SUPPORTING INFORMATION FOR:

Effective cellular delivery of antisense peptide nucleic acid (PNA) by conjugation to guanidinylated diaminobutanoic acid based peptide dendrons

Isabel Maicas Gabas and Peter E. Nielsen*

Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences. The Panum Institute, University of Copenhagen Blegdamsvej 3, 2200 Copenhagen, Denmark

*Corresponding author

Table of Contents

1.	Luciferase gene carrying an intron (from human β -globin)	3
2.	RT-PCR analysis of the corrected luciferase mRNA	3
3.	PNA antisense activity when conjugated to dendrons containing 8-amino-3,6-dioxaoctanoic acid (eg)	5
4.	Cooperative enhancement effects	
5.	Thermal stability (Tm) of the Dab dendrons-PNA-DNA duplexes	6
6.	Relative Mean Fluorescence Intensity	6
7.	Characterization	7

1. Luciferase gene carrying an intron (from human β-globin)

Figure S1. Luciferase gene carrying an intron (from human β -globin) including an aberrant splice site (705). Untreated cells result in non-expression of Luciferase, whereas blocking the aberrant splice site via PNA conjugation leads to splice correction and restoration of luciferase expression.

A) Ghx ₈ Ghx ₈ + CQ Ahx ₈ Ahx ₈ + CQ (4680) (4653) $\frac{1}{3}$	Uncorrected Corrected
B) \overline{P}	CQ
C) y Uncorrected % Corrected % Source ted % Corrected 91,7 91,5 8,3 8,5 16,8 25,2 18,6 91,7 91,5 8,5 16,8 25,2 18,6 16,7 16,6 16,7 16,6 16,7 16,6 16,7 16,6 16,7 16,6 16,7 16,6 16,7 16,6 16,7 11,8 16,6 16,7 16,7 16,6 16,7	D) Ghx ₈ Ghx ₁₂ Ghx ₁₆ 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

2. RT-PCR analysis of the corrected luciferase mRNA

لة E)	ntrol		Ghx (468)		(Oc ₁ 4934	1)	(•	Dec ₁ 4939)	(Oc ₂ 4925	5)	(Dec <u>;</u> 4926	2 5)	
Wa	Cor	1uM	1.5uM	3uM	1uM	1.5uM	3uM	1uM	1.5uM	3uM	1uM	1.5uM	3uM	1uM	1.5uM	3uM	
										**	-						
% uncorrected % corrected	90,7 9,3	91,1 8,9	84,9 15,1	77,7 22,3	88,5 11,5	57,2 42,9	13,3 86,8	87,0 13,1	40,0 60,0	11,4 88,6	39,2 60,8	21,0 79,0	2,0 98,0	39,4 60,6	6,2 93,8	1,1 98,9	
F)	rol	- (Ghx ₈ 4680	3))	C (!	Quin 5171	в)	N (5	aph ₈ 5172)	3	Ph (5	en A 5173)	-8	P (4	he ₈ 965)		
(A Water	Control	1uM (Ghx ₈ 4680 	3uM	1uM ()	Quin 5171 	3uM (8	1uM 5, Z	aph ₈ 5172) 	3uM	Pho (5	en A 5173) - - - - -	3uM 8	1 _u M (4	he ₈ 965) – M _{JZ}	3uM	
(H	Control	1uM)	Ghx ₈ 4680 4 ₉₇	3uM		Quin 5171 도 포 전	3uM (B	1uM C	aph ₈ 5172) ¥	3 uM	Pho (5	en A 5173) - - - - - - - - - - - - -	3uM 8	P (4	'he ₈ 965) ୍ୟୁ	3uM	

Figure S2. RT-PCR splice correction analysis of the luciferase gene carrying an intron including an aberrant splice site (705). Blocking the aberrant splice site via PNA conjugation leads to splice correction and restoration of luciferase expression. PNA antisense activity when conjugated to: A) 6-aminohexanoic acid (Ahx₈, 4653) and the guanidino (Ghx₈, 4680) Dab dendron. B) 6-guanidinohexanoic acid Dab dendron (Ghx₈, 4680) and an analogous linear (D-Arg)₈-CPP (2787). C) Dab-dendron conjugates differing at the terminal carbon chain length, guanidinopentanoic acid (Gpn₈, 4779), guanidinohexanoic acid (Ghx₈, 4680), guanidinoheptanoic acid (Ghp₈, 4780) and guanidinooctanoic acid (Goc₈, 4758). D) Dab-dendron conjugates differing by the number of terminal amino groups: Ghx₈ (4680), Ghx₉ (5066), Ghx₁₂ (5054) and Ghx₁₆ (4912). E) Dab dendron conjugates modified with fatty acids of different length and with different ratios such as octanoic acid (Oc1, 4934 and Oc2, 4925) and decanoic acid (Dec1, 4939 and Dec2, 4926). F) Dab-dendron conjugates containing different aromatic moieties such as quinolinecarboxylic acid (Quin₈, 5171), naphthoic acid (Naph₈, 5172), phenylacetic acid (Phen A.₈, 5173) or phenylalanine (Phe₈, 4965).

3. PNA antisense activity when conjugated to dendrons containing 8-amino-3,6dioxaoctanoic acid (eg)

Figure S3. Comparison of the PNA antisense activity when bounded to dendrons containing eg in different positions: $\text{Geg}_8(4936)$, $\text{Ghx}_8\text{-}eg_8(5124)$ and $\text{Geg}_8\text{-}Phe_8(4963)$. A) Representation of ligands structure. B) Luciferase assay. C) ATP toxicity assay. Data are expressed as mean ± SD (n=4; Student's t test **P* < 0.05, ***P*< 0.01). *p*-values are indicated as compared to the corresponding Ghx₈ data.

4. Cooperative enhancement effects

Figure S4. Study of the mismatch MM_2 -asPNA (4 switched base pairs) antisense activity both when bounded to Ghx_8 and Phe_8 dendrons. Additionally, we study the increasing concentration effect of MM_2 asPNA upon non-mismatch asPNA. A) Luciferase and B) toxicity assay for Phe_8 - MM_2 (5501) effect on Ghx_8 (4680). C) Luciferase and D) toxicity assay for Phe_8 - MM_2 (5502) effect on Phe_8 (4965). E) Luciferase and F) toxicity assay for Ghx_8 - MM_2 (5501) effect on Phe_8 (4965). G) Luciferase and H) toxicity assay for Ghx_8 - MM_2 (5502) effect on Ghx_8 (4680). Data are expressed as mean \pm SD (n=4).

5. Relative Mean Fluorescence Intensity

Figure S5. Relative Mean Fluorescence Intensity extracted from confocal microscopy images of Hela-pLuc cells treated with 1 μ M Ghx₈-AF568 (5267) after 5, 10, 30 min and 1, 2, 3, 4 and 24h incubation time. Data are expressed as mean ± SD (n=4; Student's t test **P* < 0.05, ***P*< 0.01). *p*-values are indicated as compared to the 24h data.

1. Thermal stability (Tm) of the Dab dendron-PNA-DNA duplexes

No.	Name	Sequence ^{c,d}	Tm (ºC) ^{e,f}
2389	Naked asPNA ^a	H-CCT CTT ACC TCA GTT ACA-NH ₂	69
3380	MM ₁ Naked asPNA ^b	H-CCT CAG ACC TCA TTT ACA-NH ₂	44
4680	Ghx ₈	H-Ghx ₈ -(Dab) ₄ -(Dab) ₂ -Dab-asPNA	76
4758	Goc ₈	H-Goc ₈ -(Dab) ₄ -(Dab) ₂ -Dab-asPNA	74
4965	Phe ₈	H-Ghx ₈ -Phe ₈ -(Dab) ₈ -(Dab) ₄ -(Dab) ₂ -Dab-asPNA	73
4926	Dec ₂	H-Ghx ₈ -(Dab) ₄ -(Dab) ₂ /(Dec) ₂ -(Dab) ₂ -Dab-asPNA	76
5051	Ghx ₈ -MM ₁	H-Ghx ₈ -(Dab) ₄ -(Dab) ₂ -Dab-MM ₁ asPNA	53

Table S1. Thermal stability (Tm) of PNA-DNA duplex.

^aAntisense PNA (asPNA), PNAs targeting splicing correction of mutated luciferase gene in the HeLa pLuc705 cells. ^bMis-match asPNA (MM asPNA), asPNA with two. ^cThe sequences of the PNAs are written from N-terminal to C-terminal end. ^dAbbreviations: Guanidinhexanoic acid (Ghx), guanidinooctanoic acid (Goc), decanoic acid (Dec), Phenylalanine (Phen). ^eMelting temperatures (accuracy +/-1 ^oC) of duplexes were measured in 10mM sodium phosphate (pH 7.0) containing 0.1 mM EDTA, 100m M NaCl. ^fSense DNA sequence, 5'-TGT AAC TGA GGT AAG AGG-3'.

2. Characterization

Crude product of all different DAB dendron were purified by RP-HPLC. Afterwards, purified fractions were characterized by MALDI-TOF MS and RP-HPLC. MALDI-TOF MS offers information about the mass of the product and RP-HPLC offers information about the purity. SPPS allows accurate control of the synthesis procedure and as consequence of the products structure. Therefore, these two characterization techniques offer enough information even if information on the actual structure is limited.

Analytical HPLC programs:

100-60-A							
Time	Flow	$%A^{1}$	$%B^2$				
0	0,8	0	100				
30	0,8	40	0				
40	0,8	100	0				
45	0,8	100	0				
50	0,8	0	100				
60	0,8	0	100				

-								
100-0-A-400								
Time	Flow	$%A^{1}$	$%B^2$					
0	0,8	0	100					
2	0,8	0	100					
32	0,8	100	0					
35	0,8	100	0					
40	0,8	0	100					
55	0.8	0	100					

C18 column

%A¹: 95% milliQ water, 5% Acetonitrile, 0,01% TFA

%B²: 95% Acetonitrile, 5% milliQ water, 0,01% TFA

- (D-Arg)₈ (2787)

MALDI-TOF MS spectrum of 2787. Mass calc./found 6072/6084

Analytical **RP-HPLC** trace of **2787**. T_R = 17.7 min (program: 100_60_A, 40 min, λ = 260 nm)

Ahx₈ (4653)

PNA4653 fr 3 Mw=6371.65

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 110, Blanked, P.Ext. @ 4000 (bin 85)

MALDI-TOF MS spectrum of 4653. Mass calc./found 6372/6373

Analytical **RP-HPLC** trace of **4653**. T_R = 18.0 min (program: 100_60_A, 40 min, λ = 260 nm)

- Ghx₈ (4680)

PNA 4680 G2 fr3/2 Mw=6711.21

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 110, Blanked, P.Ext. @ 4000 (bin 85)

MALDI-TOF MS spectrum of 4680. Mass calc./found 6711/6709

Analytical **RP-HPLC** trace of **4680**. T_R = 19.9 min (program: 100_60_A, 40 min, λ = 260 nm)

- Goc₈ (4758)

_

MALDI-TOF MS spectrum of 4758. Mass calc./found 6934/6932

Analytical **RP-HPLC** trace of **4758**. T_R = 30.7 min (program: 100_60_A, 40 min, λ = 260 nm)

- Gpn₈ (4779)

MALDI-TOF MS spectrum of 4779. Mass calc./found 6599/6604

Analytical **RP-HPLC** trace of **4779**. T_R = 18.8 min (program: 100_60_A, 40 min, λ = 260 nm)

MALDI-TOF MS spectrum of 4780. Mass calc./found 6823/6828

PNA 4780 fr3/3 Mw=6823,21

Analytical **RP-HPLC** trace of **4780**. T_R = 21.4 min (program: 100_60_A, 40 min, λ = 260 nm)

- Ghx₁₆ (4912)

MALDI-TOF MS spectrum of 4912. Mass calc./found 8757/8760

Analytical **RP-HPLC** trace of **4912**. T_R = 20.9 min (program: 100_60_A, 40 min, λ = 260 nm)

- Oc₁ (4934)

PNA4934 fr=6/2 Mw=6955

MALDI-TOF MS spectrum of 4934. Mass calc./found 6955/6951

Analytical **RP-HPLC** trace of **4934**. T_R = 22.8 min (program: 100_60_A, 40 min, λ = 260 nm)

- Dec₁ (4939)

PNA4939 fr=3 Mw=6983

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 140, Blanked, P.Ext. @ 4000 (bin 85)

MALDI-TOF MS spectrum of 4939. Mass calc./found 6983/6961

Analytical **RP-HPLC** trace of **4939**. T_R = 24.2 min (program: 100_60_A, 40 min, λ = 260 nm)

- Oc₂ (4925)

PNA4925 fr=2 Mw=7178

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 140, Blanked, P.Ext. @ 4000 (bin 85)

MALDI-TOF MS spectrum of 4925. Mass calc./found 7178/7161

Analytical **RP-HPLC** trace of **4925**. T_R = 26.00 min (program: 100_60_A, 40 min, λ = 260 nm)

- Dec₂ (4926)

MALDI-TOF MS spectrum of 4926. Mass calc./found 7220/7212

Analytical **RP-HPLC** trace of **4926**. T_R = 29.4 min (program: 100_60_A, 40 min, λ = 260 nm)

- Geg₈ (4936)

MALDI-TOF MS spectrum of 4936. Mass calc./found 6968/6974

Analytical RP-HPLC trace of 4936. T_R = 19.5 min (Program 100_60_A, 40 min, λ = 260 nm)

- Geg₈-Phe₈ (4963)

MALDI-TOF MS spectrum of 4963. Mass calc./found 8148/8155

Analytical **RP-HPLC** trace of **4963**. T_R = 27.1 min (Program 100_60_A, 40 min, λ = 260 nm)

- Phen₈ (4965)

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 120, Blanked, P.Ext. @ 4000 (bin 85) %Int. 1.3 mV[sum= 128 mV] Profiles 1-100 Smooth Av 5 -Baseline 150

MALDI-TOF MS spectrum of 4965. Mass calc./found 7889/7893

Analytical **RP-HPLC** trace of **4965**. T_R = 31.0 min (Program 100_60_A, 40 min, λ = 260 nm)

- Ghx₈-MM₁ (5051)

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 140, Blanked, P.Ext. @ 4000 (bin 85) %Int. 15 mV[sum= 1535 mV] Profiles 1-100 Smooth Av 5 -Baseline 150

MALDI-TOF MS spectrum of 5051. Mass calc./found 6711/6725

Analytical **RP-HPLC** trace of **5051** T_R = 19.8 min (Program 100_60_A, 40 min, λ = 260 nm)

- Ghx₁₂ (5054)

MALDI-TOF MS spectrum of 5054. Mass calc./found 7847/7845

Analytical **RP-HPLC** trace of **5054**. T_R = 20.3 min (program: 100_60_A, 40 min, λ = 260 nm)

- Phe₈-MM₁ (5055)

MALDI-TOF MS spectrum of 5055. Mass calc./found 7889/7891

Analytical **RP-HPLC** trace of **5055** T_R = 28.9 min (Program 100_60_A, 40 min, λ = 260 nm)

- Ghx₉ (5066)

MALDI-TOF MS spectrum of 5066. Mass calc./found 7080/7082

Analytical **RP-HPLC** trace of **5066**. T_R = 20.0 min (program: 100_60_A, 40 min, λ = 260 nm)

- Ghx₈- eg₈ (5124)

PNA5124 fr3 Mw=7876

MALDI-TOF MS spectrum of 5124. Mass calc./found 7876/7889

Analytical **RP-HPLC** trace of **5124**. T_R = 21.0 min (Program 100_60_A, 40 min, λ = 260 nm)

- Quin₈ (5171)

MALDI-TOF MS spectrum of 5171. Mass calc./found 8756/8761

Analytical **RP-HPLC** trace of **5171**. T_R = 25.9 min (program: 100_60_A, 40 min, λ = 260 nm)

- Naph₈ (5172)

MALDI-TOF MS spectrum of 5172. Mass calc./found 8748/8751

Analytical **RP-HPLC** trace of **5172**. T_R = 31.0 min (Program 100_60_A, 40 min λ = 260 nm)

- Phen A.₈ (5173)

MALDI-TOF MS spectrum of 5173. Mass calc./found 8460/8504

Analytical **RP-HPLC** trace of **5173**. T_R = 26.9 min (Program 100_60_A, 40 min, λ = 260 nm)

Ghx₈-AF568 (5267) -

PNA5267 fr5 Mv=7694 Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 140, Blanked, P.Ext. @ 4000 (bin 85)

1.1 mV[sum= 113 mV] Profiles 1-100 Smooth Av 5 -Baseline 150 %Int.

Analytical **RP-HPLC** trace of **5267** T_R = 17.4 min (Program 100_0_A_400, 40 min, λ = 260 nm)

Ghx₈-MM₂ (5501) -

PNA5501 fr6 Mw=6710

Shimadzu Biotech Axima Assurance 2.8.5.20090305: Mode Linear, Power: 140, Blanked, P.Ext. @ 4000 (bin 85) %Int. 4.8 mV[sum= 478 mV] Profiles 1-100 Smooth Av 5 -Baseline 150

MALDI-TOF MS spectrum of 5501. Mass calc./found 6710/6715

Analytical **RP-HPLC** trace of **5501** T_R = 19.5 min (Program 100_60_A, 40 min λ = 260 nm)

- Phe₈-MM₂ (5502)

MALDI-TOF MS spectrum of 5502. Mass calc./found 7889/7888

Analytical **RP-HPLC** trace of **5502** T_R = 28.0 min (Program 100_60_A, 40 min, λ = 260 nm)

- Ghx₁₆-MM₁ (5534)

MALDI-TOF MS spectrum of 5534. Mass calc./found 8757/8776

Analytical **RP-HPLC** trace of **5534** T_R = 20.0 min (Program 100_60_A, 40 min, λ = 260 nm)

- Goc₈-MM₁ (5538)

PNA5538 fr7 Mw=6934

MALDI-TOF MS spectrum of 5538. Mass calc./found 6934/6933

Analytical **RP-HPLC** trace of **5538** T_R = 29.7 min (Program 100_60_A, 40 min, λ = 260 nm)

- Dec₂-MM₁ (5539)

%Int. 12 mV[sum= 1229 mV] Profiles 1-100 Smooth Av 5 -Baseline 150

Analytical **RP-HPLC** trace of **5539** T_R = 31.6 min (Program 100_60_A, 40 min, λ = 260 nm)