Supporting Information for:

A Tetraazapentacene-Pyrene Belt: Toward Synthesis of N-Doped Zigzag Carbon Nanobelts
Jinlian Wang, Qian Miao *
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
E-mail: miaoqian@cuhk.edu.hk

Table of Contents

1. Synthesis
2. UV-vis absorption and fluorescence spectra
3. Study of stability with UV-vis absorption spectroscopy
4. FT-IR spectra
5. High-resolution mass spectra
6. X-ray crystallography
7. DFT calculations
8. NMR spectra
9. References

1. Synthesis

General: The reagents and starting materials employed were commercially available and used without any further purification or made following reported methods as indicated. Anhydrous and O_{2}-free diethyl ether, THF and dichloromethane were purified by an Advanced Technology Pure-Solv PS-MD-4 system. NMR spectra were recorded on Brucker 400 MHz spectrometer (${ }^{1} \mathrm{H}$ NMR: $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR: 100 MHz) and Bruker 500 MHz spectrometer (${ }^{1} \mathrm{H}$ NMR: $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR: 126 MHz). Chemical shift values (δ) are expressed in parts per million using residual solvent protons $\left({ }^{1} \mathrm{H} \mathrm{NMR}, \delta \mathrm{H}=7.26\right.$ for CDCl_{3}, $\delta \mathrm{H}=2.05$ for $\mathrm{CD}_{3} \mathrm{COCD}_{3},{ }^{13} \mathrm{C}$ NMR, $\delta \mathrm{C}=77.16$ for $\mathrm{CDCl}_{3}, \delta \mathrm{C}=29.84,206.26$ for $\mathrm{CD}_{3} \mathrm{COCD}_{3}$) as internal standard. Mass spectra were recorded on Therno Finnigan MAT 95 XL spectrometer or a Bruker Autoflex speed MALDI-TOF spectrometer. X-ray crystallography data were collected on a Bruker AXS Kappa ApexII Duo Diffractometer. UV-vis absorption spectra were recorded on a Varian CARY 1E UV-vis spectrophotometer. Fluorescence spectra were taken on a Hitachi F-45 spectrofluorometer. Melting points, without correction, were measured using a Nikon Polarized Light Microscope ECLIPSE 50i POL equipped with an INTEC HCS302 heating stage. FTIR spectra were recorded on a Thermo Nicolet iS10 mid-FTIR spectrometer.

5

4,5,9,10-tetrabromo-2,7-di(t-butyl)pyrene (4), ${ }^{1}$ 5,6-dimethoxy-1,3-diphenylisobenzofuran (5) ${ }^{2}$ and 4,7-bis[2-[tris(1-methylethyl)silyl]ethynyl]-2,1,3-benzothiadiazole-5,6-diamine (7) ${ }^{3}$ were synthesized following the reported procedures.

Compounds anti-6 and syn-6: $n-\operatorname{BuLi}(1.8 \mathrm{~mL}$ of a 1.6 M solution in hexane, 2.8 mmol) was added to a stirred solution of $\mathbf{4}(700 \mathrm{mg}, 1.12 \mathrm{mmol})$ and $\mathbf{5}(1.11 \mathrm{~g}, 3.35 \mathrm{mmol})$ in anhydrous THF (20 mL), which was cooled with a liquid nitrogen-ethyl acetate bath, under an atmosphere of N_{2}. The reaction mixture was stirred when slowly warmed from $-80{ }^{\circ} \mathrm{C}$ to room temperature overnight, then quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined, washed with brine, dried over MgSO_{4}, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate $5 / 1(\mathrm{~V} / \mathrm{V})$ as eluent to afford anti-6 (35\%) and syn-6 (50\%) as light yellow solids separately.
anti-6: Melting point: not melt when heated up to $350{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 8.18-7.96 (m, 8H), $7.79(\mathrm{~s}, 4 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 12 \mathrm{H}), 7.36(\mathrm{~s}, 4 \mathrm{H}), 3.85(\mathrm{~s}, 12 \mathrm{H}), 1.01(\mathrm{~s}$, $18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=149.9,147.6,146.4,144.7,135.8,129.4,128.9$,
126.0, 122.0, 119.0, 108.6, 93.4, 56.8, 35.0, 31.3. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{68} \mathrm{H}_{59} \mathrm{O}_{6}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 971.4306$, found: 971.4276.
syn-6: Melting point: not melt when heated up to $350{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.83(\mathrm{~s}, 4 \mathrm{H}), 7.68-7.56(\mathrm{~m}, 12 \mathrm{H}), 7.29(\mathrm{~s}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 12 \mathrm{H}), 1.08(\mathrm{~s}$, $18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.3,147.3,146.3,144.6,135.2,130.4,129.5$, $128.9,126.6,122.1,118.9,108.2,93.7,56.6,34.9,31.3$. HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{68} \mathrm{H}_{58} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 993.4126$, found: 993.4116 .

Compound 3: To a stirred solution of syn-6 ($120 \mathrm{mg}, 0.12 \mathrm{mmol}$) in acetonitrile (10 mL) under N_{2} was added $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6}(678 \mathrm{mg}, 1.2 \mathrm{mmol}$ in 1.0 mL H O$)$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred when slowly warmed from $0{ }^{\circ} \mathrm{C}$ to room temperature overnight, then quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined, washed with brine and dried over MgSO_{4}, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with dichloromethane/diethyl ether 30/1 (V/V) as eluent to afford $\mathbf{3}$ as red solid in a yield of 70%. Melting point: decomposed when heated up to $350{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.04-7.96(\mathrm{~m}, 8 \mathrm{H}), 7.88(\mathrm{~s}, 4 \mathrm{H})$, $7.65-7.58(\mathrm{~m}, 12 \mathrm{H}), 6.72(\mathrm{~s}, 4 \mathrm{H}), 0.99(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=178.2$, 155.7, 149.6, 142.5, 131.2, 130.8, 130.0, 129.3, 125.9, 125.3, 121.9, 120.0, 90.1, 35.2, 31.1. HRMS (ESI $)$: calcd. for $\mathrm{C}_{64} \mathrm{H}_{47} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 911.3367$, found: 911.3372.

Compound 8: A solution of $\mathbf{3}(285 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $7(395 \mathrm{mg}, 0.75 \mathrm{mmol})$ in 10 mL of acetic acid was stirred at $80^{\circ} \mathrm{C}$ for 24 hours, and cooled to room temperature, then quenched with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined, washed with brine, dried over MgSO_{4}, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/dichloromethane/diethyl ether 10/2/1 (V/V/V) as eluent to afford $\mathbf{8}$ as dark purple solid in a yield of 80%. Melting point: not melt when heated up to $350{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.30-8.17(\mathrm{~m}, 8 \mathrm{H}), 7.98(\mathrm{~s}$, $4 \mathrm{H}), 7.91(\mathrm{~s}, 4 \mathrm{H}), 7.71-7.61(\mathrm{~m}, 12 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 84 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=154.0,151.5,148.5,146.5,145.3,142.6,133.4,130.3,129.2,126.0,124.1$, $121.0,120.5,114.0,110.9,101.8,91.9,35.2,31.2,18.9,11.6$. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{120} \mathrm{H}_{131} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 1892.8935$, found: 1892.8936 .

Compound 9: To a stirred solution of $\mathbf{8}(240 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 20 mL of diethyl ether under an atmosphere of N_{2} was added $\mathrm{LiAlH}_{4}(97 \mathrm{mg}, 2.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred under ultrasonication at room temperature for 4 hours, then quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with diethyl ether. The extracts were combined, washed with brine and dried over MgSO_{4}, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether $4 / 2 / 1$ (V/V/V) as eluent to afford 9 as red solid in a yield of 75%. Melting point: not melt when heated up to $350{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta=8.31-8.24(\mathrm{~m}, 8 \mathrm{H}), 8.00(\mathrm{~s}, 4 \mathrm{H}), 7.90(\mathrm{~s}, 4 \mathrm{H}), 7.76-7.69$ $(\mathrm{m}, 12 \mathrm{H}), 5.75-5.71(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.15(\mathrm{~m}, 84 \mathrm{H}), 1.08(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta=149.3,149.0,148.7,144.1,141.6,140.6,135.8,131.0,130.6,129.8,127.1$, 123.9, 121.6, 120.4, 102.9, 102.7, 100.1, 93.1, 35.6, 31.6, 19.2, 12.2. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{120} \mathrm{H}_{139} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Si}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 1836.0042, found: 1835.9999.

Compound 2: A solution of $9(97 \mathrm{mg}, 0.053 \mathrm{mmol})$ and $\mathbf{3}(48 \mathrm{mg}, 0.053 \mathrm{mmol})$ in 53 mL of acetic acid was stirred at $80^{\circ} \mathrm{C}$ for 24 hours, and cooled to room temperature, then quenched with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined, washed with brine, dried over MgSO_{4}, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane / dichloromethane / acetone / triethylamine 60/20/4/1 (V/V/V/V) as eluent to afford 2 as dark purple solid in a yield of 30%. Melting point: not melt when heated up to $350{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 8.29-8.16 (m, 16H), $7.93(\mathrm{~s}, 8 \mathrm{H}), 7.85(\mathrm{~s}, 8 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 24 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 84 \mathrm{H})$, $1.03(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.2,148.3,146.7,144.9,142.2,133.4$, $130.2,129.1,125.9,123.9,121.8,121.1,120.5,110.6,102.4,92.1,35.0,31.2,18.9,11.7$. HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{184} \mathrm{H}_{177} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Si}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 2676.3019$, found: 2676.2950.

Scheme S1. Attempted synthesis of macrocycle 12.

Scheme S2. Aromatization of 2

To a stirred solution of $2(10 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\mathrm{NaI}(22.5 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under an atmosphere of N_{2} was added TMSI ($21 \mathrm{uL}, 0.15 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 4 hours, then quenched with NaHCO_{3} (aq), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined, washed with an aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine subsequently, dried over MgSO_{4}, and concentrated under a reduced pressure. The residue was purified by column chromatography on silica gel with hexane/ ethyl acetate $5 / 1(\mathrm{~V} / \mathrm{V})$ as eluent to afford crude brown solid, from which compound $\mathbf{1 1}$ was identified with HRMS.
HRMS (MALDI-TOF) of 11: calcd. for $\mathrm{C}_{184} \mathrm{H}_{185} \mathrm{~N}_{8} \mathrm{Si}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 2619.3770, found: 2619.3766.

2. UV-vis absorption and fluorescence spectra

UV-vis spectra were recorded with a Varian CARY 5G UV-vis spectrophotometer. Fluorescence spectra were recorded with a Hitachi F-7000 fluorescence spectrometer.

Figure S1. (a) Structures of TBP and TIPS-TAP; (b) absorption spectra of TBP, TIPS-TAP, 1:1 mixture of TBP and TIPS-TAP $\left(2 \times 10^{-5} \mathrm{~mol} / \mathrm{L}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

3. Study of stability with UV-vis absorption spectroscopy

Two solutions of $\mathbf{2}$ in dichloromethane ($1 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$) in two 100 ml volumetric flasks were prepared, one of the flasks was protected from light and both flasks were stored under ambient conditions. The change of absorbance of 2 was then monitored by UV-visible absorption spectroscopy.

Figure S2. UV-visible spectra of $\mathbf{2}$ exposed to ambient light and air.

Figure S3. UV-visible spectra of $\mathbf{2}$ stored in dark and ambient air.

4. FT-IR spectra

FTIR spectra were recorded on a Thermo Nicolet iS10 mid-FTIR spectrometer using KBr pellet.

Figure S4. FTIR spectra of compouds 3, 9 and 2 .

5. High-resolution mass spectra

High-resolution mass spectra of compounds 2 and 11 were recorded on Bruker Autoflex speed MALDI-TOF spectrometer.

Figure S5. HRMS of the macrocycle $2\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

Figure S6. HRMS of N-heterocyclacene $11\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

6. X-ray crystallography

X-ray crystallography data were collected on a Bruker AXS Kappa ApexII Duo Diffractometer.

Table S1. Summary of crystal structure of 2.

Formula	$\mathrm{C}_{184} \mathrm{H}_{176} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Si}_{4}$
Space group	$\mathrm{P} \overline{1}(\underline{2})$
Unit Cell Lengths (\AA)	$\mathrm{a}=19.104(2)$
	$\mathrm{b}=24.425(3)$
	$\mathrm{c}=24.731(3)$
Unit Cell Angles $\left({ }^{\circ}\right)$	$\alpha=69.871(3)$
	$\beta=75.302(3)$
	$\gamma=78.691(3)$
Cell Volume $\left(\AA^{3}\right)$	10405
R factor	14.92

7. DFT calculations

The frontier molecular orbitals of 2, 2,7-di(t-butyl)pyrene (TBP) and 6,13-bis((triisopropylsilyl)ethynyl)-5,7,12,14-tetraazapentacene (TIPS-TAP) were calculated using simplified model molecules $\mathbf{2}^{\prime}$, TBP' and TIPS-TAP', which have smaller methyl or trimethylsilyl groups replacing larger t-butyl or triisopropylsilyl (TIPS) groups to reduce computational cost. Energy-minimized models of 2', TBP' and TIPS-TAP' were calculated using Gaussian 09W program at the B3LYP/6-31G(d, p) level of Density Functional Theory (DFT), and their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were then calculated at the B3LYP/6-31++G(d, p) level of DFT.

Figure S7 Structures of simplified model molecules 2', TBP' and TIPS-TAP'.

Figure S8 Calculated frontier molecular orbitals of 2', TBP' and TIPS-TAP'.

Optimized Cartesian coordinates at B3LYP/6-31G(d,p) level of theory

$\mathbf{2}$			
C	7.398699	-1.210507	2.838402
C	7.543099	-1.237700	1.441202
C	7.585599	-0.020700	0.714200
C	7.543300	1.231393	1.450602
C	7.399000	1.194593	2.847202
C	7.310199	-0.010707	3.546602
C	7.606399	-2.446407	0.675302
C	7.605799	-2.441307	-0.696298
C	7.542499	-1.226307	-1.453198
C	7.585299	0.519300	-0.716798
C	7.543100	1.242193	-1.443898
C	7.606700	2.451593	-0.677998
C	7.606700	2.446393	0.693502
C	7.398099	-1.189407	-2.849998
C	7.309799	0.015793	-3.549198
C	7.398600	1.215693	-2.840998
C	7.395800	3.931193	-1.091698
C	5.920300	4.158694	-0.711498
C	5.919900	4.152694	0.739602
C	7.395400	3.92593	1.118502
C	7.395899	-3.925807	1.089302
C	5.920299	-4.153606	0.709702
C	5.919399	-4.148306	-0.741398
C	7.394699	-3.917707	-1.120998
C	4.768300	4.222194	-1.425698
C	3.516500	4.301194	-0.714998
C	3.516100	4.293794	0.742802
C	4.767400	4.209094	1.453702
C	4.768599	-4.216506	1.424502
C	3.516599	-4.296406	0.714402
C	3.515599	-4.291606	-0.743498
C	4.766599	-4.206306	-1.454898
O	8.045900	4.603393	0.016102
O	8.045699	-4.598107	-0.018798
N	2.384800	4.353094	-1.403798
C	1.221100	4.378694	-0.710798
C	1.220600	4.369794	0.737802
N	2.383800	4.337294	1.431402
N	2.385099	-4.346806	1.403702
C	1.221199	-4.374206	0.711102
C	1.220199	-4.370306	-0.737498
N	2.383199	-4.338106	-1.431498
C	-0.260000	4.397694	-1.435198
C	-1.226700	4.377995	-0.711598
C	-1.227200	4.369695	0.737200
C	-0.360000	4.378894	1.461602
C	-0.240100	-4.391600	1.436200
C	-1.226601	-4.374305	0.712802

C	-1.227501	-4.371500	-0.735898
C	-0.410100	-4.384406	-1.460798
C	0.990000	-4.404206	2.851502
C	-0.490100	-4.3926	-2.876298
C	-0.400000	4.374594	2.877202
C	-0.120000	4.415894	-2.850698
C	0.799900	-4.4206	4.073302
C	-0.530100	-4.403706	-4.098098
C	-0.410000	4.372194	4.099200
C	0.350000	4.436294	-4.072398
C	-7.405200	1.198096	2.847302
C	-7.549500	1.232396	1.450702
C	-7.591601	-0.040400	0.716302
C	-7.548701	-1.236400	1.445602
C	-7.404100	-1.207400	2.842802
C	-7.316100	-0.640000	3.548802
C	-7.613000	2.446196	0.691502
C	-7.612500	2.448996	-0.679998
C	-7.549300	1.238296	-1.443998
C	-7.591701	0.249600	-0.714498
C	-7.549501	-1.230304	-1.448798
C	-7.612601	-2.443904	-0.689798
C	-7.612100	-2.446604	0.681802
C	-7.405300	1.209396	-2.840898
C	-7.317101	0.799600	-3.547098
C	-7.405501	-1.195804	-2.845898
C	-7.402101	-3.921400	-1.112098
C	-5.926601	-4.150905	-0.733698
C	-5.925701	-4.153805	0.717502
C	-7.401100	-3.925404	1.098202
C	-7.402000	3.923096	1.114200
C	-5.926400	4.152495	0.735402
C	-5.925800	4.156195	-0.715698
C	-7.401200	3.927896	-1.096298
C	-4.774801	-4.209705	-1.448598
C	-3.522801	-4.293405	-0.738798
C	-3.522100	-4.296505	0.719102
C	-4.773101	-4.215605	1.430802
C	-4.774500	4.209895	1.450302
C	-3.522600	4.293595	0.740302
C	-3.522100	4.299295	-0.717498
C	-4.773300	4.218795	-1.429098
O	-8.052100	-4.599504	-0.799800
O	-8.051900	4.601996	0.010102
N	-2.390900	4.337695	1.429702
N	-2.389900	4.351095	-1.405598
N	-2.389601	-4.346305	1.407200
C	-2.391401	-4.340500	-1.428398
H	7.102599	-0.015207	5.042802
	7.578500	0.849793	5.513902
C			

H	7.510999	-0.921307	5.499302
H	6.034999	0.024294	5.291902
C	7.102299	0.021093	-5.045398
H	6.034099	0.509400	-5.294598
H	7.558799	-0.855307	-5.514398
H	7.530500	0.916893	-5.504298
C	7.972400	4.448993	2.408502
C	7.333600	5.446693	3.153102
C	7.935900	5.970393	4.298902
C	9.180000	5.513893	4.704502
C	9.844100	4.534693	3.953802
C	9.241300	4.969300	2.813402
C	7.973100	4.467493	-2.377398
C	9.241100	4.029493	-2.786798
C	9.844300	4.563593	-3.922798
C	9.190700	5.550593	-4.664498
C	7.938400	6.579300	-4.254198
C	7.335800	5.472893	-3.112798
C	7.973899	-4.461907	2.374702
C	9.241899	-4.023807	2.783702
C	9.845699	-4.557807	3.919402
C	9.192499	-5.544907	4.661302
C	7.940198	-6.030700	4.251602
C	7.336999	-5.467507	3.110402
C	7.971399	-4.443807	-2.411198
C	9.240399	-4.460700	-2.815998
C	9.842899	-4.529700	-3.956798
C	9.187499	-5.507607	-4.708098
C	7.934198	-5.964700	-4.302698
C	7.332299	-5.440907	-3.156398
Si	0.041799	-4.440106	5.909302
C	1.029900	-2.940806	6.514802
C	0.878298	-6.035606	6.482102
C	-1.730501	-4.365505	6.559902
H	1.067999	-2.923306	7.609802
H	0.556899	-2.610600	6.183202
H	0.328998	-6.917106	6.136602
H	0.928198	-6.077806	7.576202
H	-1.743801	-4.379805	7.655802
H	-2.318801	-5.217505	6.204702
Si	-0.360100	-4.412706	-5.934698
C	1.604799	-5.199606	-6.539098
C	-0.129201	-2.630606	-6.551298
C	-1.485901	-5.415505	-6.541798
H	2.475799	-4.643306	-6.178398
H	1.644199	-5.215806	-7.634298
H	-1.050601	-2.155305	-6.219800
H	-0.129501	-2.598406	-7.646898
H	-1.431202	-6.452205	-6.194398
H	-1.525201	-5.429405	-7.637098

Si	-0.360000	4.360494	5.935502
C	-0.018200	6.146594	6.555200
C	1.553700	3.477394	6.539502
C	-1.546600	3.452795	6.540202
H	-0.017400	6.176494	7.650602
H	-0.907400	6.689500	6.204602
H	1.589700	3.453994	7.634802
H	2.456400	3.983694	6.183102
H	-2.457400	3.944395	6.183702
H	-1.582000	3.429395	7.635502
Si	0.022100	4.458994	-5.908698
C	1.287300	5.737894	-6.488398
C	-1.770000	4.920595	-6.532998
C	0.504200	2.741094	-6.531598
H	1.331200	5.774094	-7.582998
H	2.289000	5.497094	-6.118698
H	-2.451500	4.204095	-6.185198
H	-1.728800	4.934095	-7.628598
H	1.495500	2.454094	-6.166898
H	0.527600	2.717194	-7.627198
C	-7.108401	-0.760400	5.045200
H	-7.592500	0.853196	5.515602
H	-6.041201	0.042595	5.294102
H	-7.507901	-0.917204	5.502202
C	-7.110201	0.011796	-5.043398
H	-7.576300	0.885496	-5.508198
H	-7.529101	-0.886304	-5.506198
H	-6.042401	0.040595	-5.292898
C	-7.978100	-4.458904	2.385202
C	-9.246801	-4.021604	2.792702
C	-9.849601	-4.553400	3.930102
C	-9.194801	-5.536604	4.675202
C	-7.941702	-5.991104	4.266902
C	-7.339401	-5.461104	3.124102
C	-7.980100	-4.449504	-2.479800
C	-9.248801	-4.010104	-2.806098
C	-9.852301	-4.537400	-3.945298
C	-9.198301	-5.518104	-4.694298
C	-7.945202	-5.974704	-4.288298
C	-7.342201	-5.449204	-3.143698
C	-7.979600	4.451696	2.402702
C	-9.248500	4.012496	2.808202
C	-9.851900	4.539596	3.947402
C	-9.197600	5.520696	4.696202
C	-7.944500	5.977096	4.290200
C	-7.341600	5.451296	3.145402
C	-7.978400	4.461496	-2.383198
C	-9.247500	4.024396	-2.790198
C	-9.850500	4.555596	-3.927598
C	-9.195500	5.538696	-4.673298

C	-7.942100	5.992896	-4.265598
C	-7.339700	5.463096	-3.122698
H	7.345899	-2.146207	3.382200
H	7.346700	2.126293	3.397802
H	7.345499	-2.121207	-3.449800
H	7.346100	2.151493	-3.384598
H	4.729700	4.191794	-2.508898
H	4.728000	4.168594	2.536502
H	4.730499	-4.185600	2.507702
H	4.726599	-4.167206	-2.537798
H	-7.353100	2.130796	3.396302
H	-7.350801	-2.141804	3.388200
H	-7.353000	2.144196	-3.386098
H	-7.353201	-2.128504	-3.394798
H	-4.736401	-4.172205	-2.531598
H	-4.733301	-4.182305	2.513902
H	-4.736000	4.170995	2.533202
H	-4.733600	4.186795	-2.512298
H	6.371700	5.829194	2.832202
H	7.425200	6.741393	4.868202
H	9.657000	5.921993	5.595602
H	10.826100	4.181993	4.255202
H	9.753400	3.253193	2.227402
H	9.752200	3.266993	-2.207798
H	10.825500	4.211893	-4.227798
H	9.658900	5.965893	-5.552098
H	7.428900	6.782693	-4.816398
H	6.374700	5.854394	-2.788098
H	9.752599	-3.261207	2.204502
H	10.826899	-4.205907	4.224200
H	9.661198	-5.960107	5.548802
H	7.430998	-6.777307	4.813902
H	6.375799	-5.849106	2.786102
H	9.752799	-3.248607	-2.229498
H	10.824999	-4.176407	-4.257998
H	9.655198	-5.915207	-5.599598
H	7.423198	-6.734407	-4.872498
H	6.370299	-5.823506	-2.835798
H	2.045599	-2.958406	6.132402
H	1.899898	-6.106206	6.095202
H	-2.233701	-3.451505	6.229200
H	1.697798	-6.231600	-6.184198
H	0.712799	-2.027806	-6.196698
H	-2.425901	-4.990405	-6.176098
H	0.861000	6.695494	6.202902
H	1.587100	2.444194	6.179502
H	-1.563400	2.418995	6.180702
H	1.031100	6.739694	-6.129298
H	-1.996200	5.912595	-6.176598
H	-0.207900	1.981794	-6.193498

H	-9.758701	-3.261604	2.211102
H	-10.831501	-4.201704	4.233602
H	-9.662802	-5.949704	5.564200
H	-7.431102	-6.765404	4.831902
H	-6.377501	-5.842500	2.801102
H	-9.760101	-3.252104	-2.221398
H	-10.834101	-4.184104	-4.246998
H	-9.666802	-5.927604	-5.584398
H	-7.435202	-6.747104	-4.856198
H	-6.380401	-5.831805	-2.822498
H	-9.760000	3.254496	2.223602
H	-10.833700	4.186896	4.249202
H	-9.666000	5.930496	5.586302
H	-7.434400	6.749596	4.857802
H	-6.379800	5.833695	2.824102
H	-9.759500	3.264896	-2.207998
H	-10.832600	4.204596	-4.230598
H	-9.663600	5.951496	-5.562198
H	-7.431400	6.766596	-4.831098
H	-6.377600	5.843795	-2.819800

8. NMR spectra

289 801-

∞
1

$\stackrel{4}{7}$

\qquad

Fixisjom	¢్ల్kj	®	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\square}{\circ}$	우에	\％	区	$\stackrel{5}{\square}$	¢
		$\stackrel{\text { ® }}{\sim}$	\pm	$\dot{\oplus}$	穴家	¢	लें	∞	
775315	T51554	$\bigcirc 1$	T	1		1	－	T	

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
								（pp								

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$ in CDCl_{3}

봉당맹융형
ヘ่ง่ง

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}

9. References

(1) Z. H. Wu, Z. T. Huang, R. X. Guo, C. L. Sun, L. C. Chen, B. Sun, Z. F. Shi, X. Shao, H. Li, H. L. Zhang, Angew. Chem., Int. Ed. 2017, 56, 13031-13035.
(2) T. Hamura, R. Nakayama, Chem. Lett. 2013, 42, 1013-1015.
(3) C. An, S. Zhou, M. Baumgarten, Cryst. Growth Des. 2015, 15, 1934-1938.

