Supporting Information for:

A Tetraazapentacene-Pyrene Belt: Toward Synthesis of N-Doped Zigzag Carbon Nanobelts

Jinlian Wang, Qian Miao *

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China *E-mail: miaoqian@cuhk.edu.hk*

Table of Contents

- 1. Synthesis
- 2. UV-vis absorption and fluorescence spectra
- 3. Study of stability with UV-vis absorption spectroscopy
- 4. FT-IR spectra
- 5. High-resolution mass spectra
- 6. X-ray crystallography
- 7. DFT calculations
- 8. NMR spectra
- 9. References

1. Synthesis

General: The reagents and starting materials employed were commercially available and used without any further purification or made following reported methods as indicated. Anhydrous and O₂-free diethyl ether, THF and dichloromethane were purified by an Advanced Technology Pure-Solv PS-MD-4 system. NMR spectra were recorded on Brucker 400MHz spectrometer (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz) and Bruker 500MHz spectrometer (¹H NMR: 500 MHz, ¹³C NMR:126 MHz). Chemical shift values (δ) are expressed in parts per million using residual solvent protons (¹H NMR, $\delta H = 7.26$ for CDCl₃, $\delta H = 2.05$ for CD₃COCD₃, ¹³C NMR, $\delta C = 77.16$ for CDCl₃, $\delta C = 29.84$, 206.26 for CD₃COCD₃) as internal standard. Mass spectra were recorded on Therno Finnigan MAT 95 XL spectrometer or a Bruker Autoflex speed MALDI-TOF spectrometer. X-ray crystallography data were collected on a Bruker AXS Kappa ApexII Duo Diffractometer. UV-vis absorption spectra were recorded on a Varian CARY 1E UV-vis spectrophotometer. Fluorescence spectra were taken on a Hitachi F-45 spectrofluorometer. Melting points, without correction, were measured using a Nikon Polarized Light Microscope ECLIPSE 50i POL equipped with an INTEC HCS302 heating stage. FTIR spectra were recorded on a Thermo Nicolet iS10 mid-FTIR spectrometer.

4,5,9,10-tetrabromo-2,7-di(t-butyl)pyrene (4),¹ 5,6-dimethoxy-1,3-diphenylisobenzofuran (5) ² and 4,7-bis[2-[tris(1-methylethyl)silyl]ethynyl]-2,1,3-benzothiadiazole-5,6-diamine (7) ³ were synthesized following the reported procedures.

Compounds *anti*-6 and *syn*-6: *n*-BuLi (1.8 mL of a 1.6 M solution in hexane, 2.8 mmol) was added to a stirred solution of 4 (700 mg, 1.12 mmol) and 5 (1.11 g, 3.35 mmol) in anhydrous THF (20 mL), which was cooled with a liquid nitrogen-ethyl acetate bath, under an atmosphere of N₂. The reaction mixture was stirred when slowly warmed from -80 °C to room temperature overnight, then quenched with H₂O, extracted with CH₂Cl₂. The extracts were combined, washed with brine, dried over MgSO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate 5/1 (V/V) as eluent to afford *anti*-6 (35%) and *syn*-6 (50%) as light yellow solids separately.

anti-6: Melting point: not melt when heated up to 350 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.18–7.96 (m, 8H), 7.79 (s, 4H), 7.58–7.47 (m, 12H), 7.36 (s, 4H), 3.85 (s, 12H), 1.01 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ = 149.9, 147.6, 146.4, 144.7, 135.8, 129.4, 128.9,

126.0, 122.0, 119.0, 108.6, 93.4, 56.8, 35.0, 31.3. HRMS (ESI⁺): calcd. for $C_{68}H_{59}O_6$ ([M+H]⁺): 971.4306, found: 971.4276.

syn-6: Melting point: not melt when heated up to 350 °C. ¹H NMR (500 MHz, CDCl₃): $\delta = 8.20$ (d, J = 6.0 Hz, 8H), 7.83 (s, 4H), 7.68–7.56 (m, 12H), 7.29 (s, 4H), 3.79 (s, 12H), 1.08 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) $\delta = 150.3$, 147.3, 146.3, 144.6, 135.2, 130.4, 129.5, 128.9, 126.6, 122.1, 118.9, 108.2, 93.7, 56.6, 34.9, 31.3. HRMS (ESI⁺): calcd. for C₆₈H₅₈O₆Na ([M+Na]⁺): 993.4126, found: 993.4116.

Compound **3**: To a stirred solution of *syn*-**6** (120 mg, 0.12 mmol) in acetonitrile (10 mL) under N₂ was added Ce(NH₄)₂(NO₃)₆ (678 mg, 1.2 mmol in 1.0 mL H₂O) at 0 °C. The reaction mixture was stirred when slowly warmed from 0 °C to room temperature overnight, then quenched with H₂O, and extracted with CH₂Cl₂. The extracts were combined, washed with brine and dried over MgSO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with dichloromethane/diethyl ether 30/1 (V/V) as eluent to afford **3** as red solid in a yield of 70%. Melting point: decomposed when heated up to 350 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.04–7.96 (m, 8H), 7.88 (s, 4H), 7.65–7.58 (m, 12H), 6.72 (s, 4H), 0.99 (s, 18H); ¹³C NMR (126 MHz, CDCl₃) δ = 178.2, 155.7, 149.6, 142.5, 131.2, 130.8, 130.0, 129.3, 125.9, 125.3, 121.9, 120.0, 90.1, 35.2, 31.1. HRMS (ESI⁺): calcd. for C₆₄H₄₇O₆ ([M+H]⁺): 911.3367, found: 911.3372.

Compound 8: A solution of 3 (285 mg, 0.3 mmol) and 7 (395 mg, 0.75 mmol) in 10 mL of acetic acid was stirred at 80 °C for 24 hours, and cooled to room temperature, then quenched with saturated NaHCO₃(aq), extracted with CH₂Cl₂. The extracts were combined, washed with brine, dried over MgSO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/dichloromethane/diethyl ether 10/2/1 (V/V/V) as eluent to afford 8 as dark purple solid in a yield of 80%. Melting point: not melt when heated up to 350 °C. ¹H NMR (500 MHz, CDCl₃) δ = 8.30–8.17 (m, 8H), 7.98 (s, 4H), 7.91 (s, 4H), 7.71–7.61 (m, 12H), 1.23–1.15 (m, 84H), 1.08 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ = 154.0, 151.5, 148.5, 146.5, 145.3, 142.6, 133.4, 130.3, 129.2, 126.0, 124.1, 121.0, 120.5, 114.0, 110.9, 101.8, 91.9, 35.2, 31.2, 18.9, 11.6. HRMS (MALDI-TOF): calcd. for C₁₂₀H₁₃₁N₈O₂S₂Si₄ ([M+H]⁺): 1892.8935, found: 1892.8936.

Compound **9**: To a stirred solution of **8** (240 mg, 0.13 mmol) in 20 mL of diethyl ether under an atmosphere of N₂ was added LiAlH₄ (97 mg, 2.6 mmol) at 0 °C. The reaction mixture was stirred under ultrasonication at room temperature for 4 hours, then quenched with H₂O, extracted with diethyl ether. The extracts were combined, washed with brine and dried over MgSO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ CH₂Cl₂/ diethyl ether 4/2/1 (V/V/V) as eluent to afford **9** as red solid in a yield of 75%. Melting point: not melt when heated up to 350 °C. ¹H NMR (500 MHz, CD₃COCD₃) δ = 8.31–8.24 (m, 8H), 8.00 (s, 4H), 7.90 (s, 4H), 7.76–7.69 (m, 12H), 5.75–5.71 (m, 4H), 1.21 – 1.15 (m, 84H), 1.08 (s, 18H). ¹³C NMR (126 MHz, CD₃COCD₃) δ = 149.3, 149.0, 148.7, 144.1, 141.6, 140.6, 135.8, 131.0, 130.6, 129.8, 127.1, 123.9, 121.6, 120.4, 102.9, 102.7, 100.1, 93.1, 35.6, 31.6, 19.2, 12.2. HRMS (MALDI-TOF): calcd. for C₁₂₀H₁₃₉N₈O₂Si₄ ([M+H]⁺): 1836.0042, found: 1835.9999.

Compound **2**: A solution of **9** (97 mg, 0.053 mmol) and **3** (48 mg, 0.053 mmol) in 53 mL of acetic acid was stirred at 80 °C for 24 hours, and cooled to room temperature, then quenched with saturated NaHCO₃(aq), extracted with CH₂Cl₂. The extracts were combined, washed with brine, dried over MgSO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane / dichloromethane / acetone / triethylamine 60/20/4/1 (V/V/V/V) as eluent to afford **2** as dark purple solid in a yield of 30%. Melting point: not melt when heated up to 350 °C. ¹H NMR (400 MHz, CDCl₃) δ = 8.29–8.16 (m, 16H), 7.93 (s, 8H), 7.85 (s, 8H), 7.66–7.61 (m, 24H), 1.18–1.11 (m, 84H), 1.03 (s, 36H). ¹³C NMR (126 MHz, CDCl₃) δ = 151.2, 148.3, 146.7, 144.9, 142.2, 133.4, 130.2, 129.1, 125.9, 123.9, 121.8, 121.1, 120.5, 110.6, 102.4, 92.1, 35.0, 31.2, 18.9, 11.7. HRMS (MALDI–TOF): calcd. for C₁₈₄H₁₇₇N₈O₄Si₄ ([M+H]⁺): 2676.3019, found: 2676.2950.

Scheme S1. Attempted synthesis of macrocycle 12.

Scheme S2. Aromatization of 2

To a stirred solution of **2** (10 mg, 0.004 mmol) and NaI (22.5 mg, 0.15 mmol) in 2 mL of CH_2Cl_2 under an atmosphere of N_2 was added TMSI (21 uL, 0.15 mmol). The reaction mixture was stirred at room temperature for 4 hours, then quenched with NaHCO₃ (aq), extracted with CH_2Cl_2 . The extracts were combined, washed with an aqueous solution of Na₂S₂O₃ and brine subsequently, dried over MgSO₄, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ ethyl acetate 5/1 (V/V) as eluent to afford crude brown solid, from which compound **11** was identified with HRMS.

HRMS (MALDI-TOF) of **11**: calcd. for $C_{184}H_{185}N_8Si_4$ ([M+H]⁺): 2619.3770, found: 2619.3766.

2. UV-vis absorption and fluorescence spectra

UV-vis spectra were recorded with a Varian CARY 5G UV-vis spectrophotometer. Fluorescence spectra were recorded with a Hitachi F-7000 fluorescence spectrometer.

Figure S1. (a) Structures of TBP and TIPS–TAP; (b) absorption spectra of TBP, TIPS–TAP, 1:1 mixture of TBP and TIPS–TAP (2×10^{-5} mol/L in CH₂Cl₂).

3. Study of stability with UV-vis absorption spectroscopy

Two solutions of **2** in dichloromethane $(1 \times 10^{-5} \text{ mol/L})$ in two 100 ml volumetric flasks were prepared, one of the flasks was protected from light and both flasks were stored under ambient conditions. The change of absorbance of **2** was then monitored by UV-visible absorption spectroscopy.

Figure S2. UV-visible spectra of 2 exposed to ambient light and air.

Figure S3. UV-visible spectra of 2 stored in dark and ambient air.

4. FT-IR spectra

FTIR spectra were recorded on a Thermo Nicolet iS10 mid-FTIR spectrometer using KBr pellet.

Figure S4. FTIR spectra of compouds 3, 9 and 2.

5. High-resolution mass spectra

High–resolution mass spectra of compounds 2 and 11 were recorded on Bruker Autoflex speed MALDI–TOF spectrometer.

Figure S5. HRMS of the macrocycle $2([M+H]^+)$.

Figure S6. HRMS of N-heterocyclacene 11 ([M+H]⁺).

6. X-ray crystallography

X-ray crystallography data were collected on a Bruker AXS Kappa ApexII Duo Diffractometer.

Formula	$C_{184}H_{176}N_8O_4Si_4$
Space group	P1(<u>2</u>)
	a = 19.104(2)
Unit Cell Lengths (Å)	b = 24.425(3)
	c = 24.731(3)
	$\alpha = 69.871(3)$
Unit Cell Angles ()	$\beta = 75.302(3)$
	$\gamma = 78.691(3)$
Cell Volume (Å ³)	10405
R factor	14.92

Table S1. Summary of crystal structure of **2**.

7. DFT calculations

The frontier molecular orbitals of **2**, 2,7-di(t-butyl)pyrene (TBP) and 6,13bis((triisopropylsilyl)ethynyl)-5,7,12,14-tetraazapentacene (TIPS-TAP) were calculated using simplified model molecules **2'**, TBP' and TIPS-TAP', which have smaller methyl or trimethylsilyl groups replacing larger *t*-butyl or triisopropylsilyl (TIPS) groups to reduce computational cost. Energy-minimized models of **2'**, TBP' and TIPS-TAP' were calculated using Gaussian 09W program at the B3LYP/6-31G(d, p) level of Density Functional Theory (DFT), and their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were then calculated at the B3LYP/6-31++G(d, p) level of DFT.

Figure S7 Structures of simplified model molecules 2', TBP' and TIPS-TAP'.

Figure S8 Calculated frontier molecular orbitals of 2', TBP' and TIPS-TAP'.

Optimized Cartesian coordinates at B3LYP/6-31G(d,p) level of theory

2'			
² C	7 398699	-1 210507	2 838402
C	7.578077	-1 237700	1 441202
C	7.585599	-0.020700	0.714200
C	7 543300	1 231393	1 450602
C	7.343300	1.201595	2 847202
C	7.377000	-0.010707	3 546602
C	7.606399	-2 446407	0.675302
C	7.605799	-2 441307	-0.696298
C	7.003799	-1.226307	-1.453108
C	7.542499	0 519300	-0.716708
C	7.543100	1 2/2193	-1.4/3898
C	7.545100	2 / 51503	-0 677008
C	7.606700	2.431373	0.693502
C	7.000700	-1 189/07	-2 8/0008
C	7.300700	0.015703	-3 5/0108
C	7 308600	1 215603	-2 840008
C	7.398000	2 021102	-1.001608
C	5 020300	J.951195 A 15860A	-0.711/08
C	5.920300	4.150694	0.711490
C C	7 205400	4.132094	1 118502
C	7.393400	2 025807	1.110302
C C	7.393099	-1 152606	1.069302
C C	5.920299	-4.133000	-0.741208
C C	7 204600	-4.146300	-0.741398 -1.120008
C C	1.394099	-5.917707	-1.120998
C C	4.706500	4.222194	-1.423098 -0.714008
C C	3.510300	4.301194	-0./14990
C	3.310100 4.767400	4.293794	0.742002
C C	4.707400	4.209094	1.433702
C	4.708399	4.210300	0.714402
C	3.515500	-4.290400	-0.714402
C	J.J1JJ99 A 766500	-4.291000	-1 454808
	4.700399	4.200300	0.016102
0	8.045600	-1 508107	-0.010102
N N	2 38/1800	4.353094	-1.403798
C	2.30+000	4 378694	-0.710798
C C	1.221100	4.378074	0.710798
C N	2 383800	4.309794	1 431402
N	2.385000	-1 316806	1.451402
C C	1 221100	-1 37/206	0.711102
C	1.221177	-4.374200	-0.737/98
N	2 383100	-4 338106	-1.431498
C	-0.260000	4.39769A	-1.431490
C	-1 226700	4 377995	-0.711508
C	-1 227200	4 369695	0.737200
Č	-0.360000	4 378894	1 461602
č	-0.240100	-4 391600	1 436200
Č	-1 226601	-4 374305	0 712802
\sim	1.220001	1.577505	0.712002

С	-1227501	-4 371500	-0 735898
C	-0.410100	-4 384406	-1.460798
C	0.410100	-4 404206	2 851502
C	-0.490100	-4 3926	-2.876298
C	-0.400000	4 374594	2.070220
C	-0.120000	4.374394 A A1589A	-2 850698
C	0.120000	-4 4206	4 073302
C	-0.530100	-4 403706	-1 098098
C	-0.410000	A 37219A	4 099200
C	0.350000	4.372174	-4 072398
C	-7 405200	1 198096	2 847302
C	-7 5/19500	1.120020	1 450702
C	-7 591601	-0.040400	0.716302
C	-7.5/1001	-1 236/00	1 445602
C	-7.404100	-1.207400	2 842802
C	-7 316100	-0.640000	2.042002
C	-7.613000	2 4/6196	0.691502
C	-7.612500	2.440170	-0.679998
C	-7 5/19300	1 238206	-1 / / 3008
C	-7 591701	0.249600	-0.714/98
C	-7549501	-1 230304	-1 448798
C	-7.612601	-2 443904	-0 689798
C	-7.612001	-2.445704	0.681802
C	-7.405300	1 200396	-2 8/10898
C	-7 317101	0.799600	-3 547098
C	-7.405501	-1 195804	-2 845898
C	-7 402101	-3 921400	-1 112098
C	-5 926601	-4 150905	-0.733698
C	-5.925001	-4 153805	0.755020
C	-7.401100	-3925404	1.098202
C	-7.402000	3 973096	1.090202
C	-5 926400	4 152495	0 735402
C	-5 925800	4 156195	-0.715698
C	-7401200	3 927896	-1 096298
C	-4.774801	-4209705	-1.448598
C	-3 522801	-4 293405	-0.738798
C	-3522001	-4 296505	0 719102
C	-4773101	-4 215605	1 430802
C	-4774500	4 209895	1 450302
C	-3 522600	4 293595	0 740302
C	-3522000	4 299295	-0.717498
C	-4773300	4 218795	-1429098
0	-8.052100	-4.599504	-0.799800
0	-8.051900	4.601996	0.010102
Ň	-2 390900	4 337695	1 429702
N	-2 389900	4 351095	-1.405598
N	-2.389601	-4.346305	1.407200
N	-2.391401	-4.340500	-1.428398
C	7.102599	-0.015207	5.042802
H	7.578500	0.849793	5.513902

Н	7.510999	-0.921307	5.499302
Н	6.034999	0.024294	5.291902
С	7.102299	0.021093	-5.045398
Н	6.034099	0.509400	-5.294598
Н	7.558799	-0.855307	-5.514398
Н	7.530500	0.916893	-5.504298
С	7.972400	4.448993	2.408502
С	7.333600	5.446693	3.153102
С	7.935900	5.970393	4.298902
С	9.180000	5.513893	4.704502
С	9.844100	4.534693	3.953802
С	9.241300	4.969300	2.813402
С	7.973100	4.467493	-2.377398
С	9.241100	4.029493	-2.786798
С	9.844300	4.563593	-3.922798
С	9.190700	5.550593	-4.664498
С	7.938400	6.579300	-4.254198
С	7.335800	5.472893	-3.112798
С	7.973899	-4.461907	2.374702
С	9.241899	-4.023807	2.783702
С	9.845699	-4.557807	3.919402
С	9.192499	-5.544907	4.661302
С	7.940198	-6.030700	4.251602
С	7.336999	-5.467507	3.110402
С	7.971399	-4.443807	-2.411198
С	9.240399	-4.460700	-2.815998
С	9.842899	-4.529700	-3.956798
С	9.187499	-5.507607	-4.708098
С	7.934198	-5.964700	-4.302698
С	7.332299	-5.440907	-3.156398
Si	0.041799	-4.440106	5.909302
С	1.029900	-2.940806	6.514802
С	0.878298	-6.035606	6.482102
С	-1.730501	-4.365505	6.559902
Н	1.067999	-2.923306	7.609802
Н	0.556899	-2.610600	6.183202
Н	0.328998	-6.917106	6.136602
Н	0.928198	-6.077806	7.576202
Н	-1.743801	-4.379805	7.655802
Н	-2.318801	-5.217505	6.204702
Si	-0.360100	-4.412706	-5.934698
С	1.604799	-5.199606	-6.539098
С	-0.129201	-2.630606	-6.551298
С	-1.485901	-5.415505	-6.541798
Н	2.475799	-4.643306	-6.178398
Н	1.644199	-5.215806	-7.634298
Н	-1.050601	-2.155305	-6.219800
Н	-0.129501	-2.598406	-7.646898
Н	-1.431202	-6.452205	-6.194398
Н	-1.525201	-5.429405	-7.637098

Si	-0.360000	4 360494	5 935502
C	-0.018200	6 1/1659/	6 555200
C C	1 553700	3 477394	6 539502
C C	-1 546600	3 452795	6 540202
н	-0.017400	6 176/19/	7 650602
Ц	-0.907/00	6 689500	6 20/602
и П	1 580700	3 153001	7 634802
и П	1.389700	3.455994	6 183102
П П	2.430400	3.963094	6 183702
П Ц	2.437400	3.944393	0.165702
П С;	-1.382000	5.429595 1 159001	-5 009609
	0.022100	4.430994	-3.900090
C	1.287300	J./J/894 4.020505	-0.400390
C	-1.//0000	4.920595	-0.552998
U U	0.504200	2.741094	-0.531598
H	1.331200	5.774094	-7.582998
H	2.289000	5.497094	-6.118698
H	-2.451500	4.204095	-6.185198
H	-1.728800	4.934095	-7.628598
H	1.495500	2.454094	-6.166898
H	0.527600	2.717194	-7.627198
C	-7.108401	-0.760400	5.045200
H	-7.592500	0.853196	5.515602
H	-6.041201	0.042595	5.294102
H	-7.507901	-0.917204	5.502202
C	-7.110201	0.011796	-5.043398
Н	-7.576300	0.885496	-5.508198
Н	-7.529101	-0.886304	-5.506198
Н	-6.042401	0.040595	-5.292898
С	-7.978100	-4.458904	2.385202
С	-9.246801	-4.021604	2.792702
С	-9.849601	-4.553400	3.930102
С	-9.194801	-5.536604	4.675202
С	-7.941702	-5.991104	4.266902
С	-7.339401	-5.461104	3.124102
С	-7.980100	-4.449504	-2.479800
С	-9.248801	-4.010104	-2.806098
С	-9.852301	-4.537400	-3.945298
С	-9.198301	-5.518104	-4.694298
С	-7.945202	-5.974704	-4.288298
С	-7.342201	-5.449204	-3.143698
С	-7.979600	4.451696	2.402702
С	-9.248500	4.012496	2.808202
С	-9.851900	4.539596	3.947402
С	-9.197600	5.520696	4.696202
С	-7.944500	5.977096	4.290200
С	-7.341600	5.451296	3.145402
С	-7.978400	4.461496	-2.383198
С	-9.247500	4.024396	-2.790198
С	-9.850500	4.555596	-3.927598
С	-9.195500	5.538696	-4.673298

С	-7.942100	5.992896	-4.265598
С	-7.339700	5.463096	-3.122698
Н	7.345899	-2.146207	3.382200
Н	7.346700	2.126293	3.397802
Н	7.345499	-2.121207	-3.449800
Н	7.346100	2.151493	-3.384598
Н	4.729700	4.191794	-2.508898
Н	4.728000	4.168594	2.536502
Н	4.730499	-4.185600	2.507702
Н	4.726599	-4.167206	-2.537798
Н	-7.353100	2.130796	3.396302
Н	-7.350801	-2.141804	3.388200
Н	-7.353000	2.144196	-3.386098
Н	-7.353201	-2.128504	-3.394798
Н	-4.736401	-4.172205	-2.531598
Н	-4.733301	-4.182305	2.513902
Н	-4.736000	4.170995	2.533202
Н	-4.733600	4.186795	-2.512298
Н	6.371700	5.829194	2.832202
Н	7.425200	6.741393	4.868202
Н	9.657000	5.921993	5.595602
Н	10.826100	4.181993	4.255202
Η	9.753400	3.253193	2.227402
Η	9.752200	3.266993	-2.207798
Η	10.825500	4.211893	-4.227798
Η	9.658900	5.965893	-5.552098
Н	7.428900	6.782693	-4.816398
Н	6.374700	5.854394	-2.788098
Н	9.752599	-3.261207	2.204502
Н	10.826899	-4.205907	4.224200
Н	9.661198	-5.960107	5.548802
Н	7.430998	-6.777307	4.813902
Н	6.375799	-5.849106	2.786102
Н	9.752799	-3.248607	-2.229498
Н	10.824999	-4.176407	-4.257998
Н	9.655198	-5.915207	-5.599598
Н	7.423198	-6.734407	-4.872498
Н	6.370299	-5.823506	-2.835798
Н	2.045599	-2.958406	6.132402
Н	1.899898	-6.106206	6.095202
Н	-2.233701	-3.451505	6.229200
H	1.697798	-6.231600	-6.184198
Н	0.712799	-2.027806	-6.196698
Н	-2.425901	-4.990405	-6.176098
Н	0.861000	6.695494	6.202902
H	1.587100	2.444194	6.179502
H	-1.563400	2.418995	6.180702
H	1.031100	6.739694	-6.129298
H	-1.996200	5.912595	-6.176598
Н	-0.207900	1.981794	-6.193498

Η	-9.758701	-3.261604	2.211102
Η	-10.831501	-4.201704	4.233602
Н	-9.662802	-5.949704	5.564200
Η	-7.431102	-6.765404	4.831902
Η	-6.377501	-5.842500	2.801102
Η	-9.760101	-3.252104	-2.221398
Η	-10.834101	-4.184104	-4.246998
Η	-9.666802	-5.927604	-5.584398
Η	-7.435202	-6.747104	-4.856198
Η	-6.380401	-5.831805	-2.822498
Η	-9.760000	3.254496	2.223602
Η	-10.833700	4.186896	4.249202
Η	-9.666000	5.930496	5.586302
Η	-7.434400	6.749596	4.857802
Η	-6.379800	5.833695	2.824102
Η	-9.759500	3.264896	-2.207998
Η	-10.832600	4.204596	-4.230598
Η	-9.663600	5.951496	-5.562198
Η	-7.431400	6.766596	-4.831098
Н	-6.377600	5.843795	-2.819800

8. NMR spectra

$\begin{array}{c} & \begin{array}{c} 8. & 000 \\ \overbrace{7}{7}, \\ 994 \\ \overbrace{7}{7}, \\ 882 \\ \overbrace{7}{7}, \\ 615 \\ \overbrace{7}{7}, \\ 615 \\ \overbrace{7}{7}, \\ 605 \\ -7. \\ 260 \end{array} \\ -6. \\ 719 \end{array}$

---0. 985

¹³C NMR spectrum of **3** in CDCl₃

-8. 238 -7. 976 -7. 914 -7. 652 -7. 652

 $\leq_{1.175}^{1.203}$

-8.223-7.935-7.849-7.639-7.627-7.627

 $<^{1.137}_{1.131}$

¹³C NMR spectrum of **2** in CDCl₃

9. References

- (1) Z. H. Wu, Z. T. Huang, R. X. Guo, C. L. Sun, L. C. Chen, B. Sun, Z. F. Shi, X. Shao, H. Li, H. L. Zhang, *Angew. Chem., Int. Ed.* **2017**, *56*, 13031–13035.
- (2) T. Hamura, R. Nakayama, Chem. Lett. 2013, 42, 1013–1015.
- (3) C. An, S. Zhou, M. Baumgarten, Cryst. Growth Des. 2015, 15, 1934–1938.