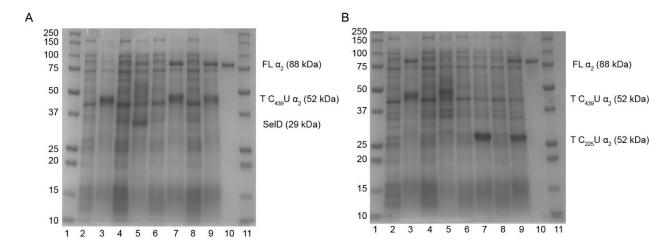
Supplemental Information

Selenocysteine Substitution into a Class I Ribonucleotide Reductase

Brandon L. Greene^{†*}, JoAnne Stubbe^{‡§}, and Daniel G. Nocera[#]

[†]Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106


 ‡ Department of Chemistry and g Department of Biology, Massachusetts Institute of Technology, Cambridge MA 20139

*Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138

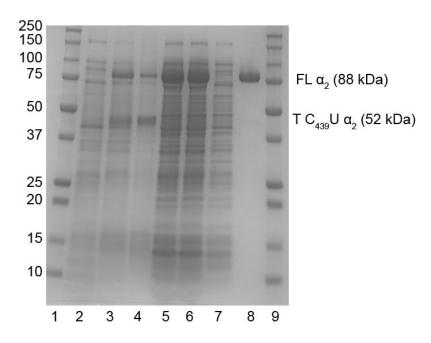

*Email: greene@chem.ucsb.edu

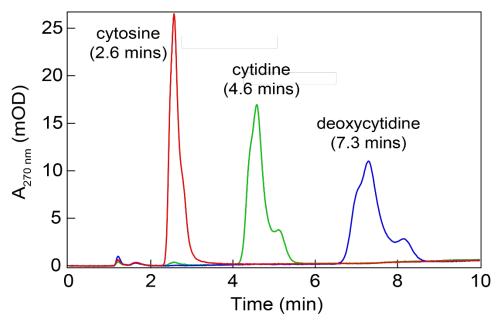
Table of Contents

Figure S1 . SDS-PAGE of $C_{439}U$ and $C_{225}U$ expression in ME6 cells	S3
Figure S2 . SDS-PAGE of C ₄₃₉ U purification	S4
Table S1 . Selenium quantitation in $C_{439}U$, $C_{225}U$, and wt α_2	S5
Table S2 . Steady state and single turnover activity of $C_{439}U$, $C_{225}U$, and wt α_2	S6
Figure S3. HPLC standards for cytosine, cytidine, and deoxycytidine	S7
Figure S4 . X-band EPR spectrum of N ₃ CDP reacted C ₄₃₉ U	S8
Figure S5. Short timescale SF UV-vis kinetics at 460 nm	S9
Figure S6. Long timescale SF UV-vis kinetics at 460 nm	S10
Figure S7 . SF controls with wt and $C_{439}U$ α_2	S11
Table S3. SF kinetic fitting parameters	S12
Figure S8. Mechanism of RNR inhibition by 2'-F/Cl substituted NDPs	S13
Figure S9 . X-band EPR spectrum $C_{225}U$ α_2 reaction with CDP/ β_2	S14
Figure S10. Mechanism of RNR inhibition by N₃NDP	S15

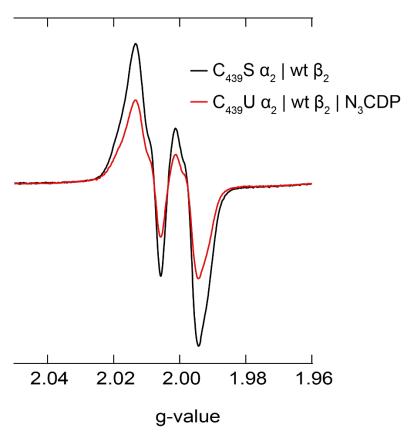
Figure S1. SDS-PAGE analysis of IPTG/arabinose dependence of C₄₃₉U and C₂₂₅U expression in ME6 cells. General conditions as follows; 10 mL culture inoculated with a single colony from freshly prepared plates, 100 μg/mL ampicillin, 50 μg/mL kanamycin, 30 μM Na₂SeO₃ in LB media. Arabinose (ara) added at $OD_{600} = 0.5$, IPTG added at $OD_{600} = 0.8$. Cells grown at 37 °C shaking at 200 rpm until OD = 0.5 reached, then temperature dropped to 30 °C and grown for an additional 20 h. Pre- and post-induction cell samples were collected at OD = 0.5 and OD = 4-6 respectively. A $C_{439}U$ expression as a function of induction conditions. Lane 1, molecular weight marker; lane 2, C₄₃₉U 0.2 mM IPTG/0% (w/v) ara pre-induction; lane 3, C₄₃₉U 0.2 mM IPTG/0% ara post-induction; *lane 4*, C₄₃₉U 0 mM IPTG/0.1% ara pre-induction; lane 5, C₄₃₉U 0 mM IPTG/0.1% ara post-induction; lane 6, C₄₃₉U 0.2 mM IPTG/0.1% ara preinduction; lane 7, C₄₃₉U 0.2 mM IPTG/0.1% ara post-induction; lane 8, C₄₃₉U 0.2 mM IPTG/0.2% ara pre-induction; lane 9, C₄₃₉U 0.2 mM IPTG/0.2% ara post-induction; lane 10, authentic wt α_2 standard; *lane 11*, molecular weight marker. FL = full length; T = truncated. **B** Lane 1, molecular weight marker; lane 2, C₄₃₉U 0.4 mM IPTG/0.2% ara pre-induction; lane 3, $C_{439}U$ 0.4 mM IPTG/0.2% ara post-induction; lane 4, $C_{439}U$ 0 mM IPTG/0 % ara preinduction; lane 5, C₄₃₉U 0 mM IPTG/0% ara post-induction; lane 6, C₂₂₅U 0.2 mM IPTG/0% ara pre-induction; lane 7, C₂₂₅U 0.2 mM IPTG/0% ara post-induction; lane 8, C₂₂₅U 0.2 mM IPTG/0.1% ara pre-induction; lane 9, C₂₂₅U 0.2 mM IPTG/0.1% ara post-induction; lane 10, authentic wt α_2 standard; *lane 11*, molecular weight marker.

Figure S2. SDS-PAGE analysis of $C_{439}U$ purification. *Lane 1*, molecular weight marker; *lane 2*, pre-induction ME6 cells; *lane 3*, 20 h post-induction ME6 cells; *lane 4*, cell lysate debris; *lane 5*, cell lysate supernatant; *lane 6*, DNA precipitation supernatant; *lane 7*, Ni-NTA column flow-through at 50 mM imidazol; *lane 8*, eluted $C_{439}U$ α_2 (250 mM imidazole); *lane 9* molecular weight marker. FL = full length; T = truncated.

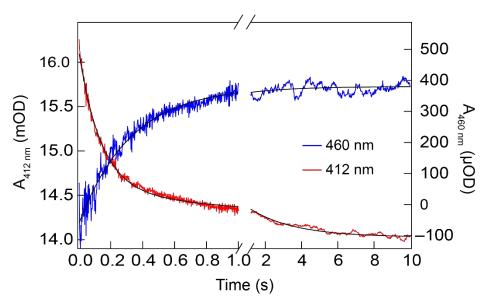
Table S1. Selenium quantitation in $C_{439}U$, $C_{225}U$, wt, and $C_{439}S$ α_2 under various expression conditions.

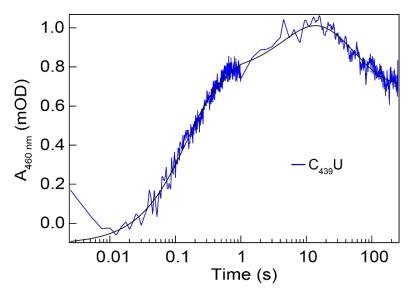

Protein	Expression Conditions	Yield (mg/g)	[Se]/[α]
C ₄₃₉ U	$100~\mu M~Na_2SeO_3~0.1\%~Arabinose~1~mM~IPTG$	9	0.54 (0.06)
$C_{439}U$	$100~\mu M~Na_2SeO_3~0.1\%~Arabinose~0.5~mM~IPTG$	4	0.70 (0.06)
$C_{439}U$	$30~\mu M~Na_2SeO_3~0.1\%~Arabinose~0.25~mM~IPTG$	1-2	1.0 (0.1)*
C ₂₂₅ U	$30~\mu M~Na_2SeO_3$ $0.1\%~Arabinose$ $0.25~mM~IPTG$	0.5	0.82 (0.07)
wt	$30~\mu M~Na_2SeO_3~0.1\%~Arabinose~0.25~mM~IPTG$	3.5	0.006 (0.002)
C ₄₃₉ S	$30~\mu M~Na_2SeO_3$ $0.1\%~Arabinose$ $0.25~mM~IPTG$	3.0	0.002 (0.003)

^{*} Three independent preparations under these conditions have been analyzed and the error in [Se]/[α] is significantly larger among triplicate samples of a single protein preparation (+/- 9%) than among the averages of the three preparations (+/- 2%).


Table S2. Steady state and single turnover activity of wt, $C_{439}X$, and $C_{225}X$ proteins (X = S, U).

Protein	Steady State (units)	Single Turnover	
wt	1920 (30)	1.6 (0.2)	
$C_{439}S$	20 (20)	0.02 (0.02)	
$C_{439}U$	30 (20)	0.02 (0.01)	
$C_{225}U$	30 (20)	0.04 (0.04)	
WT (-O ₂ , +200 μM DTT)	1900 (40)	11 (3)	
C ₄₃₉ U (-O ₂ , +200 μM DTT)	n.d.	0.24 (0.03)	
$C_{225}U$ (-0 ₂ , + 200 μ M DTT)	n.d.	7.9 (0.9)	


n.d., not determined


Figure S3. Individual HPLC standards for cytosine (red), cytidine (green), deoxycytidine (blue). Standards were prepared at 50 μ M in 5 mM KP_i pH = 6.8. Elution gradient is identical to that reported in the materials and methods.

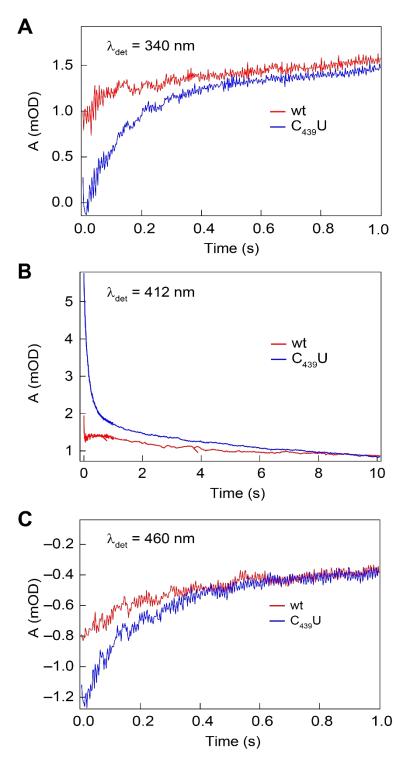

Figure S4. X-band EPR spectra of 50 μ M wt β_2 with 50 μ M C_{439} S α_2 , 1 mM CDP and 3 mM ATP (black) and 50 μ M C_{439} U α_2 , 0.2 mM N_3 CDP and 3 mM ATP (red). Spectra recorded at 80 K with 1 Gauss modulation amplitude, 100 kHz modulation frequency, and 20 μ W microwave power.

Figure S5. Stopped-flow UV-vis kinetic traces 412 nm (red, as reported in the main text), 460 nm (blue) and associated bi- and monoexponential fits respectively (black). Sample conditions identical to those of Figure 4 of the main text. The 460 nm transient was equally well fit by mono- or biexponential, likely due to the lower signal to noise, and thus the monoexponential fit is reported. The $k_{\rm obs}$ = 3.19 (0.05) s⁻¹ appears intermediate between the two observed rate constants for the fast (~7 s⁻¹) and slow (0.4 s⁻¹) phases for both 340 nm and 412 nm.

Figure S6. Long timescale stopped-flow kinetics for $C_{439}U$ (blue) α_2 mixing with wt β_2 to a final concentration of 20 μ M $\alpha_2\beta_2$, 1 mM CDP and 3 mM ATP in assay buffer monitored at 460 nm.

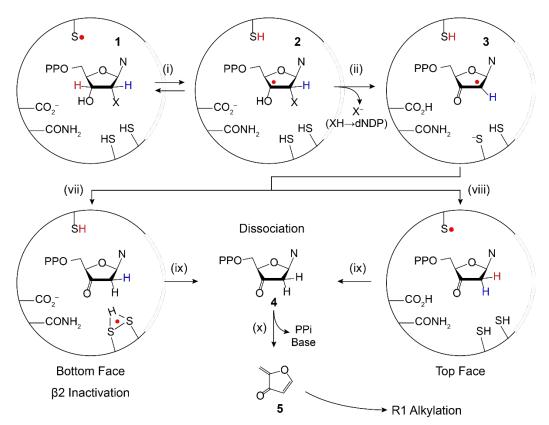
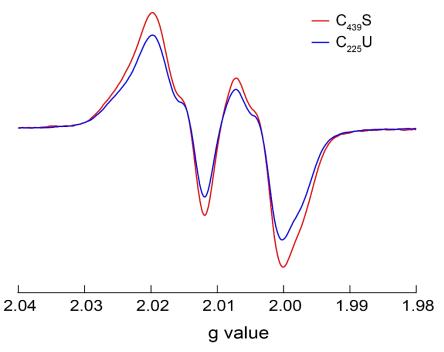


Figure S7. Stopped-flow kinetic comparison between wt (red) and $C_{439}U$ (blue) α_2 mixing with wt β_2 to a final concentration of 20 μ M $\alpha_2\beta_2$, 1 mM CDP and 3 mM ATP in assay buffer. Transients recorded at **A** 340 n, **B** 412 nm, and **C** 460 nm. The kinetics of induced absorption (**A** and **C**) and decay (**B**) were again described well by a biexponential function with statistically identical kinetics to those reported at 10 μ M $\alpha_2\beta_2$.


Table S3. Fitting parameters for SF UV-vis experiments.

α	λ/nm	A ₁ / μOD	k_1 / s^{-1}	$A_2 / \mu OD$	k_2 / s^{-1}	A ₃ / μ O D	k_3 / s^{-1}
C ₄₃₉ U#	340	570 (20)	6.5 (0.3)	360 (20)	0.42 (0.03)		
	410	-1,580 (20)	7.1 (0.1)	-400 (40)	0.40 (0.01)		
	460	440 (10)	3.19 (0.05)				
$C_{439}U^*$	460	770 (10)	7.1 (0.2)	490 (20)	0.44 (0.04)	-430 (20)	0.044 (0.01)
WT*	340	520 (10)	2.9 (0.2)				
	412			-670 (10)	0.29 (0.01)		
	460	400 (10)	3.2 (0.1)				

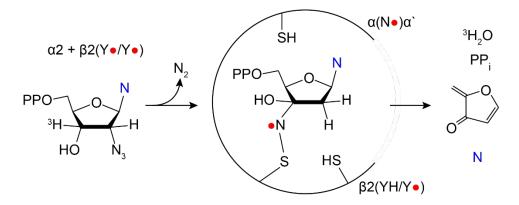

 $^{^{\#}}$ Experiments performed at 10 μM final concentration. * Experiments performed at 20 uM final concentration.

Figure S8. Mechanism of inactivation of RNR by mechanism-based inhibitors 2'-deoxy-2'-X NDP (X = F or Cl). The mechanism of inactivation depend on the nature of substrate radical reduction (steps vii vs. viii). During radical substrate reduction from the top face, α_2 is inactivated through alkylation of the essential sulfhydryl groups by **5**, but the thiyl, and thus the essential Y_{122} • in β , are maintained. Conversely, reduction by the bottom face inactivates both α_2 and β_2 by trapping on the bottom face.

Figure S9. X-band EPR spectrum of 50 μ M wt β_2 quenched at 10 s after mixing with 1 mM CDP, 3 mM ATP, and $C_{225}U$ (blue) or $C_{439}S$ (red) α_2 . Spectra recorded at 80 K with 1 Gauss modulation amplitude, 100 kHz modulation frequency, and 20 μ W microwave power.

Figure S10. Mechanism of RNR inhibition by N₃NDP.