\mathrm{THF}, 36 \mathrm{mmol}, 3.0$ equiv, 36 mL) was added dropwise. Then (5-chloropent-4-yn-1-yl)benzene ${ }^{10}(12 \mathrm{mmol}, 1.0$ equiv, 2.14 g$)$ was added dropwise at rt . The reaction mixture was stirred at rt for 48 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, and water was added slowly to quench the reaction mixture. The mixture was diluted with water $(50 \mathrm{~mL})$ and pentane $(50 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with pentane $(50 \mathrm{~mL})$. The combined organic layers were washed with water (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified by column chromatography on silica gel eluting with pentane (Note: (5-chloropent-4-yn-1-yl)benzene was not fully consumed in the reaction, and it could poison the CuH catalyst in the subsequent hydroamination reactions. Therefore, the last few product-containing fractions from the column chromatography were analyzed by GC to determine whether they contained (5-chloropent-4-yn1 -yl)benzene, and only the clean fractions were collected.) to afford the title compound as a colorless oil ($0.58 \mathrm{~g}, 28 \%$ yield) (Note: $\mathbf{5 a}$ was stored under nitrogen in the glovebox freezer at $30{ }^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 5.71$ (br, 1H), 2.67-2.63 (m, 2H), 2.44-2.42 (m, 2H), 2.37-2.35 (m, 2H), 2.06-2.03 (m, 2H), 1.81-1.74 $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.47,142.65,128.61,128.41,127.15,125.82,35.76$, 31.31, 30.80, 28.72, 26.71. IR (thin film): 3028, 2922, 2842, 1630, 1604, 1496, 1453, 1171, 1030, $698 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 173.1325 ; found 173.1315.

5b
tert-butyl(3-(cyclobut-1-en-1-yl)propoxy)diphenylsilane (5b)
A 100 mL round bottom flask containing a magnetic stir bar was charged with
 $\mathrm{NCS}\left(22.0 \mathrm{mmol}, 2.0\right.$ equiv, 2.95 g), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.5 \mathrm{mmol}, 0.5$ equiv, 0.76 g$)$, and
$\mathrm{Ag}_{2} \mathrm{CO}_{3}(0.11 \mathrm{mmol}, 0.1$ equiv, 0.30 g$)$ and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous ${ }^{n} \operatorname{PrOH}(22 \mathrm{~mL})$ was added. Then tert-butyl(pent-4-yn-1-yloxy)diphenylsilane ${ }^{11}$ ($11.0 \mathrm{mmol}, 1.0$ equiv, 3.55 g) was added dropwise at rt . The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 48 h . Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and brine was added. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with water (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give tert-butyl((5-chloropent-4-yn-1-yl)oxy)diphenylsilane.
A 100 mL round bottom flask containing a magnetic stir bar was transferred into a nitrogenfilled glovebox. $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(1.2 \mathrm{mmol}, 0.1$ equiv, 351 mg) was added to the flask. The flask was capped with a septum, removed from the glovebox, and then attached to a balloon filled with argon. Anhydrous THF (24 mL) was added. While the reaction mixture was stirred at $\mathrm{rt}, \mathrm{EtMgBr}$ (1 M in THF, $36 \mathrm{mmol}, 3.0$ equiv, 36 mL) was added dropwise. Then tert-butyl((5-chloropent-4-yn-1-yl)oxy)diphenylsilane ($12 \mathrm{mmol}, 1.0$ equiv, 4.28 g) was added dropwise at rt . The reaction mixture was stirred at rt for 72 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, and water was added slowly to quench the reaction mixture. The mixture was diluted with water (50 $\mathrm{mL})$ and $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(50 \mathrm{~mL})$. The combined organic layers were washed with water (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and purified by column chromatography on silica gel eluting with $0-2 \% \mathrm{EtOAc}$ in hexanes to give a mixture of the title compound and the 1 -chloroalkyne starting material. The isolated material contains 24% (w/w) tert-butyl((5-chloropent-4-yn-1yl)oxy)diphenylsilane impurity, which was removed by carrying out a further transformation.
A 25 mL round bottom flask containing a magnetic stir bar was charged with the material isolated from the previous step (1.69 g material, contains 1.14 mmol of tert-butyl($(5$-chloropent4 -yn-1-yl)oxy)diphenylsilane, 1.0 equiv) and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous THF (5.7 mL) was added, and then the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $2.28 \mathrm{mmol}, 2.0$ equiv, 0.91 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then anhydrous $\mathrm{PhCHO}\left(4.56 \mathrm{mmol}, 4.0\right.$ equiv, 484 mg) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min , and was allowed to warm to rt and stirred for 30 min . Water was slowly added to quench the reaction mixture. The resulting mixture was extracted with hexane (2 x). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with 0-2\% EtOAc in hexanes to give the title compound as a colorless oil ($1.21 \mathrm{~g}, 13 \%$ overall yield) (Note: $\mathbf{8 b}$ was stored under nitrogen in the glovebox freezer at $-30^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.63(\mathrm{tt}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2 H), 2.39-2.37 (m, 2H), 2.32-2.29 (m, 2H), 2.11-2.07 (m, 2H), 1.74-1.67 (m, 2H), 1.05 (s, 9H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.39$, 135.74, 134.25, 129.65, 127.73, 126.99, 63.70, 31.31, 29.90, 27.55, 27.03, 26.61, 19.40. IR (thin film): 3071, 2929, 2856, 1472, 1427, 1105, 953, 822, 737, $699 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{OSi}$ C, 78.80 ; H, 8.63. Found: C, $78.91 ; \mathrm{H}, 8.63$.

2-(3-(cyclobut-1-en-1-yl)propoxy)-5-(trifluoromethyl)pyridine (5c)

A 25 mL round bottom flask containing a magnetic stir bar was charged with $\mathbf{5 b}(2.4 \mathrm{mmol}, 1.0$ equiv, 843 mg$)$ and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous THF (4.8 mL) was added, and then the mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$. TBAF (1 M in THF, 2.0 equiv, 4.8 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to rt and was stirred at rt for 3 h . Then the reaction mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluting with $0-40 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to afford 3-(cyclobut-1-en-1-yl)propan-1-ol. A 25 mL round bottom flask containing a magnetic stir bar was charged with 3-(cyclobut-1-en-1-yl)propan-1-ol ($2.24 \mathrm{mmol}, 1.12$ equiv, 251 mg) and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous THF (4.5 mL) was added, and then the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{NaH}\left(2.7 \mathrm{mmol}, 1.35\right.$ equiv, 65 mg) was added in several portions at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to rt and was stirred at rt for 15 min . Then 2-chloro-5(trifluoromethyl)pyridine ($2.0 \mathrm{mmol}, 1.0$ equiv, 364 mg) was added and the reaction mixture was stirred at rt overnight. The reaction mixture was diluted with water and EtOAc. The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluting with $0-3 \%$ EtOAc in hexanes) to give the title compound as a colorless oil (0.50 g , 93% yield over two steps) (Note: $\mathbf{5 c}$ was stored under nitrogen in the glovebox freezer at $-30{ }^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44-8.41(\mathrm{~m}, 1 \mathrm{H})$, $7.75(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{br}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.44 (ddd, $J=4.2,2.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{dt}, J=7.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, J$ $=7.2,6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.13,149.53,145.07(\mathrm{q}, J=4.4 \mathrm{~Hz}$), $135.69(\mathrm{q}, J=3.2 \mathrm{~Hz}), 127.60,124.21(\mathrm{q}, J=271.0 \mathrm{~Hz}), 119.91(\mathrm{q}, J=33.0 \mathrm{~Hz}), 111.37,66.50$, 31.29, 27.65, 26.68, 26.25. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-61.52. IR (thin film): 2924, 2844, 1614, 1501, 1315, 1160, 1123, 1078, 1011, $834 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 60.70 ; \mathrm{H}$, 5.49. Found: C, 60.72; H, 5.66.

4.4 Synthesis of 1-Alkylcyclopropene ${ }^{12}$

1-(cycloprop-1-en-1-ylmethyl)-4-methoxybenzene (11)

A 250 mL round bottom flask containing a magnetic stir bar was capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with
argon. Anhydrous $\mathrm{Et}_{2} \mathrm{O}(53 \mathrm{~mL})$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3} \mathrm{Cl}(7.50 \mathrm{mmol}, 1.5$ equiv, 1.95 g$)$ were added, and then the mixture was cooled to $-60{ }^{\circ} \mathrm{C} .{ }^{i} \mathrm{PrMgCl}\left(2.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 2.9$ equiv, 7.25 mL$)$ was added dropwise at $-60^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-60{ }^{\circ} \mathrm{C}$ for 10 min , and then a mixture of methyl 2-(4-methoxyphenyl)acetate ($5.0 \mathrm{mmol}, 1.0$ equiv, 0.90 g) and trimethyl(vinyl) silane (7.5 $\mathrm{mmol}, 1.5$ equiv, 0.75 g$)$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(0.27 \mathrm{~mL})$ was added dropwise. The reaction mixture was allowed to warm to $-25^{\circ} \mathrm{C}$ over 30 min , stirred at $-25 \sim-20{ }^{\circ} \mathrm{C}$ for 1 h , and then was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . Water (2.5 mL) in THF (10 mL) was added slowly, and then the reaction mixture was allowed to warm to rt and stirred for 30 min . The reaction mixture was passed through a short plug of Celite, washed with $\mathrm{Et}_{2} \mathrm{O}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (pretreated with $1 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexanes) and eluted with a gradient of hexanes/ $\mathrm{Et}_{2} \mathrm{O}=8: 1 \sim 3: 1$ to afford 1-(4-methoxybenzyl)-2-(trimethylsilyl)cyclopropan-1-ol.
A 25 mL round bottom flask containing a magnetic stir bar was charged with 1-(4-methoxybenzyl)-2-(trimethylsilyl)cyclopropan-1-ol ($1.8 \mathrm{mmol}, 1.0$ equiv, 0.45 g), and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(7.2 \mathrm{mmol}, 4.0$ equiv, 0.73 g$)$ were added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{MsCl}(3.6 \mathrm{mmol}, 2.0$ equiv, 0.41 g$)$ was added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Then the reaction mixture was allowed to warm to rt , and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and used in the next step without further purification.
A 100 mL round bottom flask containing a magnetic stir bar was charged with the crude material from the last step. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous THF (10 mL) was added, and then TBAF (1 M in THF, 9.9 mL) was added dropwise at rt . The reaction mixture was stirred at rt for 2 h , and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ were added. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2×20 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and immediately purified by column chromatography on silica gel (eluting with pentane and then pentane $/ \mathrm{Et}_{2} \mathrm{O}=60: 1$) to give the title compound as a colorless oil $\left(0.23 \mathrm{~g}, 73 \%\right.$ purity $^{3}, 21 \%$ yield over 3 steps) (Note: $\mathbf{1 1}$ was stored under nitrogen in the glovebox freezer at $-30{ }^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$. IR (thin film): 2955, 2876, 2834, 1610, 1511, 1301, 1244, 1174, 1035, $840 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 161.0961 ; found 161.0972 .

4.5 Synthesis of 1-Silyl Substituted Three- and Four-Membered Cycloalkenes

All the 1-silyl substituted three- and four-membered cycloalkenes used in this paper are listed above. 13a ${ }^{13}$ is a known compound and was prepared by following previously reported procedures.

(1',3'-dihydrospiro[cyclopropane-1,2'-inden]-2-en-2-yl)dimethyl(phenyl)silane (13b)

A 50 mL round bottom flask containing a magnetic stir bar was charged with 2-methylene-2,3-dihydro- $1 H$-indene ($19.0 \mathrm{mmol}, 1.0$ equiv, 2.51 g), $\mathrm{BnEt}_{3} \mathrm{NCl}(1.9$ $\mathrm{mmol}, 0.1$ equiv, 439 mg), and bromoform ($76.0 \mathrm{mmol}, 4.0$ equiv, 6.7 mL). While the reaction mixture was stirred vigorously at $\mathrm{rt}, \mathrm{NaOH}$ ($76.0 \mathrm{mmol}, 4.0$ equiv, 3.1 g) in water (3.1 mL) was added dropwise. Then the flask was capped with a septum and attached to a balloon filled with air. The reaction mixture was stirred vigorously at $60{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was allowed to cool to rt , and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water (50 mL). The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x}$ 70 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo, and then purified by column chromatography on silica gel eluting with hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=100: 1$ to give 2,2-dibromo-1',3'-dihydrospiro[cyclopropane-1,2'-indene].
A 100 mL round bottom flask containing a magnetic stir bar was charged with 2,2-dibromo-1', 3^{\prime} -dihydrospiro[cyclopropane-1,2'-indene] ($13.5 \mathrm{mmol}, 1.0$ equiv) and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous THF (27 mL) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ $(0.13 \mathrm{mmol}, 0.1$ equiv, 0.40 mL) were added. While the reaction mixture was stirred at rt , $\mathrm{EtMgBr}\left(3 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 1.3$ equiv, 5.8 mL) was added over 1 h via syringe pump. The reaction mixture was stirred at rt for 4 h . Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $10 \% \mathrm{aq}$. $\mathrm{H}_{2} \mathrm{SO}_{4}(10 \mathrm{~mL})$ was added dropwise to quench the reaction mixture. The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{E}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluting with $0-2 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane) to give 2-bromo-1',3'-dihydrospiro[cyclopropane-1,2'-indene].
A 100 mL round bottom flask containing a magnetic stir bar was charged with 2-bromo-1', 3^{\prime} -dihydrospiro[cyclopropane-1,2'-indene] ($6.0 \mathrm{mmol}, 1.0$ equiv, 1.34 g) and then capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Anhydrous DMSO (13 mL) was added. While the reaction mixture was stirred at $\mathrm{rt}, \mathrm{KO}^{t} \mathrm{Bu}(9.0 \mathrm{mmol}, 1.5$ equiv, 1.01 g) in anhydrous DMSO (3.3 mL) was added dropwise. The reaction mixture was stirred at rt overnight. Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and water (100 mL) was slowly added to quench the reaction mixture. $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extract with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combine organic layers were washed with water ($3 \times 75 \mathrm{~mL}$), then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluting with pentane) to give $1^{\prime}, 3^{\prime}-$ dihydrospiro[cyclopropane-1,2'-inden]-2-ene.
A 10 mL round bottom flask with a magnetic stir bar was charged with 1',3'-dihydrospiro[cyclopropane-1,2'-inden]-2-ene ($1.35 \mathrm{mmol}, 1.0$ equiv, 192 mg) and anhydrous $\mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{~mL})$ under nitrogen. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 1.05 equiv, 0.57 mL) was added dropwise. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and
then at $-10{ }^{\circ} \mathrm{C}$ for 1 h . The resulting solution was added over 20 min to another 25 mL round bottom flask containing $\mathrm{PhMe}_{2} \mathrm{SiCl}\left(1.48 \mathrm{mmol}, 1.1\right.$ equiv, 263 mg) and anhydrous $\mathrm{Et}_{2} \mathrm{O}$ (2.8 mL) at $-40^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 1 h and at rt for 2 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. Then water (20 mL) and $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluted with 0-2\% $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes) to afford the title compound as a colorless oil ($0.29 \mathrm{~g}, 20 \%$ yield over 4 steps) (Note: 13b was stored under nitrogen in the glovebox freezer at $-30{ }^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~s}$, $4 \mathrm{H}), 2.87(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.63,137.40,133.81,131.79,129.44,127.99,126.85,125.97,124.27,44.30,26.60$, -1.94 . IR (thin film): $3068,2957,2880,2825,1676,1482,1427,1248,1113,733 \mathrm{~cm}^{-1} . \mathbf{E A}$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Si}$: C, 82.55 ; H, 7.29. Found: C, 82.74; H, 7.45.

13c

1-(dimethyl(phenyl)silyl)-6-tosyl-6-azaspiro[2.5]oct-1-ene (13c)

A 25 mL round bottom flask with a magnetic stir bar was charged with 6-tosyl-6-azaspiro[2.5]oct-1-ene ${ }^{14}$ ($3.0 \mathrm{mmol}, 1.0$ equiv, 790 mg) and anhydrous THF (8.7 mL) under nitrogen. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and ${ }^{n} \mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, 1.02 equiv, 1.23 mL) was added dropwise (Note: The addition process of ${ }^{n} \mathrm{BuLi}$ needs to be terminated once the reaction mixture turns from colorless to slightly pinkish. Otherwise, disilylated byproduct, which is difficult to seperate from the product, is formed). Then the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 1 h . The resulting suspension was added over 30 min to another 50 mL round bottom flask containing $\mathrm{PhMe}{ }_{2} \mathrm{SiCl}(3.3 \mathrm{mmol}, 1.1$ equiv, 563 mg) and anhydrous THF (6.0 mL) at $-40{ }^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 1 h and at rt for 2 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. Then water $(30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ were added. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluted with hexanes/EtOAc/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=30: 1: 2$) to afford the title compound as a white solid ($0.90 \mathrm{~g}, 76 \%$ yield) (Note: 13c was stored under nitrogen in the glovebox freezer at $-30^{\circ} \mathrm{C}$ once prepared). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.64-$ $7.62(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 3.11(\mathrm{ddd}, J=10.8,6.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.81$ (ddd, $J=11.5,8.5,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{td}, J=8.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H})$, 0.32 (s, 6H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.29,136.99,136.86,133.65,133.51,131.87$, 129.62, 129.55, 127.99, 127.87, 47.20, 38.17, 22.52, 21.69, -2.25. m.p. 65.6-66.2 ${ }^{\circ}$ C. IR (thin film): 2937, 2903, 2837, 1667, 1428, 1351, 1247, 1162, 1112, $722 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{SSi}: \mathrm{C}, 66.46 ; \mathrm{H}, 6.84$. Found: C, 66.33; H, 6.61 .

5d
tert-butyl 4-(dimethyl(phenyl)silyl)azete-1(2H)-carboxylate ${ }^{15}$ (5d)
Boc. A 100 mL round bottom flask containing a magnetic stir bar was capped with a septum. The flask was evacuated and backfilled with argon (this process was repeated for a total of three times), and then attached to a balloon filled with argon. Then tert-butyl 3-methoxyazetidine-1-carboxylate ($4.0 \mathrm{mmol}, 1.0$ equiv, 749 mg) and anhydrous THF (25 mL) were added, and the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. TMEDA ($10.0 \mathrm{mmol}, 2.5$ equiv, 1.16 g) was added. Then ${ }^{s} \mathrm{BuLi}(1.3 \mathrm{M}$ in cyclohexane, 2.5 equiv, 7.7 mL) was added dropwise over 10 min while the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then $\mathrm{PhMe}_{2} \mathrm{SiCl}(10.0 \mathrm{mmol}, 2.5$ equiv, 1.71 g$)$ was added. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then at rt for 1 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. Then $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. The layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluted with $0-9 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). The resulting material was redissolved in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, filtered through a short plug of basic activated alumina, and washed with additional $\mathrm{Et}_{2} \mathrm{O}$. The collected $\mathrm{Et}_{2} \mathrm{O}$ solution was concentrated in vacuo to afford the pure product as a colorless oil $(0.47 \mathrm{~g}, 40 \%$ yield) (Note: $\mathbf{5 d}$ was stored under nitrogen in the glovebox freezer at $-30{ }^{\circ} \mathrm{C}$ once prepared). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 7.40-7.33 (m, 3H), 5.89 (s, 1H), 4.55 ($\mathrm{s}, 2 \mathrm{H}$), 1.33 ($\mathrm{s}, 9 \mathrm{H}$), 0.47 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13}$ C NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.48,152.00,136.47,134.23,129.46,127.85,126.31,80.34,59.78,28.48$, 3.07. IR (thin film): 2977, 1695, 1390, 1366, 1247, 1164, 1139, 1113, 1020, $814 \mathrm{~cm}^{-1}$. HRMS Calcd. m / z for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 290.1571$; found 290.1575.

4.6 Synthesis of Amination Reagents

All the amination reagents used in this paper are listed below. $\mathbf{3 a}{ }^{16}, \mathbf{3} \mathbf{b}^{17}, \mathbf{6 a}^{18}, \mathbf{9}^{19}$ are known compounds and were prepared by following previously reported procedures.
$\mathrm{Bn}_{2} \mathrm{NOBz}$

3a

6a

3b

6b

3c

6c

3d
9

Synthesis of 3c, 3d.

$$
\mathrm{RCHO}+\mathrm{BnNH}_{2} \xrightarrow[\text { then } \mathrm{NaBH}_{4}]{\mathrm{MeOH}, \mathrm{rt} ;} \mathrm{Bn}^{\mathrm{N}} \mathrm{NH}^{\mathrm{R}} \xrightarrow[\mathrm{DMF}, \mathrm{rt}]{\mathrm{K}_{2} \mathrm{HPO}_{4}, \mathrm{BzOOBz}} \mathrm{Bn}^{\mathrm{R}} \mathrm{~N}^{\prime}-\mathrm{OBz}
$$

General Procedure \mathbf{F}
A 100 mL round bottom flask containing a magnetic stir bar was charged with the corresponding aldehyde (1.0 equiv), BnNH_{2} (1.0 equiv), and MeOH (2.0 M). The reaction
mixture was stirred at rt for 6 h . Then NaBH_{4} (2.0 equiv) was added in several portions at rt . The reaction mixture was stirred at rt overnight, and then quenched with 5 M aq. NaOH . The resulting mixture was concentrated in vacuo, and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and used in the next step without further purification.

A 100 mL round bottom flask containing a magnetic stir bar was charged with the crude material from the first step, and then DMF and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ were added. BzOOBz was then added in one portion at rt . The reaction mixture was stirred at rt until BzOOBz was completely consumed (as indicated by TLC analysis), and then diluted with EtOAc and water. The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo, and then purified by column chromatography on silica gel to give the corresponding amination reagent.

(5-(((benzoyloxy)(benzyl)amino)methyl)furan-2-yl)methanol (3c)

Following general procedure F, 5-(hydroxymethyl)furan-2-carbaldehyde (40 $\mathrm{mmol}, 5.0 \mathrm{~g})$ and $\mathrm{BnNH}_{2}(40 \mathrm{mmol}, 4.4 \mathrm{~mL})$ were used in the first step, and BzOOBz (contains 25% water, $40 \mathrm{mmol}, 12.9 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{HPO}_{4}(80 \mathrm{mmol}, 13.9 \mathrm{~g}$), and DMF (50 mL) were used in the second step. The title compound was obtained as a white solid ($2.83 \mathrm{~g}, 21 \%$ yield over two steps). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.54$ ($\mathrm{tt}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47-7.39 (m, 4H), 7.35-7.26 (m, 3H), 6.28 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.87,154.34,149.61,135.46,133.10,129.68,129.48,129.25,128.51,128.47$, $127.91,111.05,108.70,62.08,57.62,54.12$. m.p. $80.5-82.3^{\circ} \mathrm{C}$. IR (thin film): $3419,3031,2864$, 1733, 1450, 1242, 1083, 1062, 1015, $698 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 71.20; H, 5.68. Found: C, 71.48; H, 5.74.
methyl 5-(((benzoyloxy)(benzyl)amino)methyl)-2-hydroxybenzoate (3d)

Following general procedure F, methyl 5-formyl-2-hydroxybenzoate (20 $\mathrm{mmol}, 3.6 \mathrm{~g}$) and $\mathrm{BnNH}_{2}(20 \mathrm{mmol}, 2.2 \mathrm{~mL})$ were used in the first step, and BzOOBz (contains 25% water, $22 \mathrm{mmol}, 7.1 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{HPO}_{4}(40 \mathrm{mmol}, 7.0 \mathrm{~g})$, and DMF (25 mL) were used in the second step. The title compound was obtained as a white solid ($3.31 \mathrm{~g}, 42 \%$ yield over two steps). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.70(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{tt}, J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44-7.42 (m, 2H), 7.39-7.24 (m, 5H), 6.93 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (s, 2H), 4.12 (s, 2H), 3.91 $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.52,164.88,161.27,137.26,135.81,133.02,131.01$, $129.57,129.41,129.31,128.50,128.44,127.85,126.77,117.78,112.16,62.17,61.36,52.39$. m.p. 111.7-112.4 ${ }^{\circ} \mathrm{C}$. IR (thin film): 3032, 2953, 1739, 1674, 1595, 1489, 1441, 1241, 1086, 707 cm^{-1}. EA Calcd. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{5}$: C, 70.58 ; H, 5.41. Found: C, 70.33; H, 5.53.

Synthesis of $\mathbf{6 b}, \mathbf{6 c}$.

N-benzyl- N-(thiophen-2-ylmethyl)- O-(2,4,6-trimethylbenzoyl)hydroxylamine (6b)

A 100 mL round bottom flask containing a magnetic stir bar was charged with N -benzyl- N -(thiophen-2-ylmethyl)hydroxylamine ${ }^{18}$ ($10.0 \mathrm{mmol}, 1.0$ equiv, 2.19 g), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(14.4 \mathrm{mmol}$, 1.44 equiv, 2.0 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and 2,4,6-trimethylbenzoyl chloride (12.0 mmol , 1.2 equiv, 2.19 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise. Then the reaction mixture was stirred at rt overnight. The reaction mixture was passed through a short plug of basic alumina, and washed with additional EtOAc. The resulting solution was concentrated in vacuo, and then purified by column chromatography on silica gel to give the title compound as a white solid ($1.51 \mathrm{~g}, 41 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.06-7.05 (m, 1H), 6.97 (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}), 1.95(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.30,139.43,138.16,136.23,135.28$, $129.73,129.41,128.53,128.26,127.87$, 127.51, 126.67, 126.05, 61.64, 56.74, 21.24, 19.11, 19.10. m.p. 84.3-85.4 ${ }^{\circ} \mathrm{C}$. IR (thin film): $3029,2921,1747,1611,1431,1235,1160,1053,851$, $696 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$: C, 72.30 ; H, 6.34. Found: C, 72.21 ; H, 6.34 .
N-benzyl- N-(2,2-dimethoxyethyl)- O-(2,4,6-trimethylbenzoyl)hydroxylamine (6c)
 A 100 mL round bottom flask containing a magnetic stir bar was charged with N -benzyl- N -(2,2-dimethoxyethyl)hydroxylamine ${ }^{18}$ ($8.0 \mathrm{mmol}, 1.0$ equiv, 1.69 g$), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(11.5 \mathrm{mmol}$, 1.15 equiv, 1.6 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and 2,4,6-trimethylbenzoyl chloride (8.0 mmol , 1.0 equiv, 1.82 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise. Then the reaction mixture was stirred at rt overnight. The reaction mixture was passed through a short plug of basic alumina, and washed with additional EtOAc. The resulting solution was concentrated in vacuo, and then purified by column chromatography on silica gel to give the title compound as a colorless oil ($1.43 \mathrm{~g}, 50 \%$ yield). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.47-7.45 (m, 2H), 7.34-7.24 $(\mathrm{m}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 4.77(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 6 \mathrm{H}), 3.24(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.43,139.54,136.30,135.31$, 129.66, 129.49, 128.50, 128.38, 127.85, 102.05, 63.58, 60.33, 53.96, 21.24, 19.41. IR (thin film): 2921, 2833, 1748, 1612, 1454, 1238, 1127, 1054, $851,698 \mathrm{~cm}^{-1}$. EA Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 70.56 ; H, 7.61. Found: C, 70.43; H, 7.49.

5. Computational Details

5.1 HOMO and LUMO Energies of Ground-State (Reactant) and Transition State Geometries of Cyclic Alkene Substrates and the CuH Catalyst

_ major FMO interactions
-_ minor FMO interactions

Substrate (1c) Catalyst (L*CuH)
Figure S1. Frontier molecular orbital (FMO) interactions between the alkene and the $\mathrm{L} * \mathrm{CuH}$ fragments. HOMO and LUMO energies were calculated at the HF/6-311G(d,p) level of theory. Although the LUMO of the alkenes have comparable energies in their ground state geometries, the greater pyramidalization of $\mathbf{1 a}$ in TS-1a significantly lowers the LUMO energy of $\mathbf{1 a}$ in its transition state geometry.

5.2 Substrate Distortion Energy versus the Out-of-Plane Dihedral Angle

Figure S2. The definition of the out-of-plane dihedral angles ($\alpha_{\mathrm{Me}}=D\left(\mathrm{C}_{\mathrm{Me}}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\right.$ ') ; $\alpha_{\mathrm{H}}=$ D (H-C2-C1-C3)).

The distortion energies of 1-methylcyclopropene, 1-methylcyclobutene, and 2-methylbut-2butene at different out-of-plane dihedral angles (α_{Me} and α_{H}) (Figure 3c) were calculated at the M06/6-311+G(d,p) level of theory. The distortion energy is the single point energy difference between the distorted structures and the undistorted ground state (reactant) geometries of the alkenes. The out-of-plane angle (α) is defined as the dihedral angle between the $\mathrm{H}(\mathrm{Me})-\mathrm{C} 1-\mathrm{C} 2$
plane and the C1-C2-C3(C3') plane (Figure S2). The out-of-plane dihedral angle is gradually changed from 180° to 120° by a step of 5° and the out-of-plane angle for Me is set to be the same as that for H in this process (i.e. Me and H are always placed in the same plane).

5.3 Dissecting the Activation Energy ($\Delta \mathbf{E}^{\ddagger}$) using the Ligand-Substrate Interaction Model

$$
\begin{equation*}
\Delta \mathrm{E}^{\ddagger}=\Delta \mathrm{E}_{\text {sub-dist }}+\Delta \mathrm{E}_{\text {cat-dist }}+\Delta \mathrm{E}_{\text {int-bond }}+\Delta \mathrm{E}_{\text {int-space }} \tag{1}
\end{equation*}
$$

Table S5. Computed energy terms to investigate the origin of regioselectivity. All energies are in $\mathrm{kcal} / \mathrm{mol}$.

	TS2a-a	TS2a-b	$\boldsymbol{\Delta} \mathbf{\Delta \mathbf { E } ^ { \ddagger } (\mathbf { T S 2 a - b }}$ $\mathbf{- T S 2 a - a)}$	TS8-a	TS8-b	$\boldsymbol{\Delta \Delta E ^ { \ddagger } (\mathbf { T S 8 } - \mathbf { b } -}$ $\mathbf{T S 8}-\mathbf{a})$
$\Delta \mathrm{E}^{\ddagger}$	-10.5	-7.9	2.6	-13.9	-15.5	-1.6
$\Delta \mathrm{E}_{\text {sub-dist }}$	20.2	25.0	4.8	20.0	23.6	3.6
$\Delta \mathrm{E}_{\text {cat-dist }}$	9.4	9.8	0.4	10.8	9.0	-1.8
$\Delta \mathrm{E}_{\text {int-bond }}$	-22.6	-25.8	-3.2	-31.9	-34.5	-2.6
$\Delta \mathrm{E}_{\text {int-space }}$	-17.5	-16.9	0.6	-12.8	-13.6	-0.8

Table S6. Computed energy terms to investigate the origin of enantioselectivity. All energies are in $\mathrm{kcal} / \mathrm{mol}$.

	TS-1a	TS-1a'	$\begin{gathered} \Delta \Delta E^{\ddagger}(\text { TS-1a' }- \\ \text { TS-1a) } \end{gathered}$	TS-1b	TS-1b'	$\begin{gathered} \Delta \Delta \mathrm{E}^{\ddagger} \text { (TS-1b' } \\ - \text { TS-1b) } \end{gathered}$
$\Delta \mathrm{E}^{\ddagger}$	-11.1	-11.3	-0.2	-3.7	-1.0	2.7
$\Delta \mathrm{E}_{\text {sub-dist }}$	22.4	22.6	0.2	22.2	23.2	1.0
$\Delta \mathrm{E}_{\text {cat-dist }}$	7.7	8.3	0.6	7.9	9.5	1.6
$\Delta \mathrm{E}_{\text {int-bond }}$	-33.9	-35.0	-1.1	-25.4	-26.2	-0.8
$\Delta \mathrm{E}_{\text {int-space }}$	-7.3	-7.2	0.1	-8.4	-7.5	0.9

5.4 Free energy profiles of the alkene hydrocupration step

Figure S3. Computed activation Gibbs free energies and reaction free energies of hydrocupration with varies alkenes. All energies are in $\mathrm{kcal} / \mathrm{mol}$ and are with respect to separated alkene substrate and the CuH catalyst. The hydrocupration reactions with cyclopropene and cyclobutene derivatives ($\mathbf{1 a}, \mathbf{1 b}, \mathbf{2 a}$, and $\mathbf{8}$) are all exergonic.

5.5 Cartesian Coordinates

1-methylcyclopropene (1a)
B3LYP/6-31G(d) SCF energy:
-155.941626 a.u.
B3LYP/6-31G(d) Enthalpy: $\quad-155.850995$ a.u.
B3LYP/6-31G(d) Gibbs free energy: $\quad-155.883360$ a.u.
M06/6-311+G(d,p) SCF energy in solution: -155.864889 a.u.
M06/6-311+G(d,p) enthalpy in solution: $\quad-155.774258$ a.u.
M06/6-311+G(d,p) free energy in solution: -155.806622 a.u.
$\begin{array}{lllll}\text { Three lowest frequencies }\left(\mathrm{cm}^{-1}\right): & 156.9522 & 299.9446 & 321.1413\end{array}$

Cartesian coordinates:

ATOM X Y Z

C	-0.15681600	0.08709000	-0.00023700
C	0.91649800	0.81545800	0.00020700
C	1.14941500	-0.67391600	-0.00001300
H	1.38594900	1.78825800	-0.00022200

H	1.48856900	-1.17714200	0.91294200
H	1.48942000	-1.17678300	-0.91284100
C	-1.62783900	-0.07120200	0.00003800
H	-1.95577900	-0.63833200	0.88094500
H	-2.13948600	0.89733700	0.00025000
H	-1.95621600	-0.63792200	-0.88103900

1-methylcyclobutene (1b)

B3LYP/6-31G(d) SCF energy:	-195.292981 a.u.
B3LYP/6-31G(d) Enthalpy:	-195.292981 a.u.

B3LYP/6-31G(d) Gibbs free energy: -195.205873 a.u.
M06/6-311+G(d,p) SCF energy in solution: -195.186430 a.u.
M06/6-311+G(d,p) enthalpy in solution: $\quad-195.065079$ a.u.
M06/6-311+G(d,p) free energy in solution: -195.099321 a.u.
$\begin{array}{lllll}\text { Three lowest frequencies }\left(\mathrm{cm}^{-1}\right): & 164.7382 & 221.6528 & 317.6539\end{array}$

Cartesian coordinates:

ATOM X			
C	Y		
C	-0.57488800	-1.04137600	-0.00011400
C	-1.62727100	0.12365500	0.00016500
C	-0.42480100	1.04903100	-0.00013500
C	0.48155000	0.05702700	-0.00002300
H	-2.26759600	0.16426000	0.89045800
H	-2.26882700	0.16427900	-0.88921300
C	1.97175600	-0.01567400	0.00009600
H	2.42173300	0.98324700	0.00031700
H	2.34369500	-0.55689400	0.88106100
H	2.34383200	-0.55655300	-0.88103600
H	-0.59588200	-1.68451200	0.88934200
H	-0.59591800	-1.68337500	-0.89041500
H	-0.33911200	2.13356900	-0.00044500

2-methylbut-2-ene (1c)

B3LYP/6-31G(d) SCF energy: $\quad-196.539826$ a.u.
B3LYP/6-31G(d) Enthalpy: -196.395113 a.u.
B3LYP/6-31G(d) Gibbs free energy: -196.432626 a.u.
M06/6-311+G(d,p) SCF energy in solution: -196.428300 a.u.
M06/6-311+G(d,p) enthalpy in solution: $\quad-196.283586$ a.u.
M06/6-311+G(d,p) free energy in solution: $\quad-196.321100 \mathrm{a} . \mathrm{u}$.
$\begin{array}{lllll}\text { Three lowest frequencies }\left(\mathrm{cm}^{-1}\right): & 126.9722 & 154.1021 & 188.5166\end{array}$

Cartesian coordinates:

ATOM X Y Z

C	-0.73459300	-0.67178700	-0.00013700
H	-0.71444600	-1.76306000	-0.00104500
C	0.44964300	-0.04035700	0.00012600
C	1.74146800	-0.82442300	0.00006300
H	1.56392800	-1.90466200	-0.00019000

H	2.35423300	-0.58047600	-0.87966100
H	2.35374600	-0.58092600	0.88034400
C	0.63031000	1.45836200	-0.00008400
H	1.20518300	1.78009900	0.87982900
H	1.20628000	1.77957600	-0.87946600
H	-0.31347300	2.00866300	-0.00091500
C	-2.11557900	-0.07768100	0.00014700
H	-2.11503100	1.01571400	0.00029400
H	-2.68403500	-0.40961600	-0.87985600
H	-2.68387600	-0.40999600	0.87997600

1,3-diphenyl-3-methylcyclobut-1-ene (2a)
B3LYP/6-31G(d) SCF energy:
B3LYP/6-31G(d) Enthalpy:
B3LYP/6-31G(d) Gibbs free energy: -657.156364 a.u. M06/6-311+G(d,p) SCF energy in solution: -657.051858 a.u. M06/6-311+G(d,p) enthalpy in solution: -656.759163 a.u. M06/6-311+G(d,p) free energy in solution: -656.817251 a.u. Three lowest frequencies $\left(\mathrm{cm}^{-1}\right)$:

Cartesian coordinates:

ATOM X	Y Z		
C	1.03547700	-0.72847000	0.76961500
C	-0.02497000	-1.28479300	-0.26898900
C	-0.98987500	-0.27046300	0.32698000
C	-0.08260700	0.21804200	1.19635900
H	-0.29234600	-2.33957600	-0.12661400
H	0.24125900	-1.12372300	-1.31993300
H	-0.12387900	0.98569800	1.96563000
C	-2.39095200	0.00624900	0.02120500
C	-3.11102500	0.99819400	0.71378900
C	-3.05288200	-0.72223200	-0.98170400
C	-4.44583500	1.24998800	0.41189400
H	-2.61509800	1.57203400	1.49231900
C	-4.39093700	-0.46959700	-1.28402300
H	-2.51087600	-1.49075200	-1.52656900
C	-5.09254400	0.51671700	-0.58886400
H	-4.98611800	2.01971700	0.95693600
H	-4.88553200	-1.04358200	-2.06328700
H	-6.13495400	0.71467100	-0.82340100
C	2.27247500	-0.09370900	0.14788100
C	3.06934900	-0.82787900	-0.74447000
C	2.66989400	1.21005800	0.46922100
C	4.22441500	-0.27698000	-1.29885300
H	2.77922100	-1.84205000	-1.01073900
C	3.82769300	1.76559900	-0.08130400
H	2.06660500	1.80236900	1.15173200

C	4.60928300	1.02469500	-0.96795900
H	4.82310300	-0.86305500	-1.99168700
H	4.11501100	2.78062700	0.18149500
H	5.50810800	1.45676900	-1.39980300
C	1.43809700	-1.75048800	1.84933100
H	2.08976500	-2.52870200	1.43470300
H	1.98504500	-1.25851300	2.66231400
H	0.55035700	-2.23151900	2.27625100

1-phenylcyclopropene (8)

B3LYP/6-31G(d) SCF energy: -426.320456 a.u.
B3LYP/6-31G(d) Enthalpy: -426.114875 a.u.
B3LYP/6-31G(d) Gibbs free energy: -426.162512 a.u.
M06/6-311+G(d,p) SCF energy in solution: -426.093100 a.u.
M06/6-311+G(d,p) enthalpy in solution: $\quad-425.887519$ a.u.
M06/6-311+G(d,p) free energy in solution: -425.935156 a.u.
Three lowest frequencies $\left(\mathrm{cm}^{-1}\right)$: $\quad 46.7760 \quad 85.3581 \quad 98.9093$

Cartesian coordinates:

ATOM X	Y		Z
C	1.77324100	1.48287300	-0.00123400
C	0.81779600	0.59200100	-0.00045100
C	2.23138000	0.04570300	-0.00011000
H	2.07749900	2.52057000	-0.00313600
C	-0.58837400	0.25099600	-0.00020300
C	-0.99243700	-1.09521200	0.00011900
C	-1.57445800	1.25573000	-0.00013800
C	-2.34568100	-1.42824700	0.00027900
H	-0.23497200	-1.87384500	0.00021200
C	-2.92484400	0.91987900	0.00003100
H	-1.26764200	2.29816900	-0.00025400
C	-3.31516100	-0.42317300	0.00018200
H	-2.64482300	-2.47306000	0.00046800
H	-3.67678000	1.70464400	0.00004900
H	-4.37023700	-0.68345100	0.00034600
C	2.81595200	-0.56449700	-1.27437200
H	3.90107900	-0.40012300	-1.32624500
H	2.65319400	-1.65041300	-1.31055000
H	2.36406100	-0.12366200	-2.16898800
C	2.81598500	-0.56184000	1.27553800
H	2.65324800	-1.64768500	1.31389100
H	3.90108800	-0.39729200	1.32725400
H	2.36388400	-0.11913400	2.16911100

DTBM-SEGPHOS-based CuH catalyst

B3LYP/6-31G(d) SCF energy: -4362.402757 a.u.
B3LYP/6-31G(d) Enthalpy: -4360.703810 a.u.

B3LYP/6-31G(d) Gibbs free energy:	$-4360.930343 \mathrm{a} . \mathrm{u}$.
M06/6-311+G(d,p) SCF energy in solution:	$-4360.93433998 \mathrm{a} . \mathrm{u}$.
M06/6-311+G(d,p) enthalpy in solution:	$-4359.23539398 \mathrm{a} . \mathrm{u}$.
M06/6-311+G(d,p) free energy in solution:	$-4359.46192698 \mathrm{a.u}$.
Three lowest frequencies $\left(\mathrm{cm}^{-1}\right)$:	$5.8740 \quad 11.1992 \quad 12.4341$

Cartesian coordinates:

ATOM X	Y		Z
Cu	0.00106100	-0.34194800	1.78481000
H	-0.09375000	-0.78380100	3.27835300
P	-1.71356400	0.17059400	0.30059300
C	-1.20521500	0.96270400	-1.29750500
C	-2.95075600	1.32981200	1.03106700
C	-2.74001000	-1.27806500	-0.18707600
C	-0.28069100	0.30183900	-2.17056600
C	-1.66490600	2.24905000	-1.61696600
C	-4.22899700	1.52581700	0.50940300
C	-2.57984200	2.04103900	2.17791000
C	-2.77629800	-2.35669000	0.69548500
C	-3.49301100	-1.34477300	-1.36563400
C	0.03224600	0.98705800	-3.33604400
C	0.30872100	-1.06684600	-2.00590200
C	-1.29017800	2.93130300	-2.78758100
H	-2.35302200	2.74271700	-0.94154200
C	-5.17331200	2.36641000	1.11978700
H	-4.50249400	1.00537900	-0.40118500
C	-3.47484800	2.87156100	2.86149900
H	-1.57613800	1.90123200	2.56014100
C	-3.60077800	-3.47506800	0.48633100
H	-2.13574100	-2.31993100	1.57094200
C	-4.37250800	-2.40285400	-1.61720000
H	-3.38424800	-0.55122000	-2.09359400
C	-0.44539100	2.25911300	-3.64188300
O	0.86560100	0.56608000	-4.35216700
C	-0.05851100	-2.03050900	-2.93472200
C	1.31403300	-1.46939500	-1.06370300
H	-1.66238300	3.92466100	-3.01324900
C	-4.80267100	2.93727500	2.36165300
C	-4.48088100	-3.40962500	-0.61779000
O	0.07495600	2.67332500	-4.84585100
C	0.64028700	1.49104700	-5.41809500
C	0.45938700	-3.32341700	-2.95920300
O	-0.98034300	-1.89839300	-3.95244300
C	1.81237400	-2.78043600	-1.09827700
P	1.83345900	-0.36481600	0.33364100
H	1.59052100	1.73609200	-5.89396600
H	-0.07166700	1.05552400	-6.13519400

C	1.39691400	-3.73715300	-2.04009800
O	-0.11578600	-4.03685800	-3.98242400
C	-0.80798300	-3.06163900	-4.76526400
H	2.56224400	-3.07379600	-0.37345900
C	3.31386500	-1.18917500	1.06953000
C	2.54423600	1.15071300	-0.43687700
H	1.80280600	-4.74279400	-2.04852400
H	-0.20349600	-2.80410300	-5.64791200
H	-1.78539800	-3.45210000	-5.05341900
C	4.54950400	-1.31772000	0.41972500
C	3.17233400	-1.72243300	2.34849900
C	2.36930600	2.35198700	0.24730700
C	3.26503600	1.16296800	-1.63813700
C	5.66143600	-1.87786500	1.05219400
H	4.64123400	-0.96002100	-0.59645200
C	4.23631200	-2.33639500	3.03445300
H	2.19885200	-1.64320900	2.82361500
C	2.94938800	3.55934900	-0.17777900
H	1.75201000	2.34615600	1.13968700
C	3.91442100	2.31365600	-2.09704000
H	3.31231500	0.25247300	-2.22141100
C	5.49931500	-2.29286800	2.40554400
C	3.81993600	3.47990000	-1.28765200
C	-5.12270500	-2.49472300	-2.97148000
C	-4.76695300	-3.83688900	-3.65839100
H	-5.08314600	-4.69020700	-3.05552600
H	-5.26002100	-3.90181400	-4.63663100
H	-3.68481600	-3.91361100	-3.81685400
C	-6.65828300	-2.39536200	-2.81048400
H	-7.12871400	-2.31020800	-3.79809200
H	-7.07549000	-3.27697100	-2.32364300
H	-6.93978800	-1.50726400	-2.23170800
C	-4.69793200	-1.36023200	-3.93016600
H	-4.99413600	-0.37201900	-3.55827900
H	-3.61729700	-1.35036900	-4.10532000
H	-5.19528000	-1.50484400	-4.89605900
C	-3.41307700	-4.67472200	1.45792800
C	-3.94495600	-4.30739100	2.86415200
H	-5.02441800	-4.11737700	2.85298300
H	-3.75822400	-5.12970100	3.56598100
H	-3.45241100	-3.41178400	3.25792600
C	-1.89060000	-4.96819700	1.57268900
H	-1.46261400	-5.19752300	0.59018100
H	-1.32558400	-4.13628500	2.00072200
C	-1.73431400	-5.83671400	2.22322100
	-4.05687400	-6.00484400	1.00253200

H	-5.14596000	-6.00662200	1.05970200
H	-3.77312300	-6.26291500	-0.02186400
H	-3.69860100	-6.80365500	1.66305500
C	3.88605400	-3.02100000	4.38554200
C	3.53515400	-1.94789600	5.44448500
H	4.38792100	-1.29194600	5.65549200
H	2.70112500	-1.31853200	5.11635900
H	3.24318800	-2.42860300	6.38656300
C	2.63199800	-3.91274200	4.16278700
H	1.75286000	-3.34286600	3.85180000
H	2.82915000	-4.67987700	3.40465300
H	2.37636200	-4.42224100	5.09940600
C	4.96978700	-3.96471700	4.95558200
H	4.53295900	-4.52339300	5.79219700
H	5.31202100	-4.68822400	4.20996300
H	5.84473600	-3.44137100	5.34292900
C	6.97787200	-2.10508900	0.26430000
C	7.33528900	-3.61224700	0.29367900
H	8.25784900	-3.79061500	-0.27327700
H	7.48611000	-3.96585200	1.31558500
H	6.53856500	-4.20903000	-0.16610700
C	8.16285800	-1.28659800	0.83028900
H	7.90066300	-0.22660700	0.93158000
H	8.48875600	-1.66136900	1.80064700
H	9.01863400	-1.35392500	0.14702000
C	6.82625100	-1.70167900	-1.21942500
H	6.01812500	-2.24972600	-1.71658900
H	6.64050800	-0.62776500	-1.34070700
H	7.75634700	-1.93463000	-1.74958800
C	2.52486200	4.84929500	0.58009900
C	0.97414600	4.85529800	0.68676600
H	0.51312900	4.81768800	-0.30656500
H	0.58268500	4.01526500	1.26679000
H	0.64400800	5.77555900	1.18285100
C	2.89261700	6.18162500	-0.11343400
H	3.95961100	6.40490000	-0.09284200
H	2.56459200	6.19982200	-1.15656800
H	2.38265400	6.99607900	0.41533800
C	3.11439900	4.84495700	2.01088400
H	4.20988200	4.87472100	1.99739000
H	2.76338300	5.72209500	2.56854500
H	2.81388900	3.95082000	2.56803700
C	4.62351700	2.32043700	-3.47687400
H	3.96875400	3.40490800	-4.36922400
4.42087800	4.40163200	-3.94409200	

H	2.89270900	3.22598800	-4.47737900
C	4.46911200	0.96370600	-4.19889100
H	4.97973000	0.15259200	-3.66608500
H	3.42064500	0.67907000	-4.32983700
H	4.92625600	1.03530000	-5.19257500
C	6.14253500	2.59584200	-3.37104800
H	6.61471900	2.43212100	-4.34767400
H	6.35230100	3.62346900	-3.07468800
H	6.62099200	1.91648700	-2.65505100
C	-6.49900800	2.61152800	0.34249200
C	-6.14131500	2.98219500	-1.12394000
H	-5.53311900	3.89345200	-1.15749000
H	-5.59276900	2.19345900	-1.64567300
H	-7.06065900	3.16962500	-1.69108900
C	-7.35084000	1.31936900	0.32703300
H	-6.79937000	0.47900400	-0.10927200
H	-7.65638800	1.02507400	1.33744200
H	-8.26073500	1.47149100	-0.26684500
C	-7.37055500	3.78192700	0.85535700
H	-8.16148900	3.96931800	0.11891300
H	-7.86128000	3.57552100	1.80675600
H	-6.79017600	4.70183100	0.96809800
C	-2.98869900	3.72002200	4.06523700
C	-1.46813300	3.56252400	4.28903400
H	-1.18856000	2.54038600	4.56768600
H	-0.89043300	3.84829500	3.40283400
H	-1.16037200	4.22325400	5.10722600
C	-3.68005000	3.32426000	5.39188600
H	-4.73079200	3.61540100	5.40616200
H	-3.60752500	2.24507400	5.57082500
H	-3.18731400	3.83310100	6.22947500
C	-3.25866900	5.21697900	3.77151700
H	-2.72098200	5.53925200	2.87177400
H	-4.32355600	5.41012900	3.62614300
H	-2.90733800	5.83182200	4.60976600
O	-5.47220700	-4.36701700	-0.77918000
O	-5.74657600	3.60481200	3.12743500
O	6.63857300	-2.68467400	3.09388600
O	4.59329500	4.57430900	-1.64592800
C	-6.60538700	2.73635000	3.86837100
H	-7.25833500	3.38190500	4.46148400
H	-7.21771600	2.11140100	3.20927000
H	-6.03235000	2.08316300	4.53604800
C	-6.61185600	-4.16418300	0.05651000
H	-7.32374500	-4.95428000	-0.19647400
	-6.35588500	-4.23562100	1.11887200

H	-7.07182200	-3.18587300	-0.12718700
C	5.75665400	4.74766200	-0.83614200
H	6.28539500	5.61573000	-1.23843500
H	5.49894200	4.93551800	0.21165000
H	6.40985100	3.86842800	-0.88313800
C	7.13329300	-1.69670700	3.99882500
H	6.40874400	-1.46867000	4.78747900
H	8.03654800	-2.11671000	4.44915800
H	7.38503200	-0.76700200	3.47496800

TS-1a

B3LYP/SDD-6-31G(d) SCF energy:	$-4518.336577 \mathrm{a} . \mathrm{u}$.	
B3LYP/SDD-6-31G(d) Enthalpy:	$-4516.546301 \mathrm{a} . \mathrm{u}$.	
B3LYP/SDD-6-31G(d) Gibbs free energy:	$-4516.781822 \mathrm{a} . \mathrm{u}$.	
M06/SDD-6-311+G(d,p) SCF energy in solution:	$-4516.803780 \mathrm{a} . \mathrm{u}$.	
M06/SDD-6-311+G(d,p) enthalpy in solution:	$-4515.013505 \mathrm{a} . \mathrm{u}$.	
M06/SDD-6-311+G(d,p) free energy in solution:	$-4515.249026 \mathrm{a} . \mathrm{u}$.	
Three lowest frequencies $\left(\mathrm{cm}^{-1}\right)$:	-607.2594	$8.4633 \quad 10.5981$
Imaginary frequency:	$-607.2594 \mathrm{~cm}^{-1}$	

Cartesian coordinates:			
	M X	Y Z	
Cu	0.04614100	0.10743000	-1.63678500
H	0.28762400	-1.12019600	-2.63592800
P	1.77496700	0.36613800	-0.10195400
C	1.22884600	1.21382800	0
C	3.18210300	1.39339000	-0.73539300
C	2.61557500	-1.17126400	0.47479100
C	0.23052600	0.62092000	2.29972500
C	1.73368300	2.48453400	1.76980700
C	4.51367100	0.99742600	-0.63348900
C	2.89789300	2.60120500	-1.39330800
C	2.51790200	-2.30471200	-0.32829400
C	3.36081100	-1.24639400	1.65970400
C	-0.14020100	1.37437900	3.40548500
C	-0.32858700	-0.76708400	2.20634500
C	1.31365600	3.22875100	2.88507200
H	2.49738100	2.91620200	1.13463300
C	5.56916100	1.71637100	-1.22281100
H	4.74358000	0.09501600	-0.08272700
C	3.89346300	3.36836500	-2.00543900
H	1.86781300	2.93299000	-1.42801500
C	3.20856500	-3.49559800	-0.04153500
H	1.86989500	-2.24988700	-1.19715400
C	4.10141300	-2.38510300	1.99234000
H	3.36146900	-0.39157000	2.32379900
C	0.36882600	2.63782000	3.69324700

O	-1.05236000	1.02784800	4.38103800
C	0.00163100	-1.63485800	3.23991600
C	-1.23979000	-1.29054800	1.23255100
H	1.72563700	4.20743000	3.10577900
C	5.21381000	2.83871300	-2.00105100
C	4.09020300	-3.46149300	1.06110900
O	-0.21220100	3.12422100	4.84059000
C	-0.87031800	1.99444100	5.41794200
C	-0.45838000	-2.94523000	3.33438000
O	0.83487200	-1.37680800	4.31030700
C	-1.68586900	-2.61641400	1.34199900
P	-1.75531400	-0.29600900	-0.24849600
H	-1.84336500	2.29838900	5.80629400
H	-0.23618900	1.56577700	6.20862300
C	-1.30261800	-3.47606000	2.38496500
O	0.07078300	-3.54511700	4.45325000
C	0.61980100	-2.46464600	5.21107400
H	-2.36882200	-3.00150900	0.59466800
C	-3.09829800	-1.30630900	-1.02999500
C	-2.68490000	1.14470400	0.43472900
H	-1.66668000	-4.49582600	2.44645300
H	-0.09907900	-2.15954500	5.98670600
H	1.57216600	-2.77096200	5.64542600
C	-4.40128100	-1.38145400	-0.52017300
C	-2.78974000	-2.04034900	-2.17405900
C	-2.65432200	2.32348900	-0.30692900
C	-3.43218700	1.11264900	1.62020200
C	-5.41321600	-2.09065700	-1.17271000
H	-4.62761300	-0.85777800	0.39790000
C	-3.74629300	-2.80173000	-2.86971900
H	-1.76678700	-2.00668100	-2.53271800
C	-3.41348000	3.45381200	0.04169500
H	-2.00593100	2.35418800	-1.17721200
C	-4.24675300	2.18327800	2.00522200
H	-3.37209300	0.23130100	2.2458600
C	-5.07843800	-2.71508600	-2.40703700
C	-4.29515800	3.30805800	1.13528400
C	4.81871200	-2.48631100	3.36387600
C	4.28540400	-3.73120400	4.11714700
H	4.52758200	-4.65264900	3.58402700
H	4.73027200	-3.78469900	5.11913800
H	3.19610700	-3.68112000	4.22794000
C	6.35651800	-2.59163300	3.23182600
H	6.81880700	-2.50956100	4.22346000
H	6.66515700	-3.54622500	2.80513200
H	6.75916200	-1.78163700	2.61185100

	4.52605600	-1.25099200	
H	0	-0.33148100	0
H	3.45279000	-1.09725800	4.39555200
H	4.98932300	-1.396208	5.22690200
C	2.88400300	-4.72661700	-0.93416000
C	3.44400500	-4.	-2.35999700
H	4.53726800	-4.4	-2.35826600
H	3.17198500	-5.35148100	-3.00717200
H	3.04377800	-3.59447100	-2.81205400
C	1.33788700	-4.85648400	-1.
H	0.89734300	-4.98678300	-0.03276100
H	0.86331600	-3.98864500	
H	1.08018000	-5.73436800	-1.63214600
C	3.38163400	-6.0889090	-0.39831600
H	4.46348300	-6.21325700	-0.45837400
H	. 08022800	-6.25070300	0.64045000
H	2.93205800	-6.88265900	-1.00734300
C	-3.23023200	-3.67083400	-4.05174200
C	-2.88578600	-2.77025100	-5.26272300
H	-3.76946100	-2.25226800	-5.65154100
H	-2.14552700	-2.00913800	-4.99419600
H	-2.46918400	-3.37601700	-6.07748200
C	-1.92734400	-4.39120600	-3.60630200
H	-1.11273500	-3.69886400	-3.37918000
H	-2.10363500	-5.01176400	-2.72020400
H	-1.58023800	-5.04626500	-4.41397400
C	-4.18976000	-4.79687300	-4.50372800
H	-3.65139500	-5.45059000	-5.20069200
	-4.52132700	-5.4077650	-3.65829900
H	-5.07766400	-4.43492500	-5.02196100
C	-6.81022700	-2.24183100	-0.51572200
C	-7.13450100	-3.74695800	-0.34236800
H	-8.11714500	-3.86679100	0.13142900
H	-7.14982800	-4.26465000	-1.30324600
H	-6.39110300	-4.23203500	0.30142400
C	-7.93301000	-1.56479700	-1.33785900
H	-7.67980500	-0.52393000	-1.57251100
H	-8.13494300	-2.09415900	-2.26925600
H	-8.86334100	-1.55775100	-0.75633700
C	-6.84454700	-1.60471400	0.89137800
H	-6.09001500	-2.03624100	1.55850800
H	-6.69490600	-0.51932900	0.85877000
H	-7.82638400	-1.78787300	1.34194000
C	-3.15669400	4.74819000	-0.78007200
C	-1.62127500	4.98374300	-0.83139600
H	-1.21507300	5.11682200	0.1779620

H	-1.08134100	4.16040400	-1.30471500
H	-1.40811800	5.89344000	-1.40555600
C	-3.75242000	6.04752300	-0.19108600
H	-4.83887400	6.10317000	-0.26747300
H	-3.48051200	6.17952000	0.85987200
H	-3.34646900	6.89695100	-0.75416100
C	-3.67408600	4.56561400	-2.22703300
H	-4.75779700	4.40151600	-2.25031200
H	-3.45890600	5.46222000	-2.82181200
H	-3.19673400	3.71193300	-2.71969600
C	-4.98027700	2.16500100	3.37231500
C	-4.49695600	3.37447800	4.21159300
H	-4.75171100	4.31987600	3.72798200
H	-4.96613000	3.35755000	5.20385400
H	-3.40948100	3.34413600	4.34660300
C	-4.65633000	0.88333700	4.17092200
H	-5.03624800	-0.01769200	3.67483700
H	-3.58174900	0.75699300	4.33390400
H	-5.14279600	0.94265000	5.15150700
C	-6.52028000	2.22605000	3.23434600
H	-6.98366400	2.06010500	4.21492800
H	-6.85997700	3.19566000	2.87066100
H	-6.88991200	1.44508500	2.55894500
C	7.01059600	1.22315100	-0.90725800
C	7.13453900	1.04528500	0.63174200
H	6.96363900	1.9966600	1.14827300
H	6.43018200	0.31324000	1.03560100
H	8.14529400	0.70160300	0.88214000
C	7.25864500	-0.14684600	-1.58301800
H	6.52105500	-0.89252700	-1.26640300
H	7.20596500	-0.07256400	-2.67526500
H	8.25515000	-0.52419200	-1.32105900
C	8.15317300	2.18809200	-1.29999000
H	9.08604600	1.81141100	-0.86284200
H	8.31098900	2.25987200	-2.37658300
H	7.98426000	3.19750200	-0.91535100
C	3.56628800	4.76975500	-2.58511400
C	2.10830000	5.18020700	-2.28545300
H	1.38165900	4.54306900	-2.80138800
H	1.88290700	5.15989500	-1.21369200
H	1.94776800	6.20564800	-2.63670600
C	3.74550200	4.83883100	-4.12029200
H	4.79474100	4.78429700	-4.41197400
H	3.19710500	4.03145200	-4.62006900
H	3.34972800	5.79081800	-4.49516000
C	4.48189800	5.82291800	-1.91149300

H	4.32017200	5.84076900	-0.82706500
H	5.53686500	5.61620200	-2.10073200
H	4.25059200	6.82239100	-2.30080800
O	4.96264600	-4.51552600	1.29212200
O	6.16731800	3.47879500	-2.77966000
O	-6.11664900	-3.27249800	-3.13965700
O	-5.22809800	4.29720900	1.41574400
C	6.43220700	2.81918200	-4.01836100
H	7.16675100	3.43463400	-4.54433300
H	6.84513100	1.81597600	-3.86465900
H	5.52471600	2.73332000	-4.62708700
C	6.12369100	-4.49343500	0.46203400
H	6.74393700	-5.33690200	0.77661100
H	5.86955000	-4.60872100	-0.59733100
H	6.68592900	-3.56034100	0.58813500
C	-6.38128600	4.24953700	0.57550600
H	-7.05019600	5.04101800	0.92390200
H	-6.12733800	4.42871100	-0.47505600
H	-6.89011500	3.28132800	0.65247400
C	-6.54727200	-2.47673700	-4.24425900
H	-5.78428700	-2.41916400	-5.02758600
H	-7.43762400	-2.96667100	-4.64746300
H	-6.80290300	-1.45895000	-3.92768700
C	-0.22091300	1.61458100	-3.07353800
C	0.25386700	0.44257200	-3.67275600
C	-1.12192500	0.90290500	-4.06125500
H	-2.01388100	0.37823500	-3.71548500
H	-1.22139000	1.29006800	-5.08283600
C	1.42962200	0.09820600	-4.53562900
H	2.37128200	0.23148500	-3.99207300
H	1.44306200	0.77051500	-5.40716200
H	1.38596500	-0.93385800	-4.90124200
H	0.19823700	2.61300700	-3.12330900
		2	

TS-1b
B3LYP/SDD-6-31G(d) SCF energy: -4557.668218 a.u. B3LYP/SDD-6-31G(d) Enthalpy: -4555.847183 a.u.
B3LYP/SDD-6-31G(d) Gibbs free energy: -4556.083737 a.u.
M06/SDD-6-311+G(d,p) SCF energy in solution: -4556.114176 a.u.
M06/SDD-6-311+G(d,p) enthalpy in solution: -4554.293141 a.u.
M06/SDD-6-311+G(d,p) free energy in solution: -4554.529695 a.u.
$\begin{array}{lllll}\text { Three lowest frequencies }\left(\mathrm{cm}^{-1}\right): & -779.5168 & 8.7874 & 11.4216\end{array}$
Imaginary frequency:
$-779.5168 \mathrm{~cm}^{-1}$

Cartesian coordinates:

ATOM X Y Z
$\begin{array}{llll}\mathrm{Cu} & 0.00273400 & 0.03339700 & -1.53417100\end{array}$

H	-0.26377500	1.30727400	-2.53037400
P	-1.75160700	-0.39004700	-0.11237200
C	-1.20521900	-1.30958100	1.40839700
C	-3.10193900	-1.43684900	-0.83674500
C	-2.68974100	1.05994500	0.54241200
C	-0.23795100	-0.74177900	2.30090700
C	-1.68326100	-2.60776700	1.63839000
C	-4.44895100	-1.08930600	-0.76422000
C	-2.75720700	-2.60270100	-1.54017000
C	-2.67757200	2.23146200	-0.20976300
C	-3.43739600	1.02739500	1.72741200
C	0.13659200	-1.55158600	3.36571800
C	0.29880600	0.65926500	2.31062800
C	-1.26357200	-3.40567000	2.71588200
H	-2.42466000	-3.02048300	0.96557200
C	-5.45947400	-1.81210900	-1.42375500
H	-4.72879200	-0.22324700	-0.17957600
C	-3.70396100	-3.36653700	-2.22876300
H	-1.71742000	-2.90357200	-1.54932800
C	-3.45449900	3.35416700	0.12573700
H	-2.02843400	2.26215100	-1.07918000
C	-4.25676400	2.09465800	2.11039700
H	-3.37758100	0.14431300	2.35064600
C	-0.34583500	-2.84097900	3.57256100
O	1.02773900	-1.24233100	4.37350500
C	-0.06357500	1.44743600	3.39576100
C	1.24460200	1.25095300	1.41114600
H	-1.65598300	-4.40449200	2.87286800
C	-5.04076800	-2.88052600	-2.24512700
C	-4.32552600	3.21016100	1.22881400
O	0.22914900	-3.37957600	4.69916800
C	0.85264600	-2.27029800	5.35026300
C	0.40829100	2.73877800	3.61415600
O	-0.93477900	1.11327800	4.41333400
C	1.71105800	2.55148300	1.65172800
P	1.77738400	0.36699200	-0.13628200
H	1.82645500	-2.57454300	5.73648800
H	0.19716300	-1.90208400	6.15402800
C	1.30273200	3.32761100	2.74923100
O	-0.15452900	3.25427500	4.75798800
C	-0.75481500	2.12874700	5.40232200
H	2.43025700	2.98476800	0.96789900
C	3.09507800	1.45456100	-0.85580600
C	2.72613000	-1.09252600	0.47532600
H	1.68428900	4.32957400	2.91271100
H	-0.08228100	1.75594100	6.18973600

	-1.72547300	2.41621200	5.80895100
C	4.46587800	1.22035200	-0.69378100
C	2.69633900	2.55976500	-1.6
C	2.67990700	-2.	-0.28336300
C	3.49454900	-1.07985400	1.64700200
C	5.43411300	1.98754900	-1.35265200
H	4.77832900	0.40516300	-0.05703100
C	3.61312600	0	-2
H	1.63213500	2.74919700	-1.
C	3.44248400	-3.39784600	0.03418300
H	2.01354000	-2.27649300	
C	4.30364800	-2.16168500	2.00897200
H	3.45743000	-0.20110900	2.27797600
C	4.97203400	3.02868600	-2.20020900
C	4.33721300	-3.27268100	-
C	-4.97438500	2.08119600	3.48585700
C	-4.50964700	3.31384800	. 30161400
H	-4.79408300	4.24659100	3.81043100
	-4.96320900	3.29755400	5.3
H	-3.41986300	3.31088500	4.42041500
C	-6.51660900	2.10224500	00
H	-6.96551900	1.94709500	. 3
H	-6.88373700	3.05529200	2.98332400
H	-6.87503400	1.29846400	2.70963600
C	-4.60739700	0.82097800	4.30025400
	-4.97255000	-0.09778200	
	-3.52712000	0.72444000	4.44728900
H	-5.07900600	0.88573100	5.28
	-3.23763900	4.63823000	-0.72352400
	-3.83217000	4.44240900	-2.13893300
	-4.91685100	. 28870400	-2.10679400
	-3.63828000	5.32772000	-2.75740100
H	-3.38839000	3.57632700	-2.64185900
C	-1.70835000	4.87374900	-0.86671800
H	-1.23742200	4.98836800	0.1162
	-1.19948100	4.06089500	-1.39122000
	-1.53213100	5.79302200	-1.43764900
C	-3.80036400	5.94162500	-0.11087400
	-4.88900000	5.99693200	-0.12663100
H	-3.47104800	6.07731000	0.92339400
H	-3.42524000	6.78869800	-0.69807700
	3.04304600	4.72788900	-2.85772400
C	2.15862000	4.40286400	-4.08452300
H	2.73938000	3.93466900	-4.88760400
	1.34190400	3.72079000	-3.82538000
	1.71574300	5.32298800	-4.48588

	2.15905000	5.41382300	-1.77953400
	1.31995500	4.79277000	-1.45665400
	2.75335000	5.66652600	-0.89352100
	1.74248800	6.34481800	-2.18215000
C	4.09225200	5.79005700	-3.26002200
H	3.56414000	6.72372100	-3.48951300
	4.79763800	5.99351400	-2.44951200
	4.66714600	5.52208900	-4.14716400
	6.94225400	1.74290200	-1.08623600
C	7.58696900	3.04775500	-0.55540700
	8.65286400	2.88368400	-0.35203300
	7.49658900	3.86068000	-1.27859800
H	7.11145200	3.36136900	0.38147400
	7.69855500	1.27388900	-2.35219400
	7.20286300	0.41149100	-2.81379900
	7.78036700	2.06890400	-3.09352500
	8.71727300	0.96807400	-2.08284800
	7.15802500	0.65789300	-0.00831700
	6.67216500	0.91621700	0.93909500
	6.78896100	-0.32403200	-0.32634000
	8.23149400	0.55904800	0.18778700
	3.18583500	-4.67859100	-0.80931900
	1.65005900	-4.88911400	-0.91632900
	1.20025000	-4.99551300	0.07748400
	1.14203000	-4.06887900	-1.42901700
	1.44482400	-5.80530800	-1.48245300
	3.73970200	-5.99126000	-0.20795800
	4.82661200	-6.06530100	-0.24743900
	3.43065000	-6.12166500	0.83323300
	3.33746800	-6.83166600	-0.78679200
	3.75255900	-4.49508000	-2.23743700
	4.84045900	-4.36244600	-2.22831200
	3.52892300	-5.37751600	-2.84996400
	3.31570400	-3.62148000	-2.73285200
	5.04773200	-2.16707400	3.37025100
C	4.58867200	-3.40208200	4.18547500
	4.85867900	-4.33322700	3.68348600
	5.05855400	-3.39509900	5.17737700
	3.50107500	-3.39259000	4.32186000
	4.70753600	-0.91083100	4.20221700
	5.07144900	0.00897600	3.72925000
	3.63104100	-0.80666900	4.37094800
	5.19739500	-0.98768800	5.17977300
C	6.58672500	-2.20039100	3.21664900
	7.05764900	-2.05721400	4.19725400
	6.93740000	-3.15378600	2.82123900

	93764100	139526900	
	－6．92637300	－1．38323100	
	－6．90979700		
		－0．53330200	
	－8．13470600	－0．	
	－7．20440000	0.	
	－6．		
	－7．11823600	－0	
	－8	0.33634400	
	－8．01934900	－2．37209000	
	－8．		
	－8	－2．	268356300
	－7．82145600	－3．3901350	
	－3．30903300	－4．722822	
	－1．84362500	－5．	
	－1．13018700	－4．39899600	
	－1．64625100	－5．	
	－1．63427300	－6．08935	
	3	－4	
	－4．49367800	－4．6887120	
	－2．92040600	－3．	
	－4．20095700	－5．84120500	
	－4．06786500	5.906543	
	－5．25778900	－5．66399100	
	－3．92175400	－6．81	
	－5．26596400	4.19091400	
	－5．94553900	－3．51126200	
	82	3.68300100	
	6641700	－4．26998900	
	－6．19686200	－2．79628	
	－6．88575800		
	－6．65843800	－1．8213840	
	－5．27382500	． 63955	
	－6．43373600	12562	
	207110	857130	
	－6．20835100	34035300	0
	－6．90979500	3.13983300	
	932900	－4．22070900	
	19904300	－4．9959880	迷
	16996300	－4．42409800	． 60595100
	6.91468300	－3．24433600	800
	5.88647300	3.28178700	－4．35883400
	4.92867900	3.51487400	－4．83624200
	． 68291	．84182	－4．85592300

H	6.07598200	2.20688900	-4.46192200
C	0.24233100	-1.22269200	-3.23832500
C	-0.17393400	0.08029900	-3.69157800
C	1.18761300	0.31968500	-4.37237500
C	1.62324200	-1.10437700	-3.90015400
H	2.50947300	-1.13700400	-3.25243000
H	1.79475700	-1.79601000	-4.73763200
H	1.78069500	1.16421400	-4.01213700
H	1.08630500	0.39698200	-5.46294200
C	-1.49708700	0.42763500	-4.33519200
H	-2.33608300	0.07063600	-3.72869500
H	-1.56120100	-0.06134800	-5.31941500
H	-1.61339000	1.50836300	-4.47868500
H	-0.38980600	-2.10642000	-3.20799200

TS-1c

B3LYP/SDD-6-31G(d) SCF energy:	$-4558.907393 \mathrm{a} . \mathrm{u}$.
B3LYP/SDD-6-31G(d) Enthalpy:	$-4557.063276 \mathrm{a} . \mathrm{u}$.
B3LYP/SDD-6-31G(d) Gibbs free energy:	$-4557.301806 \mathrm{a} . \mathrm{u}$.
M06/SDD-6-311+G(d,p) SCF energy in solution:	$-4557.351417 \mathrm{a} . \mathrm{u}$.
M06/SDD-6-311+G(d,p) enthalpy in solution:	$-4555.507301 \mathrm{a} . \mathrm{u}$.
M06/SDD-6-311+G(d,p) free energy in solution:	$-4555.745830 \mathrm{a} . \mathrm{u}$.

Three lowest frequencies $\left(\mathrm{cm}^{-1}\right)$:
Imaginary frequency:
Cartesian coordinates

ATOM X			Y
Cu	0.00424700	0.05103400	-1.56951500
H	-0.30199500	1.40997000	-2.44887200
P	-1.76043300	-0.37489600	-0.14904500
C	-1.21615600	-1.31290300	1.36041800
C	-3.10816800	-1.41943600	-0.87905400
C	-2.69798500	1.06549500	0.53201000
C	-0.25509700	-0.75091200	2.26216400
C	-1.69916600	-2.61103500	1.58043600
C	-4.46225500	-1.11267900	-0.76568300
C	-2.74675000	-2.55308200	-1.62430800
C	-2.66421200	2.25794900	-0.18547700
C	-3.45408500	1.01080000	1.71107000
C	0.10463500	-1.56328700	3.33048900
C	0.29116400	0.64609500	2.27477000
C	-1.29393300	-3.41216600	2.66103200
H	-2.43403300	-3.01982900	0.89808000
C	-5.46692000	-1.84860300	-1.42010200
H	-4.75172900	-0.27009300	-0.15175200
C	-3.68613100	-3.32550600	-2.31302600
H	-1.69807400	-2.81668300	-1.67075400

	-3.42709400	3.38176800	0.17665100
	-2.00656000	2.30500200	-1.
	-4.26208700	2.07796600	
	-3.40860000	0.11149700	
	-0.38650600	-2.85050200	. 53082100
	98539600	-1.25954600	4.34945800
	-0.06439500	1.43243700	3.36359400
	4228	1.23190100	1.37829900
	-1.69102900	-4.41010800	2.81185900
	-5.03709100	-2.88199900	-2.28
	-4.30957600	3.21838900	1.26767000
	16980600	-3.39100100	
C	78311600	-2.28190000	5.32660700
	0.42526900	2.71509700	. 59321900
	-0.94184600	1.10283500	
	1.73002900	2.52241600	0
	1.77594900	0.33708600	-0.16810500
	. 74602700	-2.58860000	5.73707500
	11034200	-1.90689800	6.11290800
	33126800	3.29611700	. 7354600
	-0.13068600	3.22900200	. 74095200
	-0.74651500	. 10627600	. 37545800
	2.46103300	05700	
	3.11423400	1.40582900	-0.88394300
	2.71652300	-1.11165600	. 48955300
	. 72993100	4.28977500	
	-0.07848800	1.71668700	. 15862900
	-1.71249000	2.40371300	5.78596600
	47134600	. 06703400	-0.82973900
	2.75520700	2.59591800	-1.5235
	66484200	-2.31281800	0.21355000
	48639800	-1.04980300	. 65906
	45470100	. 82000000	-1.48271
	76029200	. 18440600	-0.27878
	69796900	. 44923000	-2.1213
	1.70457800	2.86832100	-1.54470100
	3.42226800	-3.43926400	0.15648300
	00202000	-2.36523400	1.06988900
	28849800	-2.11759200	2.07259100
	45532500	-0.14245000	2.24826700
	5.02566000	2.96628200	-2.20077700
	4.31736900	-3.26849700	. 23703100
	-4.99134000	2.03490900	3.48672500
	-4.53515600	3.24835900	4.33534100
	-4.81507700	4.19240300	3.86392800
	-4.99742900	3.20806900	5.

H	-3.44654800	3.24222400	4.46373400
C	-6.53225100	2.05848900	3.35029500
H	-6.99119700	1.88635900	4.33189700
H	-6.89562000	3.01815600	2.98230400
H	-6.88421700	1.26652000	2.67812500
C	-4.63046300	0.75737200	4.27672400
H	-4.99369200	-0.15136200	3.78258400
H	-3.55087200	0.65752200	4.42719500
H	-5.10716700	0.80240000	5.26273300
C	-3.18254800	4.68698800	-0.63195200
C	-3.76560000	4.54242000	-2.05810600
H	-4.85301000	4.40675700	-2.04099900
H	-3.55029300	5.44143600	-2.64914500
H	-3.33201400	3.68304400	-2.58123200
C	-1.64803300	4.90378200	-0.75300400
H	-1.18492400	4.97912700	0.23750500
H	-1.14614000	4.10041300	-1.29882200
H	-1.45244500	5.83872500	-1.29147000
C	-3.73282500	5.97969300	0.01366200
H	-4.82055800	6.04950300	-0.00792800
H	-3.40941300	6.08161100	1.05371100
H	-3.34244600	6.83809300	-0.54654400
C	3.20149400	4.85653100	-2.56505600
C	2.24380300	4.73971800	-3.77297000
H	2.74823400	4.32030700	-4.65093800
H	1.38632900	4.09868700	-3.54628800
H	1.86131800	5.73041200	-4.04903400
C	2.41754300	5.48023100	-1.37680600
H	1.55026800	4.88650700	-1.07681500
H	3.06704500	5.59711700	-0.50115600
H	2.05200500	6.47481000	-1.65864800
C	4.31095800	5.87979600	-2.90161100
H	3.84582400	6.86836300	-2.99949000
H	5.06415900	5.93843400	-2.11103800
H	4.82429700	5.67369400	-3.84130200
C	6.95250900	1.44624800	-1.33501200
C	7.71957100	2.64370400	-0.72057800
H	8.78000200	2.38831600	-0.59967900
H	7.64920000	3.52877300	-1.35574400
H	7.31988400	2.89379600	0.269344700
C	7.60205000	1.05950400	-2.68560700
H	7.01769500	0.28751900	-3.20048600
H	7.70659300	1.91981800	-3.34686000
H	8.60674900	0.65508500	-2.51012000
	6.73796000	0.24343500	-0.38587100

H	6.69091700	-0.67328000	-0.77626100
H	8.22093400	0.05334700	-0.26945600
C	3.16734500	-4.75913100	-0.62557200
C	1.63265600	-4.95485500	-0.76897300
H	1.14764000	-4.98321200	0.21335400
H	1.15414200	-4.16722800	-1.35597000
H	1.43075500	-5.90550600	-1.27616200
C	3.68199100	-6.04358800	0.06563300
H	4.76803500	-6.13549300	0.06383300
H	3.34081400	-6.10870400	1.10316400
H	3.28248400	-6.90986100	-0.47552400
C	3.77925600	-4.66473700	-2.04369900
H	4.86962700	-4.56219300	-2.01062000
H	3.54713800	-5.57008100	-2.61852800
H	3.38222100	-3.80509800	-2.59363900
C	5.03295700	-2.06036900	3.43256500
C	4.59329500	-3.26718800	4.29898800
H	4.87484100	-4.21485400	3.83638000
H	5.06399200	-3.21143900	5.28883000
H	3.50604300	-3.26593400	4.43673300
C	4.67392900	-0.77765200	4.21514200
H	5.02759800	0.12875100	3.70993700
H	3.59520000	-0.68311700	4.37547900
H	5.16054300	-0.81193700	5.19668600
C	6.57196300	-2.07763500	3.27711500
H	7.04228000	-1.89698900	4.25179900
H	6.93570900	-3.03802900	2.91107800
H	6.91131100	-1.28937900	2.59455900
C	-6.93890000	-1.47301900	-1.08545200
C	-7.08073100	-1.38816400	0.46004800
H	-6.83447300	-2.34846100	0.92727400
H	-6.44053400	-0.62327000	0.90778800
H	-8.11687900	-1.14141600	0.72039900
C	-7.28008800	-0.08814200	-1.68567900
H	-6.59754300	0.68735100	-1.32081300
H	-7.21689600	-0.09624400	-2.77968400
H	-8.30182800	0.20408700	-1.41172900
C	-8.00831100	-2.49452000	-1.53717100
H	-8.96686100	-2.21252500	-1.08431500
H	-8.15843800	-2.51899400	-2.61669300
H	-7.76544900	-3.50860700	-1.20776100
C	-3.26124000	-4.64571800	-3.00765800
C	-1.77536500	-4.97157000	-2.74158800
H	-1.10005500	-4.23508600	-3.19134300
H	-1.55112800	-5.03599900	-1.67135500
	-53989600	-5.94494500	-3.18632800

C	-3.44095800	-4.59835700	-4.54370700
H	-4.49250300	-4.59338900	-4.83189600
H	-2.95156500	-3.71607700	-4.97319200
H	-2.98114000	-5.48604200	-4.99553400
C	-4.09643200	-5.81476500	-2.42748300
H	-3.92853300	-5.91401800	-1.34837100
H	-5.16454900	-5.66776600	-2.59924900
H	-3.79721600	-6.75852200	-2.90068900
O	-5.24147200	4.20207700	1.56927200
O	-5.94307300	-3.52044900	-3.11547200
O	5.96454800	3.63216300	-2.97507200
O	5.24159300	-4.25624200	1.54642000
C	-6.25068900	-2.78589700	-4.30103500
H	-6.91567200	-3.42071600	-4.89254400
H	-6.76037600	-1.84261600	-4.07504100
H	-5.34635600	-2.56488300	-4.87941100
C	-6.40109300	4.17283200	0.73771800
H	-7.08412100	4.92900500	1.13390600
H	-6.16228200	4.41488300	-0.30367600
H	-6.88798900	3.19070100	0.76701800
C	6.39831600	-4.25497000	0.71014100
H	7.08194500	-4.99817300	1.12915600
H	6.15579200	-4.53209800	-0.32133800
H	6.88603900	-3.27301600	0.70504500
C	5.83866800	3.38299800	-4.37565400
H	4.87668600	3.73129400	-4.76663000
H	6.64679600	3.93680600	-4.86068500
H	5.94121300	2.31492600	-4.60103400
C	0.11182500	-0.98460600	-3.42762500
C	-0.27568600	0.36714400	-3.73154500
C	0.68095900	1.22732400	-4.54611800
H	0.33777200	2.26594700	-4.59104400
H	0.72752300	0.83891900	-5.57533000
C	-1.73321400	0.57917700	-4.12501300
H	-2.40717000	-0.01064000	-3.49739900
H	-1.87371800	0.25616500	-5.16803400
H	-2.02586100	1.63328700	-4.05070600
H	-0.71233800	-1.69761700	-3.44137200
H	1.69483800	1.22237700	-4.13928500
C	1.43897400	-1.56425300	-3.88862300
H	2.30140100	-0.95744300	-3.58739500
H	1.59066600	-2.56328900	-3.46256900
H	1.50247000	-1.68120600	-4.98524600

TS2a-a
B3LYP/SDD-6-31G(d) SCF energy:
-5019.762672 a.u.

O	1.05118900	-4.49286200	-2.15573200
C	-1.57553200	-1.48899200	-3.04002500
P	-1.74984300	-0.25476800	-0.49533100
H	-1.75277500	-6.68567200	0.96828000
H	-0.07009700	-6.85675500	0.32057600
C	-1.14196100	-2.39749200	-4.02072700
O	0.31214400	-4.38184100	-4.33650300
C	0.89235500	-5.24778900	-3.35866600
H	-2.29190700	-0.73364900	-3.33649400
C	-3.04706600	0.69948400	-1.41661900
C	-2.73943900	-1.27163200	0.68903300
H	-1.50085100	-2.34713400	-5.04294400
H	0.21461300	-6.09460000	-3.17177700
H	1.86817700	-5.58838000	-3.70717100
C	-4.40833000	0.62528100	-1.09859300
C	-2.65224800	1.57952400	-2.42786100
C	-2.72718800	-0.96127600	2.04790700
C	-3.49838100	-2.36509300	0.25406800
C	-5.35787100	1.47301600	-1.68187700
H	-4.72471100	-0.09779300	-0.36142900
C	-3.55973700	2.40536000	-3.11131900
H	-1.60027800	1.61668800	-2.69149100
C	-3.49032700	-1.67550500	2.99050600
H	-2.09436000	-0.14658200	2.37795100
C	-4.31403600	-3.09520700	1.12257400
H	-3.44774100	-2.64149300	-0.79043800
C	-4.88809400	2.42392200	-2.62492200
C	-4.35745200	-2.67411600	2.48032300
C	5.25270200	-3.67995100	-2.25645300
C	4.90425000	-4.43892400	-3.56072900
H	5.20216400	-3.87476400	-4.44601300
H	5.41521800	-5.40979900	-3.57803200
H	3.82563200	-4.62139600	-3.61694800
C	6.78431200	-3.47720700	-2.18041200
H	7.28008400	-4.45035400	-2.07549700
H	7.17890500	-3.00466800	-3.08029500
H	7.06309300	-2.86838800	-1.31243000
C	4.85706500	-4.59614500	-1.07722600
H	5.14572000	-4.17395200	-0.10769600
H	3.78084000	-4.798355500	-1.05952200
H	5.37712200	-5.55523800	-1.18063400
C	3.36410200	0.56096400	-4.64258900
C	3.94346400	1.97576100	-4.40499200
H	5.03041600	1.95613600	-4.26903600
H	3.72671700	2.62337700	-5.26377000
	3.50673200	2.43907400	-3.51412200

C	1.83247400	0.69882400	-4.86876900
H	1.36315600	-0.28394500	-4.98846500
H	1.32476000	1.21531100	-4.04976600
H	1.65099600	1.27775600	-5.78197600
C	3.92809100	-0.00846500	-5.96529300
H	5.01622800	0.01529900	-6.02282700
H	3.60550700	-1.04125500	-6.12875300
H	3.54560900	0.59867900	-6.79469000
C	-3.02084200	3.15710700	-4.36264000
C	-1.98470500	4.22515400	-3.94069800
H	-2.43204600	4.98872300	-3.29383200
H	-1.14515800	3.77653300	-3.39855000
H	-1.57915300	4.73158000	-4.82552700
C	-2.31096500	2.11664400	-5.27289700
H	-1.47361500	1.61712300	-4.77832000
H	-3.01682200	1.34619600	-5.60468300
H	-1.91483100	2.61647200	-6.16474600
C	-4.08944400	3.82362100	-5.25932100
H	-3.60369400	4.14538500	-6.18868800
H	-4.89214000	3.12904900	-5.52092700
H	-4.54280700	4.70893600	-4.81205400
C	-6.86484100	1.29779100	-1.35950800
C	-7.63554200	1.01000000	-2.67236600
H	-8.70245500	0.86959700	-2.45748100
H	-7.53413800	1.83260300	-3.38313600
H	-7.26548300	0.09313700	-3.14627900
C	-7.47639600	2.54025200	-0.66892500
H	-6.88942700	2.83660600	0.20888100
H	-7.54661800	3.39059600	-1.34733100
H	-8.49220400	2.30849600	-0.32530200
C	-7.10680000	0.09949600	-0.41562400
H	-6.72409600	-0.83822500	-0.83288600
H	-6.64996500	0.24762500	0.56980100
H	-8.18521500	-0.02224200	-0.26408100
C	-3.29279000	-1.34941100	4.49796700
C	-1.84513000	-0.84814100	4.74494400
H	-1.10474700	-1.54790100	4.34056000
H	-1.65878500	0.14114200	4.31797900
H	-1.67646800	-0.76310900	5.82450500
C	-3.46285700	-2.58976300	5.40865000
H	-4.47730100	-2.98417100	5.42775700
H	-2.80050300	-3.40217500	5.08788100
H	-3.18619600	-2.31746900	6.43413700
C	-4.24590000	-0.21524400	4.94648700
H	-5.30003300	-0.48303200	4.83859000
H	-4.07068800	0.02336600	6.00341000

H	-4.07015600	0.69480800	4.36467700
C	-5.08350100	-4.33872600	0.60256300
C	-4.74427300	-5.57601000	1.46969100
H	-5.05357700	-5.44254100	2.50653600
H	-5.24499200	-6.46486200	1.06559700
H	-3.66442700	-5.76055600	1.45956300
C	-4.67996300	-4.68564100	-0.84881900
H	-4.97152300	-3.90525900	-1.56110300
H	-3.60213500	-4.85454800	-0.94431600
H	-5.19362600	-5.60569700	-1.15009800
C	-6.61282300	-4.10786700	0.60095700
H	-7.11765700	-4.96572200	0.13903900
H	-7.01493800	-3.99448900	1.60785100
H	-6.87627700	-3.21507000	0.02167900
C	6.84177600	0.44808100	1.86851100
C	7.08787200	-1.01418200	1.40415400
H	6.85486000	-1.72194100	2.20789100
H	6.49270600	-1.29105700	0.53016300
H	8.14344500	-1.14278300	1.13673800
C	7.17379900	1.40076200	0.69505300
H	6.53630100	1.20694300	-0.17455500
H	7.03680000	2.45080200	0.97723200
H	8.21810500	1.27131000	0.38412400
C	7.85511500	0.68870100	3.01135800
H	8.84885200	0.38722000	2.65802300
H	7.92707300	1.73283000	3.31646600
H	7.61804200	0.09359200	3.89752000
C	2.96985300	1.22832600	5.28086500
C	1.50525600	0.77673300	5.46730600
H	0.80341900	1.36228700	4.86433100
H	1.36556900	-0.28200900	5.22313500
H	1.22267700	0.91162500	6.51746200
C	3.03417900	2.72619900	5.66248500
H	4.06103800	3.07368300	5.78181400
H	2.53567600	3.34991400	4.91099600
H	2.52115900	2.88461800	6.61895800
C	3.82671100	0.40598500	6.27652400
H	3.74039500	-0.66721500	6.06814300
H	4.88077100	0.68501900	6.22607400
H	3.47267500	0.57665400	7.30092300
O	5.48704200	-1.59495600	-4.25711400
O	5.66261400	1.79500900	4.33612300
O	-5.78413100	3.37640900	-3.08615200
H	-5.24455200	-3.34529700	3.30816400
H	6.90203000	3.15258300	3.96146600

H	6.43935400	3.22295900	3.00903100
H	4.96455400	3.71380700	3.87630600
C	6.61729900	-0.73063500	-4.14437200
H	7.34808900	-1.08286200	-4.87722900
H	6.35950400	0.31009500	-4.36801500
H	7.05663400	-0.77733300	-3.14084400
C	-6.44180800	-2.66439600	3.68044200
H	-7.23509400	-3.41578500	3.74265600
H	-6.33767600	-2.18948900	4.66158600
H	-6.71993700	-1.90648500	2.93985800
C	-5.60957500	4.66404700	-2.49083300
H	-4.62265000	5.08399600	-2.71317300
H	-6.38132900	5.30847800	-2.91965900
H	-5.73278500	4.61963100	-1.40263400
C	1.31775200	4.01385600	0.08799200
C	-1.36251400	3.00843700	2.06499000
C	-2.66601000	2.98220800	1.51444500
C	-1.26189700	3.21079000	3.46060200
C	-3.79219100	3.15828700	2.31139300
H	-2.78941200	2.83603900	0.44556400
C	-2.39403200	3.38971300	4.25558500
H	-0.27725600	3.25575700	3.91864500
C	-3.67145200	3.36830300	3.69082000
H	-4.77729800	3.14143500	1.84931000
H	-2.27453700	3.55469500	5.32427700
H	-4.55315800	3.51653600	4.30837900
C	1.19395600	3.57021700	1.59338300
H	1.99210800	2.90703800	1.94327400
H	1.11069200	4.41083400	2.29359200
C	2.58359000	3.54317500	-0.64142900
H	2.51160800	3.73616000	-1.71821700
H	3.45892100	4.08463200	-0.26107700
H	2.74772400	2.47263500	-0.49516700
C	1.16639800	5.52089200	-0.13123500
C	0.48625400	6.02446000	-1.24994300
C	1.78817700	6.44337400	0.72401000
C	0.41013500	7.39694300	-1.49441800
H	0.01157600	5.33740100	-1.94436600
C	1.71774200	7.81624600	0.48325400
H	2.33875700	6.08494000	1.58951200
C	1.02299500	8.30107900	-0.62603300
H	-0.12971300	7.75837200	-2.36635100
H	2.20560000	8.50766400	1.16603900
H	0.96199500	9.37013300	-0.81223700

TS2a-b

O	-0.77020900	-5.06119400	-0.32647900
C	1.72610600	-2.76380100	1.95123300
P	1.84053900	-0.44308100	0.32932500
H	2.08068100	-5.27551200	-4.12011200
H	0.43990400	-5.85994200	-3.62511500
C	1.33094000	-4.04793800	2.36307300
O	-0.04242400	-5.98978800	1.65223600
C	-0.57160400	-6.29793100	0.36092600
H	2.41139400	-2.22132400	2.58988600
C	3.11558800	-0.02462200	1.61046400
C	2.84586600	-0.71220900	-1.19964800
H	1.68668900	-4.48352000	3.29041000
H	0.15392700	-6.91137400	-0.19482200
H	-1.52780700	-6.81071900	0.47103600
C	4.48394800	0.06380700	1.32923500
C	2.68964400	0.25211500	2.91250800
C	2.76059900	0.20582800	-2.24351500
C	3.68290800	-1.82653500	-1.35150600
C	5.41131500	0.51654200	2.27612800
H	4.82611800	-0.20958400	0.34221000
C	3.57248800	0.63670400	3.93488200
H	1.63080500	0.16378800	3.13125100
C	3.54539700	0.10075300	-3.40726300
H	2.04914400	1.01831300	-2.14531700
C	4.52146100	-1.97691800	-2.45918300
H	3.67512900	-2.58499000	-0.57995000
C	4.91202800	0.88414700	3.55278600
C	4.50823600	-0.93419500	-3.42637100
C	-4.89975000	-4.56462800	0.46442300
C	-4.47508200	-5.76241300	1.35032000
H	-4.80446000	-5.63258800	2.38268000
H	-4.91045200	-6.69176100	0.96121000
H	-3.38451900	-5.87007400	1.35265900
C	-6.44298700	-4.45636500	0.45919100
H	-6.87220500	-5.33063400	-0.04594800
H	-6.85374100	-4.42651600	1.46858000
H	-6.77721300	-3.56377100	-0.08319500
C	-4.46550400	-4.88717900	-0.98304700
H	-4.80055100	-4.12480000	-1.69615800
H	-3.37906800	-4.98840700	-1.07333000
H	-4.91963100	-5.83710100	-1.28745500
C	-3.27750800	-1.55095900	4.40227200
C	-3.92587800	-0.19124000	4.75328000
H	-5.01041200	-0.20427600	4.59598800
H	-3.74671500	0.04989700	5.80886300
	-3.51247300	0.62201400	4.14918100

C	-1.75314300	-1.44920400	4.68931400
H	-1.24104900	-2.38029000	4.42098900
H	-1.27122400	-0.63119800	4.14756000
H	-1.59649100	-1.26978500	5.75959800
C	-3.80770100	-2.63514700	5.36947500
H	-4.89582100	-2.68240800	5.41866000
H	-3.43958300	-3.63056100	5.10334100
H	-3.44803300	-2.40152700	6.37896700
C	2.99655000	0.69452700	5.37947200
C	2.00670800	1.87544500	5.51525000
H	2.50285900	2.84016200	5.35984200
H	1.19208900	1.79863400	4.78746000
H	1.56383600	1.88491300	6.51908300
C	2.21921400	-0.62616300	5.63916300
H	1.37706700	-0.76843500	4.95729300
H	2.88340600	-1.49335800	5.54482000
H	1.81593500	-0.62103200	6.65866600
C	4.04575600	0.77980000	6.51224800
H	3.53268100	0.61616700	7.46782200
H	4.81844600	0.01259900	6.40983600
H	4.54118800	1.74881100	6.57701500
C	6.92684200	0.51917900	1.94640900
C	7.67087700	-0.38286100	2.96276400
H	8.74359400	-0.40267300	2.73196700
H	7.54623900	-0.01830100	3.98432100
H	7.29810600	-1.41289600	2.91345200
C	7.54106100	1.93949700	1.97486700
H	6.96308000	2.63482000	1.35456700
H	7.59868500	2.33773600	2.98794800
H	8.56244500	1.90776000	1.57554300
C	7.20174600	-0.05573200	0.53963400
H	6.82174600	-1.07721300	0.42947200
H	6.76382400	0.56020500	-0.25441900
H	8.28434900	-0.08704600	0.37352900
C	3.24474000	1.09131400	-4.56809200
C	1.70467700	1.17503200	-4.75237600
H	1.27796300	0.18544700	-4.94991600
H	1.19343900	1.59268500	-3.88155300
H	1.47434700	1.82433700	-5.60511100
C	3.80169900	0.66879700	-5.94795300
H	4.88583700	0.74885900	-6.02461800
H	3.52272400	-0.35939700	-6.19766900
H	3.37192600	1.32938900	-6.71061800
H	3.76662600	2.50534000	-4.21965700
	3.85601200	2.52288800	-4.10590200
	30326500	3.21344500	-5.01525600

H	3.33080800	2.87269000	-3.28469100
C	5.35609800	-3.27222000	-2.64060800
C	5.02658500	-3.90807500	-4.01402400
H	5.29687000	-3.24642800	-4.83838500
H	5.57371800	-4.85196600	-4.13133500
H	3.95512600	-4.12463100	-4.08680600
C	5.00604800	-4.31961200	-1.55952400
H	5.29482300	-3.99300500	-0.55366300
H	3.93693400	-4.55679400	-1.55153500
H	5.55483100	-5.24483200	-1.76919900
C	6.87925600	-3.01720300	-2.55025400
H	7.41373500	-3.97542400	-2.55009300
H	7.24861700	-2.43737900	-3.39699300
H	7.14035700	-2.49128200	-1.62438700
C	-6.81489300	0.89489700	-1.51418400
C	-6.94755800	-0.61977500	-1.83598100
H	-6.65938400	-0.82438100	-2.87337600
H	-6.33565900	-1.25134200	-1.18651000
H	-7.99077100	-0.93181900	-1.70718300
C	-7.21903400	1.11852500	-0.03737900
H	-6.56252100	0.57090600	0.64740200
H	-7.17301600	2.17844600	0.23735000
H	-8.24738500	0.77463500	0.13109500
C	-7.84346600	1.59844900	-2.42967700
H	-8.81017300	1.09339000	-2.31320400
H	-7.99836500	2.64907100	-2.18348100
H	-7.55696900	1.53860700	-3.48344900
C	-3.03732700	3.56356700	-3.93442200
C	-1.54833100	3.36206600	-4.29059100
H	-0.88224000	3.58265700	-3.44889400
H	-1.33974500	2.34272200	-4.63308900
H	-1.28079800	4.04486700	-5.10466000
C	-3.19848600	5.03434100	-3.48097900
H	-4.24639400	5.32831200	-3.41487500
H	-2.72196800	5.20725700	-2.50878600
H	-2.71773500	5.69832300	-4.21021000
C	-3.84818800	3.33264700	-5.23443700
H	-3.69311000	2.31536500	-5.61349700
H	-4.91707900	3.48198600	-5.07213100
H	-3.515333300	4.03322700	-6.01052000
O	-5.25933300	-3.49026900	3.13465700
O	-5.75310700	3.39153000	-2.90907700
O	5.79372300	1.47654400	4.44477300
O	5.46242300	-0.99047600	-4.43150800
H	-6.08890200	4.34557600	-1.90027400
	-6.6981900	5.10934600	-2.38975500

H	-6.66719500	3.89149600	-1.08751800
H	-5.19194000	4.81039400	-1.47536400
C	-6.44008600	-2.72066800	3.35921000
H	-7.13101400	-3.36898700	3.90472600
H	-6.23685500	-1.82693100	3.95864700
H	-6.90065700	-2.41204300	2.41302900
C	6.55861400	-0.09444100	-4.24969600
H	7.28829800	-0.33993000	-5.02586700
H	6.25348800	0.95142300	-4.36273800
H	7.01888500	-0.22227000	-3.26276400
C	5.63484200	2.89114000	4.56252000
H	4.65554000	3.15859000	4.97390900
H	6.41701100	3.23266500	5.24558400
H	5.75441300	3.38750200	3.59256100
C	1.16398900	3.93201000	0.38605200
H	-0.81951300	3.29246700	-0.69742200
C	0.92693100	3.54042800	1.88984200
C	-1.67713600	3.07997100	2.15446000
C	-2.88850500	3.13332300	1.44810100
C	-1.70542900	3.31944700	3.53830200
C	-4.08765600	3.41129300	2.10572200
H	-2.89082700	2.96039200	0.37684400
C	-2.90083500	3.61029900	4.19458500
H	-0.77804900	3.27875800	4.10372000
C	-4.10123300	3.65594600	3.48051300
H	-5.01403700	3.44440700	1.53747200
H	-2.89544500	3.80184200	5.26493500
H	-5.03448100	3.88203700	3.98978000
H	0.75210600	4.38981700	2.55755500
H	1.69364400	2.89490900	2.32500800
C	2.52545800	3.51563600	-0.19308300
H	2.54315100	3.66283700	-1.27982400
H	3.33762800	4.11941400	0.23396800
H	2.73041200	2.46198800	0.01523400
C	0.96653100	5.42372100	0.09871800
C	0.34635500	5.84947800	-1.08553300
C	1.47035000	6.41134400	0.95887400
C	0.21482800	7.20505300	-1.39095300
H	-0.03937700	5.10953100	-1.78107300
C	1.33967700	7.76936200	0.66162400
H	1.97643200	6.11719100	1.87512700
C	0.70702200	8.17396400	-0.51474500
H	-0.27570700	7.50349400	-2.31449500
H	1.73376300	8.51176400	1.35172700
H	0.60091000	9.23053200	-0.74679200

TS8-a

Cartesian coordinates:			
ATOM X	Y	Z	
Cu	0.10214500	0.23573800	-1.47751600
H	0.28580300	-0.98164000	-2.47256700
C	-0.36755500	1.86254800	-2.88105700
C	-0.38974200	0.56708800	-3.41439700
P	1.82695400	0.25017600	0.06763900
C	1.29386700	0.34710200	1.84469100
C	3.01195400	1.66057100	-0.13025600
C	2.93153400	-1.23050100	0.03380200
C	0.44966500	-0.66109700	2.41337800
C	1.71976000	1.42517600	2.63340000
C	4.39444200	1.49178500	-0.13541600
C	2.49721100	2.95598300	-0.29685300
C	2.96717700	-2.01067700	-1.11872000
C	3.75269900	-1.58583500	1.11310100
C	0.14230200	-0.49060400	3.75736900
C	-0.03199600	-1.92871100	1.77334200
C	1.37190600	1.57418500	3.98660500
H	2.36806700	2.17326400	2.19479200
C	5.28804500	2.55085400	-0.37630300
H	4.79565000	0.50334900	0.04522000
C	3.32417200	4.05788700	-0.53356200
H	1.42340900	3.09173800	-0.25533500
C	3.85635900	-3.08854900	-1.27407200
H	2.25876400	-1.77676700	-1.90624600
C	4.69039400	-2.61905400	1.01699400
H	3.65544600	-1.03376000	2.03882700
C	0.58307000	0.58345600	4.52674100
O	-0.62775900	-1.31826200	4.54840700
C	0.43461700	-3.11904600	2.31618700
C	-1.03738300	-2.06523600	0.76182500
H	1.72626100	2.41164200	4.57758700
C	4.71552800	3.80280400	-0.68636400
C	4.79312900	-3.28710800	-0.23523800
O	0.11156800	0.46225700	5.81056900
C	-0.38548000	-0.87634500	5.88547100

C	-0.00387300	-4.37908900	1.91791100
O	1.38019200	-3.26868600	3.30980600
C	-1.46669700	-3.34243100	0.37756100
P	-1.71806100	-0.55562700	-0.08569300
H	-1.31944000	-0.88760400	6.44816500
H	0.37366600	-1.52216900	6.35224100
C	-0.95973200	-4.52682400	0.93857800
O	0.64831000	-5.35009800	2.63900900
C	1.29516600	-4.64177700	3.69821100
H	-2.23935400	-3.43238000	-0.37534500
C	-3.07016800	-1.19003500	-1.18530400
C	-2.64882100	0.28181200	1.27544800
H	-1.31737200	-5.50284400	0.62919500
H	0.69283300	-4.72475900	4.61557500
H	2.29956400	-5.04171600	3.84443400
C	-4.42290400	-0.90385200	-0.96296800
C	-2.73102300	-1.92523400	-2.32543800
C	-2.65376400	1.67378100	1.34889900
C	-3.34345600	-0.44578800	2.25146300
C	-5.41836500	-1.23847500	-1.88935800
H	-4.69869400	-0.39373000	-0.05178200
C	-3.68378900	-2.35811600	-3.26179500
H	-1.68561200	-2.16781100	-2.48500900
C	-3.38463700	2.37545600	2.32689100
H	-2.06415500	2.22611500	0.62601300
C	-4.12848000	0.18008800	3.22297100
H	-3.26591600	-1.52491000	2.23898800
C	-5.00600600	-1.88811900	-3.08207800
C	-4.21071300	1.59912000	3.17293700
C	5.50450700	-3.06083200	2.26148000
C	5.24744400	-4.56535700	2.52494700
H	5.58737200	-5.18155500	1.69059300
H	5.77729900	-4.88527900	3.43115200
H	4.17753400	-4.75025700	2.67276400
C	7.02493700	-2.82631200	2.09748800
H	7.53308000	-3.02124000	3.05010200
H	7.46245600	-3.49015500	1.35130600
H	7.23942200	-1.78886700	1.81481700
C	5.06174800	-2.29053000	3.52526000
H	5.28848500	-1.21997600	3.45879900
H	3.99062700	-2.40450200	3.72148100
H	5.60640500	-2.68339400	4.39136100
C	3.67408800	-3.97142600	-2.54092200
C	4.11302300	-3.18826300	-3.80131700
H	5.17932500	-2.93590400	-3.77189300
H	3.93727500	-3.79046100	-4.70145000

H	3.55229700	-2.25324400	-3.90698400
C	2.16355200	-4.31240500	-2.67680200
H	1.80311700	-4.84475300	-1.78915200
H	1.53604800	-3.42773400	-2.81461200
H	2.01281400	-4.96165600	-3.54749300
C	4.40473800	-5.33374600	-2.51041900
H	5.48805200	-5.25096000	-2.60325000
H	4.18698400	-5.89036500	-1.59427700
H	4.05308000	-5.93205000	-3.35981100
C	-3.19581100	-3.34787200	-4.35905200
C	-2.26080100	-2.62659900	-5.35886600
H	-2.77955000	-1.82135900	-5.89143900
H	-1.39247700	-2.18927200	-4.85447100
H	-1.88879900	-3.33594300	-6.10876300
C	-2.38712500	-4.47822400	-3.66387900
H	-1.50209800	-4.11016000	-3.13824200
H	-3.01247100	-5.01632100	-2.94180400
H	-2.04479100	-5.19931300	-4.41535800
C	-4.31430100	-4.07066100	-5.14616300
H	-3.85485500	-4.87105900	-5.73884300
H	-5.05106200	-4.52718200	-4.47893300
H	-4.84763400	-3.42184400	-5.84122600
C	-6.91163000	-0.97867600	-1.55924200
C	-7.68316800	-2.32176400	-1.60251300
H	-8.74021900	-2.15604000	-1.35810600
H	-7.62745700	-2.78134500	-2.59127700
H	-7.27593500	-3.02679600	-0.86809700
C	-7.57194500	0.02414700	-2.53552300
H	-6.98634300	0.94827700	-2.61193400
H	-7.69257100	-0.39769200	-3.53343100
H	-8.57066000	0.29271400	-2.16920400
C	-7.08650600	-0.39775000	-0.13879400
H	-6.66349400	-1.05265100	0.63073900
H	-6.62839900	0.59281900	-0.03557100
H	-8.15647500	-0.28948400	0.07102800
C	-3.17988300	3.91478400	2.41745100
C	-1.66830300	4.22699000	2.24166900
H	-1.06301500	3.68434400	2.97649100
H	-1.29602900	3.97883800	1.24452900
H	-1.50136400	5.30048800	2.38662700
C	-3.57353300	4.53529800	3.77918100
H	-4.64840800	4.55628600	3.95633100
H	-3.10768200	4.00179900	4.61400000
H	-3.21833600	5.57257000	3.80250700
H	-3.94528500	4.63230500	1.28102600
	-5.02788400	4.48166700	1.35496500

H	-3.75704600	5.71246900	1.32443100
H	-3.62543900	4.27648400	0.29686400
C	-4.80438700	-0.65640000	4.34150100
C	-4.37076000	-0.11506600	5.72636600
H	-4.69734500	0.91482700	5.87695400
H	-4.79871200	-0.73637400	6.52323300
H	-3.27970600	-0.14389700	5.82160800
C	-4.36579400	-2.13661900	4.27604900
H	-4.71485300	-2.63417900	3.36386300
H	-3.27725100	-2.24267100	4.33156400
H	-4.80146600	-2.67520900	5.12534000
C	-6.34817700	-0.63527600	4.24475300
H	-6.77309500	-1.34792600	4.96274100
H	-6.76007400	0.34755100	4.47702300
H	-6.68775700	-0.92940100	3.24454700
C	6.80399700	2.23781100	-0.22576700
C	7.01389300	1.48695100	1.11888900
H	6.68437300	2.10177600	1.96427600
H	6.47698600	0.53612000	1.16559900
H	8.07956200	1.26821800	1.25562200
C	7.27109400	1.31730900	-1.37873800
H	6.69559700	0.38544700	-1.40743300
H	7.16015600	1.80390500	-2.35419700
H	8.32975000	1.05759200	-1.25245000
C	7.73664900	3.46875800	-0.15408800
H	8.73621500	3.12626000	0.14081000
H	7.84434000	3.99037000	-1.10543400
H	7.39589500	4.19345500	0.59052300
C	2.74116800	5.49518200	-0.54308500
C	1.25295800	5.50129100	-0.13222200
H	0.61107900	4.98879500	-0.85604100
H	1.09893400	5.04403700	0.85138900
H	0.90667200	6.53911600	-0.06967400
C	2.83435600	6.16600800	-1.93398100
H	3.86408400	6.40271300	-2.20466700
H	2.40382300	5.52542100	-2.71288300
H	2.27103600	7.10740800	-1.92849500
C	3.50009700	6.35797600	0.49701200
H	3.38561900	5.93956400	1.50424800
H	4.56526200	6.42262500	0.26768900
H	3.08703900	7.37442800	0.50888800
O	5.83725100	-4.18659100	-0.39433600
O	5.51383700	4.84461600	-1.134777200
O	-5.95572500	-2.07876600	-4.07431900

H	6.39122100	5.67533700	-2.76395100
H	6.46840200	3.89286900	-2.74309200
H	4.93643200	4.70723000	-3.14160800
C	6.92241400	-3.68149800	-1.17209300
H	7.69317100	-4.45668300	-1.16528400
H	6.62378000	-3.48002500	-2.20663000
H	7.32885800	-2.75974700	-0.73843700
C	-6.32050400	2.64976700	3.41857000
H	-7.00558400	2.90347500	4.23210400
H	-6.16055400	3.53769400	2.79801800
H	-6.76542800	1.86130700	2.80042000
C	-5.84705000	-1.16032900	-5.16340800
H	-4.90961000	-1.29120100	-5.71462900
H	-6.68788400	-1.37220800	-5.82904500
H	-5.90726500	-0.12221000	-4.81682000
C	0.59440400	1.53602400	-4.01313700
H	-1.16248000	-0.01495600	-3.90327600
C	-1.39096200	2.89807100	-2.76673800
C	-1.06681000	4.24666600	-3.02471800
C	-2.73729800	2.60007700	-2.46258200
C	-2.03940400	5.24627800	-2.99232700
H	-0.03835800	4.49834800	-3.27024800
C	-3.70561500	3.60070900	-2.42775400
H	-3.02194400	1.56856600	-2.27295400
C	-3.36684700	4.93300200	-2.69273300
H	-1.75790500	6.27502400	-3.20583900
H	-4.73711500	3.33806500	-2.20189500
H	-4.12577000	5.71039000	-2.66786500
C	2.09740000	1.41290400	-3.81391000
H	2.53615500	0.73571200	-4.56108600
H	2.58543300	2.39084200	-3.92703200
H	2.34367400	1.03088600	-2.82190300
C	0.23863500	2.03060500	-5.41692200
H	0.64986300	3.03182100	-5.60084100
H	0.65634000	1.36162900	-6.18181900
H	-0.84491500	2.08766100	-5.56562500

TS8-b
B3LYP/SDD-6-31G(d) SCF energy: -4788.696962 a.u.
B3LYP/SDD-6-31G(d) Enthalpy: -4786.791425 a.u.
B3LYP/SDD-6-31G(d) Gibbs free energy: -4787.039335 a.u.
M06/SDD-6-311+G(d,p) SCF energy in solution: -4787.038901 a.u.
M06/SDD-6-311+G(d,p) enthalpy in solution: -4785.133365 a.u.
M06/SDD-6-311+G(d,p) free energy in solution: $\quad-4785.381274$ a.u.
$\begin{array}{lllll}\text { Three lowest frequencies }\left(\mathrm{cm}^{-1}\right): & -651.7995 & 9.6475 & 12.1776\end{array}$
Imaginary frequency:
$-651.7995 \mathrm{~cm}^{-1}$

Cartesian coordinates:			
ATOM X	Y	Z	
Cu	0.03136900	0.35949000	-1.35086800
H	-0.16864000	1.88587800	-1.78686300
P	-1.61491200	-0.48434400	0.14885200
C	-0.93744300	-1.72118000	1.36562600
C	-3.01036100	-1.39508100	-0.66944400
C	-2.50289800	0.75154900	1.19212600
C	0.08065500	-1.34843500	2.30182200
C	-1.38165500	-3.05124300	1.32305500
C	-4.34861800	-1.11557500	-0.40399100
C	-2.71882800	-2.38429900	-1.62349200
C	-2.55901200	2.06400800	0.72896700
C	-3.14304700	0.43321500	2.39767700
C	0.53241300	-2.36644300	3.13157200
C	0.59903500	0.02764600	2.58703400
C	-0.88052300	-4.06171800	2.16062700
H	-2.16503900	-3.32156000	0.62692900
C	-5.40838300	-1.73020100	-1.09544000
H	-4.58286700	-0.39422600	0.36735800
C	-3.71733400	-3.02728300	-2.36206900
H	-1.68156700	-2.64496300	-1.78982000
C	-3.29726100	3.06579800	1.38380600
H	-1.99748100	2.30786400	-0.16659100
C	-3.92556700	1.36719000	3.08460400
H	-3.02807700	-0.56720500	2.79431000
C	0.08328800	-3.68199000	3.06679100
O	1.47870000	-2.26744900	4.13133000
C	0.31375700	0.54416500	3.84485300
C	1.45126600	0.83532400	1.76732800
H	-1.24926900	-5.08029400	2.10783900
C	-5.05763400	-2.59732600	-2.15242800
C	-4.06597800	2.65564100	2.49599400
O	0.73747800	-4.44491000	4.00532300
C	1.37284400	-3.49195300	4.86047000
C	0.77083400	1.77592100	4.30339600
O	-0.45960300	-0.03839200	4.82880500
C	1.89925800	2.07508200	2.24868300
P	1.89903900	0.33490100	0.03136600
H	2.37044100	-3.84617500	5.12294000
H	0.75196300	-3.33149500	5.75479800
C	1.56644300	2.57826900	3.51701300
O	0.29903300	2.00489100	5.57424900
C	-0.20623400	0.73775900	6.00134900
H	2.54489500	2.67816500	1.62338200
C	3.19778000	1.57087100	-0.44781500
A			

C	2.86587400	-1.22619900	0.20700100
H	1.93257500	3.53888100	3.86246400
H	0.55144900	0.23089400	6.61811700
H	-1.13772300	0.88258900	6.54972100
C	4.56911100	1.34771800	-0.27359400
C	2.78872500	2.79027100	-0.99047200
C	2.79663100	-2.13726700	-0.84461600
C	3.67474900	-1.52873500	1.31064500
C	5.53256000	2.25971700	-0.71768500
H	4.88775100	0.43240300	0.20355400
C	3.69662800	3.77535100	-1.41426400
H	1.72316000	2.96407900	-1.09715600
C	3.56990300	-3.31075400	-0.87878500
H	2.10798700	-1.92046300	-1.65483400
C	4.50148000	-2.65736300	1.33005400
H	3.65457700	-0.86052600	2.16222300
C	5.06686500	3.42871600	-1.37683400
C	4.50003200	-3.48315100	0.17109600
C	-4.52223800	1.02288200	4.47489300
C	-3.97550400	2.03435600	5.51353800
H	-4.29895000	3.05192000	5.28521100
H	-4.33412500	1.77547900	6.51809300
H	-2.87957900	2.02193500	5.52648700
C	-6.06901400	1.05779800	4.49668900
H	-6.43189900	0.66826600	5.45600300
H	-6.45688100	2.07035000	4.38661200
H	-6.49257800	0.42909600	3.70424100
C	-4.10239200	-0.39086200	4.93478900
H	-4.51420900	-1.17436800	4.28769300
H	-3.01501700	-0.51025300	4.96749600
H	-4.49168700	-0.56674400	5.94424100
C	-3.15056600	4.51583700	0.84239800
C	-3.87993500	4.65234100	-0.51583800
H	-4.95714700	4.47464300	-0.41876400
H	-3.74480800	5.66522400	-0.91588400
H	-3.49200400	3.94539700	-1.25647400
C	-1.63963700	4.79859300	0.61357600
H	-1.07369300	4.67838200	1.54442500
H	-1.19223000	4.14426400	-0.13902600
H	-1.51024300	5.83103700	0.26804000
C	-3.63808100	5.63011700	1.79776000
H	-4.72273800	5.67657400	1.89814900
H	-3.21152700	5.52079400	2.79921700
	-3.30957200	6.59602500	1.39507700
	2.343567600	5.14619200	-1.84304100

H	3.01742500	4.71387500	-4.00074200
H	1.55998900	4.23716000	-3.12037800
H	1.87089800	5.95099500	-3.46003100
C	2.08309000	5.59295800	-0.75598600
H	1.24736200	4.89898400	-0.63916100
H	2.57503500	5.69788200	0.21808600
H	1.66162500	6.56820100	-1.02680500
C	4.11422800	6.30766500	-1.95438400
H	3.55398400	7.24331600	-2.07196600
H	4.72991100	6.39538900	-1.05446300
H	4.78281400	6.22449500	-2.81142200
C	7.03451500	2.02149900	-0.41188100
C	7.59101700	3.22726500	0.38611200
H	8.64957800	3.06286100	0.62430700
H	7.50658100	4.15493600	-0.18296900
H	7.04982000	3.34933100	1.33188800
C	7.87910900	1.81827900	-1.69248900
H	7.44543800	1.04238000	-2.33472700
H	7.97413200	2.73804000	-2.27016700
H	8.89196900	1.49673600	-1.41948700
C	7.24184700	0.76473800	0.46245800
H	6.69342100	0.82563300	1.40908500
H	6.93867400	-0.15525600	-0.05052700
H	8.30660900	0.67118400	0.70409400
C	3.28624200	-4.30746000	-2.03802400
C	1.74704100	-4.47509300	-2.16824700
H	1.31347700	-4.83865000	-1.22958900
H	1.23853400	-3.54626900	-2.43741300
H	1.52412100	-5.20830100	-2.95217700
C	3.84038700	-5.73647400	-1.83384700
H	4.92542300	-5.80244400	-1.91677200
H	3.55201400	-6.14595500	-0.86125300
H	3.41697800	-6.38394000	-2.61132200
C	3.82377200	-3.73502600	-3.37190600
H	4.91307800	-3.61620500	-3.35504200
H	3.57429900	-4.40827600	-4.20159400
H	3.38535300	-2.75512900	-3.58964900
C	5.29887100	-3.02740000	2.60821700
C	4.82926900	-4.42076000	3.09737000
H	5.04773300	-5.19413800	2.35775200
H	5.34048800	-4.68470800	4.03224200
H	3.74914500	-4.42546200	3.28357700
C	5.04109800	-2.01690800	3.74769100
H	5.41441100	-1.01585500	3.50012400
	5.97945700	-1.93389200	3.99818100

C	6.82994500	-3.05799600	2.38381700
H	7.33936500	-3.16386500	3.34959600
H	7.13576900	-3.89690000	1.75904700
H	7.18300000	-2.12676700	1.92498700
C	-6.84590800	-1.42592400	-0.58451600
C	-6.86378700	-1.61285300	0.95835600
H	-6.59652400	-2.64056400	1.22942300
H	-6.17904900	-0.93895100	1.47963900
H	-7.87267300	-1.41423600	1.33905600
C	-7.22127500	0.04080600	-0.90459900
H	-6.50422300	0.74438100	-0.46766200
H	-7.24692700	0.22479900	-1.98467600
H	-8.21473900	0.27470100	-0.50168400
C	-7.95637800	-2.35985700	-1.11913800
H	-8.87273500	-2.16754800	-0.54766800
H	-8.19469900	-2.19723500	-2.17038800
H	-7.69527100	-3.41411100	-0.99189500
C	-3.36560500	-4.20909800	-3.30326000
C	-1.86973600	-4.58077600	-3.21137700
H	-1.21654600	-3.78129000	-3.57793100
H	-1.56551700	-4.83068300	-2.18916000
H	-1.68423800	-5.46298700	-3.83418400
C	-3.65888000	-3.89523500	-4.78989000
H	-4.72881000	-3.84276000	-4.99233000
H	-3.19395900	-2.95018500	-5.09486500
H	-3.24331700	-4.68890800	-5.42286900
C	-4.17248000	-5.45950000	-2.87113700
H	-3.92695600	-5.74299100	-1.84068100
H	-5.24810100	-5.28444100	-2.93541400
H	-3.92153500	-6.30785800	-3.52020100
O	-4.97023600	3.52900600	3.08307800
O	-6.03123900	-3.08738300	-3.01027400
O	6.01410600	4.24946200	-1.97144700
O	5.43019000	-4.51142200	0.11959800
C	-6.42719100	-2.16479600	-4.02557200
H	-7.12261700	-2.70181600	-4.67600800
H	-6.93425100	-1.28937700	-3.60410700
H	-5.56715500	-1.82379500	-4.61343000
C	-6.20564100	3.64404800	2.37728500
H	-6.84650300	4.29213200	2.98101800
H	-6.06935600	4.09356800	1.38801200
H	-6.68719500	2.66641100	2.25568300
C	6.55408300	-4.23584900	-0.71628400
H	7.23164600	-5.08748800	-0.61237900
H	6.26470400	-4.13262300	-1.76741200
H	7.06948800	-3.32033200	-0.40270500

	6.09662700	4.10550700	-3.39012100
H	5.17598400	4.42957700	-3.88699800
H	6.92373100	4.74171200	-3.71614000
H	6.30025400	3.06668500	-3.67426000
C	-0.15048000	-0.53211200	-3.24692200
C	-0.56154300	0.81841100	-3.29459300
C	0.57656500	0.39339600	-4.20155000
H	-0.75227900	-1.39828800	-3.50595200
C	-1.81015100	1.53281800	-3.65241000
C	-1.76382300	2.87686300	-4.06116300
C	-3.05245300	0.88091400	-3.64544900
C	-2.92039000	3.54810700	-4.45133000
H	-0.80632200	3.39127700	-4.06210400
C	-4.21476900	1.55539700	-4.02761400
H	-3.10194100	-0.15990300	-3.34206500
C	-4.15468900	2.88947700	-4.43252900
H	-2.86238300	4.58614500	-4.76974900
H	-5.16878500	1.03392600	-4.01000900
H	-5.05867800	3.41325500	-4.73282200
C	2.02737700	0.78880500	-3.98414700
H	2.69597800	0.03772200	-4.42930000
H	2.25465400	1.75344300	-4.45988200
H	2.26761600	0.87060300	-2.92435900
C	0.22717600	0.30856900	-5.68861900
H	0.41092600	1.26129300	-6.20399000
H	0.84965800	-0.45223000	-6.17895600
H	-0.82198000	0.03941000	-5.84726300

TS-1a'
B3LYP/SDD-6-31G(d) SCF energy:
B3LYP/SDD-6-31G(d) Enthalpy:
B3LYP/SDD-6-31G(d) Gibbs free energy:
M06/SDD-6-311+G(d,p) SCF energy in solution:
M06/SDD-6-311+G(d,p) enthalpy in solution:
M06/SDD-6-311+G(d,p) free energy in solution:
Three lowest frequencies (cm ${ }^{-1}$):
Imaginary frequency:
Cartesian coordinates:

ATOM X	Y	-572.7	
Cu	0.03061700	0.08233500	-1.67586300
H	-0.18403100	1.41707100	-2.52906600
C	0.30846700	-1.27247800	-3.26082600
C	0.35995200	0.04782100	-3.72320500
P	-1.75155400	-0.32789700	-0.25235000
C	-1.23120300	-1.28573500	1.25564300
C	-3.12757400	-1.34340500	-0.96830700

	-2.64507200	1.14946500	0.40094200
	-0.29173800	-0.75140300	2.1
	-1.70536500	-2.59597000	
	-4.	-1.	-0.65129100
	-2.80135200	-2.37185800	
C	-2.61592400	2.30770900	-0.37
	-3.37989600	00	
C	0.04914400	-1.	3.24534200
	6967600	0.63713900	2.25425100
	-1.31724700	-3.43100500	0
	-2.41566000	-2.98985600	
C	-5.50865700	-1.87573200	-1
H	-4.72210400	-0.38223400	0.078378
	-3.78212700	-3.13390100	-2.50812800
H	-1.75364500	-2.54522000	-2.
	-3.35947400	3.45461900	-0.0
	-1.97835200	2.30888600	-1.24986200
	-4.1772850	.24418500	
	-3.32940000	0.28386600	2.23559400
	-0.43589000	-2.89257100	00
O	0.91033700	-1.32228300	. 28927200
	-0.08946700	1.40900500	.3513900
	1.25068700	1.21883100	1.38760700
	-1.70618900	-4.43804300	25
	-5.13814300	-2.78822900	-2.2
	-4.22517300	3.34820200	1.06649900
O	0.10367800	-3.46865100	. 51701300
	69892300	-2.37970400	. 2
	503200	2.68073500	.
	-0.98573300	1.07564300	0
C	75194300	2.49818100	0
	1.79395400	0.33112400	-0.15414000
	1.65715700	-2.69504200	. 64126600
	1109800	-2.03701100	. 01434700
	1.34389400	3.26150100	2.77438400
	-0.1536320	3.18579900	4.75346600
	-0.79288100	6201500	36270200
	. 50227900	2.92314000	. 01305900
	15496100	1.38884500	-0.83629500
	2.69081400	-1.15558100	0.46940500
	1.75253900	4.24705900	2.96902000
	-0.14154200	1.65239900	. 14951200
	-1.76120000	2.36595600	5.76262100
	4.51049100	1.05122400	-0.74506700
	2.81147700	2.57177700	-1.49614900
	2.60394900	-2.32423500	-0.

	3.45407900	-1.16747300	1.64449700
	. 50874700	1.79863600	-1.38169000
	4.78577600	0.17346800	-0.17896400
	3.76571000	3.41343200	-2.09137000
	251000	2.84511700	000
	3.32301600	-3.48828600	0.0
	1.93987000	-2.32169900	-1.14099400
	4.21867200	-2.27821000	000
	05100	-0.2	2.27175700
	529900	2.93182800	-2.
	4.21727600	-3.39201500	1.12912400
	-4.89608100	2.26491100	3.33826600
	-4.38843900	3.48558100	4.
	-4.63683900	4.42378500	3.64599100
	-4.84707300	3.49502400	. 14380400
	-3.30002300	3.44486900	4.27084400
	-6.43672100	2.34198400	3.21437300
	-6.89222900	2.19676000	. 20184000
	-6.76924200	3.3097030	. 83924900
	-6.82245600	1.5	2.55465200
	-4.58016700	0.99639100	4.16090200
	-4.97737300	0.08944900	. 68947900
	-3.50573300	0.85840600	
	-5.05486100	1.08352200	5.14514300
	-3.11279600	4.72152500	-0.91198700
	-3.71811100	4.52367500	-2.32242100
	-4.80657200	4.40165900	-2.28407400
	-3.50146000	5.39470100	-2.95350600
	-3.30142300	3.63856000	-2.81515300
	-1.57800800	4.91450800	-1.06362700
	-1.10217100	5.03171800	-0.083238
	-1.09175900	4.08119600	-1.57748400
	-1.38002000	5.82088200	-1.64801800
	-3.63732500	6.04737800	-0.31350000
	-4.72410100	6.13274800	-0.32604800
	-3.30036900	6.1867230	0.71784400
	-3.24146900	6.87662900	-0.91246500
	. 26913200	4.80354300	-2.58479800
	2.33031900	4.64017600	-3.80307800
	2.85576300	4.20654900	-4.66167700
	1.47811300	3.99196000	-3.57421200
	1.93789100	5.61750500	-4.11092800
	2.46436400	5.45883500	-1.42781500
	1.59708900	4.86876700	-1.12105900
	3.10083400	5.60805500	-0.54753600
	2.09595100	6.441105	-1

C	4.37657700	5.82306300	-2.93805600
H	3.90656000	6.80442300	-3.07644400
H	5.11678700	5.91390800	-2.13830600
H	4.90605500	5.58941800	-3.86232400
C	7.00342200	1.43355300	-1.18633000
C	7.74875600	2.64597000	-0.57453100
H	8.80629200	2.39731600	-0.41919000
H	7.69311700	3.51801800	-1.22889800
H	7.32072000	2.91385300	0.39870000
C	7.69165600	1.02446500	-2.51076900
H	7.12465600	0.24088000	-3.02759400
H	7.81077200	1.87363600	-3.18379700
H	8.69270000	0.62760600	-2.30058100
C	7.17639500	0.25056200	-0.20824200
H	6.73681600	0.45859300	0.77344700
H	6.73341400	-0.67565000	-0.59237700
H	8.24619200	0.06693100	-0.05793600
C	3.01903300	-4.76109400	-0.80010800
C	1.47594500	-4.91766400	-0.90206500
H	1.02550600	-5.00019200	0.09349100
H	0.99363300	-4.08454900	-1.41921000
H	1.23719500	-5.83047900	-1.46052900
C	3.52935600	-6.09091300	-0.19798600
H	4.61330000	-6.20139000	-0.23823000
H	3.21693200	-6.20977600	0.84350900
H	3.09865500	-6.91795500	-0.77549500
C	3.58872100	-4.60110400	-2.22981400
H	4.68107500	-4.51194200	-2.22441500
H	3.32723700	-5.47287300	-2.84236000
H	3.18625400	-3.70984400	-2.72385400
C	4.95368400	-2.30794400	3.38061700
C	4.46254100	-3.53540700	4.18858100
H	4.71832600	-4.47080100	3.68743700
H	4.92289600	-3.53926800	5.18488000
H	3.37416100	-3.50492700	4.31473600
C	4.63592000	-1.04825900	4.21647000
H	5.02719800	-0.13454600	3.75380100
H	3.56017300	-0.91898700	4.37357300
H	5.11261800	-1.14292700	5.19891200
H	-6.88658300	-1.72171300	0.85748500
H	6.49213500	-2.37575500	3.23392000
H	6.96231900	-2.24904700	4.21713400
H	6.86467300	-3.33485900	2.83444400
	-6.9425300	-1.57572100	2.58307200
H	-1.63561900	-0.69335800	

H	-6.23001800	-0.97046700	1.30468300
H	-7.89025000	-1.56648000	1.27078700
C	-7.43182000	-0.22153700	-1.08799200
H	-6.74929300	0.55526200	-0.72582700
H	-7.51094100	-0.11099900	-2.17540900
H	-8.42314900	-0.02849000	-0.65870100
C	-8.00686000	-2.67298800	-1.12042600
H	-8.91103000	-2.50493900	-0.52238600
H	-8.29638900	-2.59325200	-2.16853600
H	-7.66960900	-3.69763800	-0.94117800
C	-3.38040300	-4.34219600	-3.39327800
C	-1.85722500	-4.59249200	-3.34404600
H	-1.28472700	-3.76077900	-3.76765500
H	-1.50272000	-4.76656100	-2.32197100
H	-1.62606700	-5.48947600	-3.93010500
C	-3.75561900	-4.14320100	-4.88153200
H	-4.83393000	-4.18296300	-5.03952700
H	-3.37620500	-3.18747900	-5.26186400
H	-3.30612300	-4.94228900	-5.48398100
C	-4.07277500	-5.61973000	-2.85591500
H	-3.76466400	-5.82292400	-1.82323200
H	-5.16051300	-5.52827700	-2.88076700
H	-3.78524300	-6.48496600	-3.46666000
O	-5.13787400	4.35674400	1.34205500
O	-6.11141400	-3.39595700	-3.04108100
O	6.05008400	3.58440600	-2.89675200
O	5.11113200	-4.41961400	1.39395400
C	-6.60800400	-2.56380400	-4.08980500
H	-7.31576800	-3.17332100	-4.65787400
H	-7.12593900	-1.68120400	-3.69810800
H	-5.80019600	-2.23017100	-4.75109200
C	-6.30947500	4.31548000	0.52755200
H	-6.97071300	5.10319500	0.89843100
H	-6.08058300	4.50556900	-0.52656800
H	-6.81657400	3.34656500	0.60732300
C	6.26729500	-4.41007700	0.55672600
H	6.91663200	-5.21151300	0.91895500
H	6.01302300	-4.60009100	-0.49183200
H	6.79828600	-3.45289700	0.62148800
C	5.96052100	3.29856900	-4.29318800
H	5.00421600	3.62567900	-4.71517300
H	6.77383500	3.84917600	-4.77310600
H	6.07977800	2.22643800	-4.48879700
C	-0.77479100	-0.79901500	-4.21024300
	1.34235400	0.85639300	-4.51199300

H	1.60080600	0.30194500	-5.42727500
H	0.93041300	1.82737800	-4.80775700
H	1.04274900	-2.06098000	-3.39106200
H	-0.73381600	-1.08454800	-5.26865800
H	-1.79164000	-0.64195200	-3.84749900

TS-1b'	
B3LYP/SDD-6-31G(d) SCF energy:	$-4557.663502 \mathrm{a} . \mathrm{u}$.
B3LYP/SDD-6-31G(d) Enthalpy:	$-4555.842368 \mathrm{a} . \mathrm{u}$.
B3LYP/SDD-6-31G(d) Gibbs free energy:	$-4556.078787 \mathrm{a} . \mathrm{u}$.
M06/SDD-6-311+G(d,p) SCF energy in solution:	$-4556.110096 \mathrm{a} . \mathrm{u}$.
M06/SDD-6-311+G(d,p) enthalpy in solution:	$-4554.288962 \mathrm{a} . \mathrm{u}$.
M06/SDD-6-311+G(d,p) free energy in solution:	$-4554.525382 \mathrm{a} . \mathrm{u}$.
Three lowest frequencies $\left(\mathrm{cm}^{-1}\right):$	-753.1673
	$8.9276 \quad 11.8897$
Imaginary frequency:	$-753.1673 \mathrm{~cm}^{-1}$

Cartesian coordinates:

ATOM X	Y		Z
Cu	-0.00356400	0.03119000	-1.59636300
H	-0.14829700	1.38179300	-2.51004400
C	0.37542100	-1.12778200	-3.36309400
C	0.29283000	0.25992600	-3.73553300
P	-1.76181500	-0.36315900	-0.17838600
C	-1.24217200	-1.28629000	1.35627100
C	-3.14764400	-1.39138000	-0.86155200
C	-2.65183000	1.12591300	0.45779000
C	-0.27058900	-0.74025200	2.25649000
C	-1.74966100	-2.57316300	1.58981200
C	-4.48369300	-1.00535100	-0.78922100
C	-2.84276900	-2.60467900	-1.49806100
C	-2.59189600	2.29072500	-0.30238100
C	-3.40813200	1.12918700	1.63802700
C	0.08815600	-1.56010500	3.31968500
C	0.28983100	0.64996500	2.28543700
C	-1.35213100	-3.37978900	2.66891300
H	-2.49895800	-2.97238400	0.91903800
C	-5.52314000	-1.74445800	-1.38267200
H	-4.73205000	-0.09889300	-0.25378800
C	-3.81993500	-3.38997400	-2.11665900
H	-1.80845900	-2.92551600	-1.51334400
C	-3.32661300	3.44473600	0.02221500
H	-1.93710000	2.29078400	-1.16836100
C	-4.18868400	2.22920500	2.00919500
H	-3.38742300	0.24833700	2.26678600
C	-0.42148300	-2.83832200	3.52616000
O	0.98421600	-1.26926200	4.32886800
C	-0.06740400	1.42953900	3.37835700

C	1.26739000	1.22443000	1.41094800
H	-1.77028100	-4.36819300	2.82533400
C	-5.14607900	-2.87629200	-2.13695400
C	-4.20831500	3.34148000	1.12089700
O	0.13859700	-3.38967800	4.65328100
C	0.79481600	-2.29785500	5.30223000
C	0.44403300	2.69870200	3.63150700
O	-0.96440800	1.10334200	4.37600000
C	1.78011400	2.49914300	1.69251400
P	1.78723200	0.33084600	-0.13911100
H	1.76516500	-2.62663300	5.67743700
H	0.15696800	-1.91883100	6.11504800
C	1.37995500	3.26786400	2.79836900
O	-0.12104700	3.21063100	4.77581400
C	-0.76771700	2.09273100	5.38807200
H	2.53478000	2.91826200	1.04020600
C	3.13357000	1.39630700	-0.84405500
C	2.71789100	-1.13567300	0.48877800
H	1.79957900	4.24911200	2.99152400
H	-0.12014700	1.68297800	6.17802600
H	-1.73497700	2.40362400	5.78533000
C	4.47347400	0.99301500	-0.88139500
C	2.80349300	2.63846200	-1.39443500
C	2.64459800	-2.31555600	-0.24754000
C	3.50121300	-1.11488700	1.65041900
C	5.46001100	1.73981800	-1.53680900
H	4.74595300	0.06551900	-0.40045200
C	3.75556600	3.48271200	-1.98944700
H	1.76771400	2.95875200	-1.35447200
C	3.39443700	-3.45955800	0.07916100
H	1.96984400	-2.33688000	-1.09675700
C	4.29484400	-2.20378300	2.02354800
H	3.48914800	-0.22313800	2.26367000
C	5.05408900	2.94730500	-2.16160500
C	4.30306900	-3.32983700	1.15336200
C	-4.91447900	2.25372200	3.38045400
C	-4.39813800	3.46752800	4.19361400
H	-4.63777800	4.40969900	3.69644000
H	-4.85794000	3.47676100	5.19029900
H	-3.31032800	3.41682800	4.31911200
C	-6.45362400	2.34654100	3.25118000
H	-6.91394700	2.20920600	4.23757400
H	-6.77452100	3.31698100	2.87250700
H	-6.84629100	1.56254000	2.59253700
H	-4.61129600	0.98096400	4.20156300
H	-5.01507200	0.07813900	3.72829100

H	-3.53782600	0.83482900	4.35674700
H	-5.08630700	1.07083700	5.18540200
C	-3.05350800	4.71421300	-0.83300300
C	-3.63967100	4.53035800	-2.25332400
H	-4.72983800	4.41939500	-2.23144600
H	-3.40499500	5.40248300	-2.87635900
H	-3.22465300	3.64376300	-2.74478800
C	-1.51459000	4.89176600	-0.96018200
H	-1.05260200	4.99960800	0.02794400
H	-1.02958800	4.05522500	-1.47029300
H	-1.29808900	5.79873700	-1.53709200
C	-3.57413000	6.04215300	-0.23583600
H	-4.65983600	6.13790400	-0.26392500
H	-3.25099000	6.17378700	0.80088900
H	-3.16172600	6.87020700	-0.82523100
C	3.30154900	4.93142500	-2.33509500
C	2.30035100	4.92217300	-3.51360900
H	2.75866800	4.53954500	-4.43258000
H	1.42669300	4.29975900	-3.29488800
H	1.94653300	5.94081200	-3.71648800
C	2.58272700	5.51669200	-1.08754800
H	1.69183400	4.95171800	-0.80145800
H	3.25996200	5.54170100	-0.22565100
H	2.26422800	6.54515400	-1.29473500
C	4.44175100	5.92744100	-2.65060300
H	4.01570400	6.93779000	-2.67988200
H	5.21899600	5.91191500	-1.88134600
H	4.91958000	5.75373200	-3.61494500
C	6.94269200	1.28723200	-1.48853400
C	7.79812600	2.40502300	-0.84126100
H	8.84856900	2.09147700	-0.78940900
H	7.74395000	3.33152000	-1.41619600
H	7.45874700	2.61046400	0.18093700
C	7.50687400	0.95519700	-2.89083700
H	6.85982600	0.24614200	-3.42109000
H	7.62557400	1.84819200	-3.50473600
H	8.49630800	0.49180200	-2.79041700
C	7.12238000	0.01805200	-0.62622100
H	6.76881100	0.16126800	0.40067700
H	6.60230600	-0.84922900	-1.04937600
H	8.18892400	-0.22922400	-0.57674700
C	3.10915500	-4.74861200	-0.74192700
C	1.56938100	-4.94245100	-0.82116500
H	1.13395500	-5.02663500	0.18104100
H	1.06239600	-4.12508700	-1.33969600
H	1.34399000	-5.86540500	-1.36828000

C	3.65830700	-6.05955500	-0.13258400
H	4.74373000	-6.14566100	-0.18712500
H	3.36333200	-6.17382800	0.91449400
H	3.23876000	-6.90260800	-0.69498500
C	3.65466400	-4.59113800	-2.18142300
H	4.74396100	-4.47055600	-2.19234800
H	3.41046100	-5.47820800	-2.77901200
H	3.21944100	-3.71889300	-2.68147800
C	5.05253800	-2.19710400	3.37725800
C	4.60130700	-3.42200400	4.21169700
H	4.86216800	-4.35962800	3.71734100
H	5.08328900	-3.40445000	5.19752000
H	3.51558100	-3.40734100	4.36207100
C	4.72095100	-0.93220300	4.19970700
H	5.08541500	-0.01747000	3.71777200
H	3.64520300	-0.82355600	4.37168600
H	5.21441200	-1.00246800	5.17592400
C	6.58954200	-2.23398800	3.20679700
H	7.07217500	-2.08491200	4.18080100
H	6.93436500	-3.19061300	2.81360900
H	6.93444500	-1.43431800	2.54040600
C	-6.97387600	-1.26186000	-1.09370900
C	-7.11876700	-1.05435000	0.43977500
H	-6.94145800	-1.99271700	0.97758500
H	-6.42928800	-0.30478300	0.83704500
H	-8.13717200	-0.71973600	0.67102100
C	-7.22983900	0.09141300	-1.79967200
H	-6.50425200	0.85158000	-1.48972700
H	-7.16370900	-0.00361900	-2.88955100
H	-8.23346500	0.46243900	-1.55639600
C	-8.10029600	-2.24835700	-1.47951600
H	-9.04277200	-1.87405600	-1.06125400
H	-8.24420200	-2.34489000	-2.55600900
H	-7.92387900	-3.24733800	-1.07160700
C	-3.46358700	-4.79176800	-2.67769100
C	-1.99445700	-5.16294000	-2.37942400
H	-1.28644900	-4.50501300	-2.89507800
H	-1.76966300	-5.13834300	-1.30749000
H	-1.80823800	-6.18412300	-2.73061900
C	-3.64686300	-4.89074400	-4.21111200
H	-4.69806200	-4.86693800	-4.49936700
H	-3.11885500	-4.08042300	-4.72703800
H	-3.22969600	-5.83984800	-4.56975000
C	-4.35516900	-5.85254300	-1.98471800
H	-4.19182500	-5.84935400	-0.90031000
H	-5.41464200	-5.67007200	-2.17546300

	-4.10460200	-6	
	-5.11123100	4.35983400	1.39215900
O	-6.08301000	-3.54168500	-2.
	00	3.6	-2.
	5.22284400	-4.33462000	1.41776700
	-6.34299400	-2.90534300	-4.166
	-7.06139800	-3.54032900	-4.69151400
	-6.77338900	-1.90664200	-4.
	-5.42955700	-2.81417900	-4.76
	-6.27606900	4.33330000	. 56747700
	-6.93201200	5.12724400	. 9
	-6.03556200	4.5235300	-0.
	-6.79416700	3.36967800	0.64033800
	6.36641800	-4.31142400	0.5
	03847600	-5.09328100	
	6.10120500	-4.52192100	-0.47844600
	6.87690400	-3.34207800	0.60676700
	5.79127100	3.45772100	-4.34405600
	84043500	3.88963100	-4.67403900
	61502800	3.98554300	-4.83185700
	5.81344400	2.40010200	-4.63171500
	-1.01735400	0.01925600	-4.50847500
	-0.87304600	-1.49919800	-4.1789080
	-1.72219100	-1.95592200	-3.66
	-0.65831600	-2.10152200	-5.07
	-1.90890300	0.52276700	-4.12281200
	-0.91665100	0.25058800	-5.57689600
	1.41372600	1.10347000	-4.29131700
	2.29883600	1.07072300	-3.65015800
	1.69538600	0.70835300	-5.27980800
	1.11867000	2.15132900	-4.41242000
	1.29883200	-1.70264800	

6. References and Notes

(1) "Prudent Practices in the Laboratory [electronic resource]: Handling and Management of Chemical Hazards / Committee on Prudent Practices in the Laboratory: An Update."; Board on Chemical Sciences and Technology, Division of Earth and Life Studies, National Research Council of the National Academies. Washington, D.C.: National Academies Press, 2011.
(2) The cyclobutene and cyclopropene substrates are air-sensitive, and therefore have to be stored in the glovebox. For this reason, the hydroamination reactions are set up in the glovebox.
(3) Cyclopropenes bearing 3-hydrogen polymerize through ene-reaction when in their liquid phase. ${ }^{4}$ For this reason, characterization data of compound $\mathbf{1 2}$ by ${ }^{13} \mathrm{C}$ NMR was not provided. The purity of $\mathbf{1 2}$ was determined by ${ }^{1} \mathrm{H}$ NMR analysis with 1,1,2,2-tetrachloroethane as the internal standard.
(4) Lin, H.; Tsai, R.; Wu, H.; Lee, H.; Lee, G. Ene di- and trimerization of 1-methyl-2phenylcyclopropene. Tetrahedron 2016, 72,184-191.
(5) Homs, A.; Obradors, C.; Lebœuf. D.; Echavarren, A. M. Dissecting Anion Effects in Gold(I)Catalyzed Intermolecular Cycloadditions. Adv. Synth. Catal. 2014, 356, 221-228.
(6) Juteau, H.; Gareau, Y. Preparation of Aryl Cyclobutenes Under Mild and Neutral Conditions. Synthetic Communications. 1998, 28, 3795-3805.
(7) Lauriers, A. J.; Legault, C. Y. Iodine(III)-Mediated Oxidative Hydrolysis of Haloalkenes: Access to α-Halo Ketones by a Release-and-Catch Mechanism. Org. Lett. 2016, 18, 108-111.
(8) Shi, D.; Liu, Z.; Zhang, Z.; Shi, W.; Chen, H. Silver-Catalyzed Synthesis of 1-Chloroalkynes Directly from Terminal Alkynes. ChemCatChem 2015, 7, 1424-1426.
(9) Kasai, K.; Liu, Y.; Hara, R.; Takahashi, T. Zirconocene-Catalysed Cyclobutene Formation by Reaction of Alkynyl Halides with EtMgBr. Chem. Commun. 1998, 1989-1990.
(10) Molander, G. A.; Cavalcanti, L. N. Metal-Free Chlorodeboronation of Organotrifluoroborates. J. Org. Chem. 2011, 76, 7195-7203.
(11) Clausen, D. J.; Wan, S.; Floreancig, P. E. Total Synthesis of the Protein Phosphatase 2A Inhibitor Lactodehydrothyrsiferol. Angew. Chem., Int. Ed. 2011, 50, 5178-5181.
(12) Mizojiri, R.; Urabe, H.; Sato, F. Generation of a Silylethylene-Titanium Alkoxide Complex. A Versatile Reagent for Silylethylation and Silylethylidenation of Unsaturated Compounds. J. Org. Chem. 2000, 65, 6217-6222.
(13) Basheer, A.; Mishima, M.; Marek, I. Regioselective Carbon-Carbon Bond Cleavage in the Oxidation of Cyclopropenylcarbinols. Org. Lett. 2011, 13, 4076-4079.
(14) Ernouf, G.; Brayer, J.; Folléas, B.; Demoute, J.; Meyer, C.; Cossy, J. Synthesis of Functionalized Alkylidenecyclopropanes by Ireland-Claisen Rearrangement of Cyclopropenylcarbinyl Esters. Org. Lett. 2015, 17, 3786-3789.
(15) Hodgson, D. M.; Pearson, C. I.; Kazmi, M. Generation and Electrophile Trapping of N-Boc-2-lithio-2-azetine: Synthesis of 2-Substituted 2-Azetines. Org. Lett. 2014, 16, 856-859.
(16) Thomas, A. A.; Speck, K.; Kevlishvili, I.; Lu, Z.; Liu, P.; Buchwald, S. L. Mechanistically Guided Design of Ligands That Significantly Improve the Efficiency of CuH-Catalyzed Hydroamination Reactions. J. Am. Chem. Soc. 2018, 140, 13976-13984.
(17) Shi, S.; Buchwald, S. L. Copper-Catalysed Selective Hydroamination Reactions of Alkynes. Nat. Chem. 2015, 7, 38-44.
(18) Yang, Y.; Shi, S.; Niu, D.; Liu, P.; Buchwald, S. L. Catalytic Asymmetric Hy-droamination of Unactivated Internal Olefins to Aliphatic Amines. Science 2015, 349, 62-66.
(19) Liu, R. Y.; Buchwald, S. L. Copper-Catalyzed Enantioselective Hydroamination of Alkenes. Org. Synth. 2018, 95, 80-96.

7. Spectroscopic Data

| 100 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$\begin{aligned} & \stackrel{m}{\dot{\omega}} \\ & \stackrel{\omega}{\circ} \end{aligned}$		® ~ $\stackrel{\sim}{\mathrm{N}}{ }^{\infty}{ }_{\mathrm{N}}^{\sim}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\dot{C}}{\mid} \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$	ふi. ion	$\stackrel{\text { N/ }}{\text { N/ }}$

$4 \mathbf{e}\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

| 10 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

$\mathbf{4 g}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4h (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4h (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 30 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $\mathrm{f} 1 \mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | C |
| :--- |

N-
$\stackrel{\infty}{\infty} \stackrel{\sim}{\infty} \underset{\sim}{\infty} \stackrel{m}{N}$

Γ	1	1	1	1	1	1	,	,	1	1	,	1	1	1	1
30	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
								f1 (ppm)							

| 10 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

7d (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 1 | |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

12 （ ${ }^{1} \mathrm{H}$ NMR， $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\sim}{0} \end{aligned}$	「おらへのロ © 읻	$\begin{aligned} & \text { N } \\ & \stackrel{N}{I} \end{aligned}$			等	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{y}{n} \end{aligned}$	$\underset{\sim}{\underset{\sim}{5}}$

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

15b (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

			$\stackrel{\text { N }}{\substack{0}}$	

 1111

$15 \mathrm{c}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$15 \mathrm{c}\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

15d (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

্ָড

$\mathrm{PhMe}_{2} \mathrm{Si}^{\mathrm{Boc}}{ }_{\mathrm{NBn}_{2}}^{\text {C/ }}$
7f (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$8\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

5b (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$11)^{1}$

요요
 NiN

13b (${ }^{1} \mathrm{H} \mathrm{NMR}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 $\stackrel{\sim}{\sim}$

- - 「~~

№

| \circ |
| :--- | :--- |
| $\stackrel{\circ}{+}$ |
| $\stackrel{\circ}{+}$ |

$\stackrel{\text { U }}{\dot{I}}$

13b (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13c (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

					U									\cdots			${ }^{N}$			
				$\begin{aligned} & \text { H } \\ & \stackrel{\circ}{\circ} \end{aligned}$										$\begin{gathered} T \\ \hline \end{gathered}$						
10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ 1(\mathrm{ppm}) \end{gathered}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

®
$\stackrel{\sim}{\text { i }}$

$|1 /|$

3c (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3c $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3d (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3d $\left({ }^{13} \mathrm{C}\right.$ NMR, $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6b (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6b (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 190 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

6c (${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\circ}{\mathrm{O}}$
$\stackrel{1}{\mathrm{O}}$
$\underset{1}{1}$
-

6c (${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ? \mid

| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100
 $\mathrm{f} 1(\mathrm{ppm})$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

8. SFC Traces

(1S,3R)-N,N-dibenzyl-2,2-dimethyl-3-phenylcyclopropan-1-amine (10a) $+N, N$-dibenzyl-2,2-dimethyl-1-phenylcyclopropan-1-amine (10b)

Racemic:

Enantioenriched:

SF_5_99_2
(1R,2R)-N,N-dibenzyl-2-(3-phenylpropyl)cyclobutan-1-amine (7a)

Racemic:

Enantioenriched:

(1R,2R)- N-benzyl-2-(3-phenylpropyl)- N-(thiophen-2-ylmethyl)cyclobutan-1-amine (7b)

Racemic:

Enantioenriched:

Racemic:

Enantioenriched:

Racemic:

Enantioenriched:

(1R,2S)-N,N-dibenzyl-2-(3-((5-(trifluoromethyl)pyridin-2-yl)oxy)propyl)cyclobutan-1amine (7e)

Racemic:

Enantioenriched:

(1R,2R)-N,N-dibenzyl-2-(4-methoxybenzyl)cyclopropan-1-amine (12)

Racemic:

Enantioenriched:

Racemic:

Enantioenriched:

2-((E)-(((1R,3R)-3-(dimethyl(phenyl)silyl)-2,2-dimethylcyclopropyl)imino)methyl)phenol (15b)

Racemic:

Enantioenriched:

2-((E)-(((2R,3R)-2-(dimethyl(phenyl)silyl)-1',3'-dihydrospiro[cyclopropane-1,2'-inden]-3yl)imino)methyl)phenol (15c)

Racemic:

Enantioenriched:

2-((E)-(((1R,2R)-2-(dimethyl(phenyl)silyl)-6-tosyl-6-azaspiro[2.5]octan-1-
yl)imino)methyl)phenol (15d)

Racemic:

Enantioenriched:

tert-butyl (2S,3R)-3-(dibenzylamino)-2-(dimethyl(phenyl)silyl)azetidine-1-carboxylate (7f) $\mathrm{PhMe}_{2} \mathrm{Si}^{\mathrm{Boc} \stackrel{\text { N }}{\sim}}{ }_{\mathrm{NBn}_{2}}$

Racemic:

Enantioenriched:

