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Graphite Characterization:

Scanning electron microscopy measurements were performed on the natural graphite powder.
Figure S1 shows SEM images of the material, as well as the distribution of particle sizes
determined from SEM imaging. Graphite powder particles have a flake like morphology with
nanometer thin layers apparent on the surface. Graphite particle size diameters range between 4 —
11 pum, with average particle size of 7 + 1 um (n = 170). BET surface area is 1.86 + 0.01 m?%g.
Synchrotron X-ray diffraction measurements were performed at NSLS-II beam line 28-ID to
confirm the purity of the graphite. Structural refinements of the XRD patterns using the Rietveld
method is shown in Figure S2. Refinement of the SLC1506T natural graphite indicated that the
material was a mixture of both hexagonal (Space group P6z/mmc space group, 77%) and
rhombohedral (R3m space group, 23%) phases and was free of impurities.
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Figure S1. (a, b) Scanning electron microscopy characterization for the natural graphite used in
this study. (c) Particle size distribution determined from SEM images.
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Figure S2. Rietveld refinement of synchrotron X-ray diffraction collected on the natural
graphite.
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Table S1. Calculated impact of 10 nm metal surface films on the irreversible capacity and cell
specific energy for a theoretical 1 Ah NMC622/graphite pouch cell with total 320 cm? electrode
area (anode), 10 mg/cm? anode loading, and negative to positive capacity ratio of 1.15 for the

uncoated anode.

. % of Li
Mass of Iﬁ\ge(yglrz?tile inventory Cell Specific
Anode Type | metal films . lost by metal N:P ratio Energy
(mglcell) | APy oxide (Whikg)
(mAh/cell) )
reduction
graphite n/a n/a n/a 1.150 188.33
Cu-graphite 2.02 1.36 0.13% 1.152 188.06
Ni-graphite 2.13 1.53 0.15% 1.152 188.03




igr S3. EDS mas co cter t town for (a) 10 nm Cu-graphite and (b) 10 nm Ni-
graphite.
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Figure S4. Representative atomic force microscopy images of ultra-flat SiO> wafers sputtered with
10 nm of Cu. Post-sputtering, a portion of the deposited coating was removed from the wafer by
scratching with a pair of fine-tipped metal tweezers, creating a step between the metal coated and
uncoated areas that was then analyzed by non-contact AFM. The process does not scratch the
SiO; wafer itself; however, it can result in surface roughness in the crevice if the metal coating
was not completely removed. Regions with minimized surface roughness were selected for
AFM analysis. The middle and bottom panels in the figure show the stepped areas analyzed and
the corresponding surface profile data.
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Figure S5. Representative atomic force microscopy images of ultra-flat SiO, wafers sputtered
with 10 nm of Ni. Post-sputtering, a portion of the deposited coating was removed from the
wafer by scratching with a pair of fine-tipped metal tweezers, creating a step between the metal
coated and uncoated areas that was then analyzed by non-contact AFM. The process does not
scratch the SiO2 wafer itself; however, it can result in surface roughness in the crevice if the
metal coating was not completely removed. Regions with minimized surface roughness were
selected for AFM analysis. The middle and bottom panels in the figure show the stepped areas
analyzed and the corresponding surface profile data.
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Figure S6. X-ray generated Auger LMM spectra for Cu standards compared to 10 nm Cu-
graphite electrode in the pristine state as well as after formation cycling.



Cu2p Cu LMM Ni 2p
/c-n'\
je8
Q
Pary
‘»
C
2
L
\ - .._ - .: m‘r3%w;w!§www#ﬂ::“.“..:- .'_..'.:--._.-".'-.“..:--.-:." .
960 940 580 570 560 880 860
Binding Energy (eV) Binding Energy (eV) Binding Energy (eV)

Figure S7. XPS Cu 2p, Cu LMM, and Ni 2p spectra collected on electrodes that underwent
formation cycling. No signals were observed prior to Ar sputtering.
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Table S2. Cu 2p and Ni 2p XPS peak assignments for Cu-graphite and Ni-graphite anodes

before and after formation cycling.

Sample
XPS Fit
Cu 2p;,

Ni 2psp

As prepared
B.E. (fwhm) Area
943.8 (3.7) 1.4E4
941.4 (4.6) 1.5E4
933.6 (4.1) 7.6E4
932.6(1.6) 5.3E4

863.9 (2.8) 2.0E4
861.2 (4.1) 1.6E5
855.8 (3.8) 2.4E5
854.0 (2.7) 8.1E4
858.7 (3.4) 1.8E4
856.3 (2.0) 1.3E4
852.6 (1.7) 6.9E4

Assignment
CuO satellite
CuO satellite
CuO
Cu,O + Cu°

NiO satellite
NiO satellite
NiO
NiO
Ni° satellite
Ni? satellite

Ni®

After formation cycling

B.E. (fwhm) Area

932.6(2.1) 1.0E4

859.2 (4.9) 3.9E4
855.9(2.3) 8.6E3
852.6 (1.7) 2.2E5

Assignment

Ni° satellite
Ni? satellite
Nif
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Table S3. C 1s, O 1s, F 1s, and Li 1s XPS peak assignments for uncoated graphite (control), Cu-

graphite, or Ni-graphite anodes after formation cycling.

Sample Uncoated Anode Cu Coated Anode Ni Coated Anode Assignment
XPS Fit B.E. (fwhm) area (rel. %) B.E. (fwhm) area (rel. %) B.E. (fwhm) area (rel. %) Bond Species
Cls 290.1 (1.99) 1.2E4 (16) 289.9(2.04) 1.2E4 (20) 289.9(1.93) 1.5E4 (27) CO; Carbonates (Li,CO;, ROCO,Li)
288.8(2.22) 7.7E3 (10) 288.5(2.00) 6.2E3 (10) 288.6(1.83) 5.8E3 (11) 0-C=0 Carboxylates (RCOOLi, RCOOR")
286.6 (2.05) 1.6E4 (22) 286.8(1.63)9.8E3 (17) 286.8 (1.89) 1.3E4 (23) c-0 Ethers, PEO
285.0(2.01) 3.1E4 (42) 285.0(1.92) 3.1E4 (53) 285.0(1.91) 2.2E4 (39) C-C/C-H Hydrocarbons
283.0(1.36) 6.7E3 (9) C-Li Lithiated graphite
Ols 533.7(2.27) 3.8E4 (23) 533.7(2.29) 3.5E4 (22) 533.7(2.15) 3.5E4 (17) C-0 PEO, Li alkyl carbonates
531.8(2.15) 1.3E5(77) 531.8(2.12) 1.3E5 (78) 531.8(2.10) 1.7E5 (83) C=0, C-0-C Carbonates, carboxylates, ethers
Fls 687.8 (2.45) 4.0E4 (50) C-F PVDF
687.3 (2.49) 1.3E4 (17) 687.3 (2.65) 2.7E4 (33) 687.3 (2.37) 3.3E4 (42) P-F LiP,F,
685.0(1.91) 2.6E4 (33) 685.0 (1.99) 5.4E4 (67) 685.0 (1.93) 4.6E4 (58) Li-F LiF
Lils 55.3(1.99) 1.7E3 (100) 55.4(1.96) 2.2E3 (100) 55.4(2.02) 2.5E3 (100) Li-F, Li-O LiF, Li,CO;, Li,O

Surface composition of the SEI and electrode components for uncoated graphite, Cu-
graphite and Ni-graphite electrodes after formation cycling were investigated using XPS in the
regions of C 1s, O 1s, F 1s and Li 1s. The C 1s spectral fitting resulted in five distinct peaks (Table
S3). Four peaks were observed for all three samples (uncoated graphite anode, Cu—coated anode,
and Ni—coated anode) in the C 1s spectra.

The relative peak intensities for these four peaks are similar for each sample, indicating
similar surface chemistry in the presence of the metal coatings. The highest binding energy peak
at ~290.0 eV is attributed to carbonates which are commonly observed in similar systems.!
Typically, SEI carbonate components formed on graphite anodes in the presence of alkyl carbonate
solvents, such as EC and DMC, include Li,COs* as well as a range of lithium alkyl carbonates,
with the general form of ROCO,Li.Y" It is likely that there is a combination of these types of
carbonates present in the SEI layer, as it is difficult to deconvolute these chemically similar
compounds. However, EC can undergo a one-electron reduction and a two-electron reduction to
form CH3CH20OCO:Li and (CH2OCOxLli)2, respectively, while DMC can undergo a one-electron
reduction and a two-electron reduction to form CHsOCO,Li and Li>COs, repectively.l:8 The C 1s
peak at ~288.6 eV corresponds to carbon atoms in a two-oxygen environment. Such species that
exist around this binding energy include esters and carboxylate-containing compounds.®° With
this electrolyte composition, it is likely that RCOOL1 and RCOOR’ moieties are present in the SEI
at this binding energy.'*'2 The next C 1s peak at ~286.7 eV is assigned to C-O bonds and
correspond to ether and alkoxy species.>® ¥ A commonly characterized oxygen-containing
polymeric SEI species, typically denoted as polyethylene oxide (PEO, [-CH>—CH>-0-]»), can be
attributed here as it can often form as a reduction product of EC and DMC solvents.> 4 14 1.4, 14
There is an additional peak that exists for the uncoated graphite anode at 283.0 eV. This peak is
commonly observed in SEI studies of graphite and is attributed in the literature to either lithiated
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graphite species LixCs** *® or lithium carbide.*" 49%° As discussed in the manuscript, the Li—C
peak is detected for the control graphite electrode but not for the metal coated electrodes because
photoelectrons from lithiated graphite are inhibited by the thickness of the metal films and the SEI.

The O 1s spectra has two peaks, at ~533.7 and ~531.8 eV (Figure 4) and can be identified
as C—O and C=0 bonds, respectively. These bonds exist in most of the identified SEI species in
the C 1s spectra, but most notably PEO, Li alkyl carbonates and other carbonate species.!: 4 67+ 13
Each F 1s spectra has two peaks at ~687.3 and ~685.0 eV corresponding to P—F and Li—F bonds
while only the uncoated spectra displays an additional peak at ~687.8 eV which correlates well
with C-F peaks also found in the pristine spectra (Figure S8). Lastly, the Li 1s spectral region
contains a broad peak at ~55.4 eV and is in the region of Li—F and Li—O bonding in the form of
LiF, Li»O and Li,CO3.>* 17 Further spectral discussions are located in the main text, including
analyses of the F 1s spectra.
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Figure S8. XPS C 1s, O 1s, and F 1s spectra for the as prepared uncoated graphite (control), Cu-
graphite, or Ni-graphite anodes. Plots of each respective spectral region are on the same scale.
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Table S4. C 1s, O 1s, and F 1s XPS peak assignments for the as prepared uncoated graphite
(control), Cu-graphite, or Ni-graphite anodes.

Sample Uncoated Anode Cu Coated Anode Ni Coated Anode Assignment
XPS Fit  B.E. (fwhm) area (rel. %) B.E. (fwhm) area (rel. %) B.E. (fwhm) area (rel. %) Bond Species
Cls 291.0 (1.92) 1.4E4 (6) C-F PVDF
290.2 (1.74) 1.4E4 (6) 290.4 (2.14) 1.9E3 (2) 289.5 (2.39) 2.7E3 (4) CO, Carbonate (adsorbed)
288.1(2.02) 9.4E3 (13) 288.7 (2.48) 1.2E4 (13) 288.2(1.95) 3.7E3 (6) 0-C=0 Adsorbed CO,
286.1 (1.89) 3.2E4 (13) c-0 Adsorbed CO,
284.4 (1.56) 1.7E5 (72) 284.4 (1.80) 7.8E4 (85) 284.4 (1.88) 5.5E4 (90) C-Csp2 Graphite
Ols 533.0(2.98) 1.5E4 (84) c-0 Adsorbed CO,
531.5(1.93) 2.8E2 (16) 531.2(2.05) 1.3E5 (69) 531.0(2.51) 1.3E5 (72) C=0,C-0-C Adsorbed CO,
530.0(1.62) 5.9E4 (31) Ni-O NiO
529.1(1.50) 4.9E4 (28) Cu-0 Cu0O
Fls 687.8 (2.36) 2.2E5 (100) 687.7(1.94) 1.7E4 (100) 687.8 (1.97) 6.3E3 (100) C-F PVDF

Surface composition of the as prepared electrode surface for uncoated graphite, Cu-
graphite and Ni-graphite electrodes were investigated using XPS in the regions of C 1s, O 1s, and
F 1s. Fitting results are displayed in Figure S8 and reported in Table S4. The C 1s spectra for each
electrode reveals graphitic carbon as the dominate contributor to the signal. Additionally, there are
various carbon-oxygen bonds present that relate to an array of adventitious carbon (COx) adsorbed
on the surface.!® The metal coated electrodes match well with each other as similar peak profiles
are exhibited. As expected based on the inelastic mean free path of C 1s photoelectrons, the
graphitic peak at 284.4 eV is significantly dampened by the presence of the 10 nm Cu or Ni metal
films. The graphitic peak is reduced on average by a factor of ~5 which is due to a ~9 nm sampling
depth.” 1920 Another noteworthy difference between the uncoated and metal coated electrodes is
the presence of F-containing species. There is a clear C—F peak at ~291.0 eV, corresponding to the
PVDF binder, in the uncoated C 1s spectra but is absent in both metal coated spectra. Moreover,
this difference is displayed in the F 1s spectra as well. The uncoated graphite has a PDVF peak at
~687.8 eV while the metal coated F 1s spectra have a peak hardly distinguishable from the
background at the same binding energy. The peak areas show that the PVDF peak for the uncoated
graphite is more intense then the metal coated PVDF peaks on average by a factor of ~20. This
stronger dampening effect of the F 1s signal relative to the C 1s signal is because of its lower
kinetic energy, which has a sampling depth of ~7 nm.” 2

The O 1s spectra are all quite different between the three electrodes. The uncoated graphite
surface has two peaks that align well with bonds found in adsorbed COx species.!* One single peak
relating to COx species or possibly defective oxide species exists at ~531.1 eV for both metal
coated electrodes.!™ 222 However, for Cu-graphite surface there is a second peak at ~530.0 eV
which agrees well with a lattice oxide in a Cu2O phase.?? Similarly, the second Ni-graphite at
~529.1 eV matches well with lattice oxide in a NiO phase.?® The O 1s spectra identifies absorbed
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COx species on the surface of uncoated graphite while it also confirms the presence of an oxidized
metal surface in both metal coated electrodes corroborating results from the Cu 2p/LMM and Ni
2p transitions.

Intensity (Cps)

Before ,IAr sputtelrin | L | .l | | | N
960 950 940 930 580 570 560 880 870 860 850
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Figure S9. XPS Cu 2p, Cu LMM, and Ni 2p spectra for the as prepared Cu-graphite and Ni-
graphite anodes as a function of Ar sputtering times: 0, 2, 5, 15, 30 minutes. Cu metal, Cu20,
CuO, Ni metal and NiO are plotted for comparison. The dominant species are Cu and Ni oxides
before and after Ar sputtering.
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Figure S10. Operando XANES spectra overlaid with relevant standards for (a, b) Cu-graphite
electrodes and (c, d) Ni-graphite electrodes during a single formation cycle at C/5 rate between
0.01-1.3 V vs. Li/Li*. Spectra are shown for (a, c) discharge and (b, d) charge processes.
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Figure S11. (a, b, ¢, d) XRF maps of (a) pristine 10 nm Cu-graphite electrode, (b) 10 nm Cu-
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graphite electrode after formation cycling (c) pristine 10 nm Ni-graphite electrode (d) 10 nm Ni-

graphite electrode after formation cycling.
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Figure S12. First discharge and charge curves of graphite, 10 nm Cu-graphite, 10 nm Ni-
graphite electrodes at C/10 rate between 0.01-1.3 V.
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Table S5. Tabulated capacity values for first discharge and charge of electrodes at C/10 rate
between 0.01-1.3 V (n = 4).

Electrode 1t lithiation mAhg? 1%t delithiation mAhg?  Irreversible Capacity mAhg?
graphite 399+5 362+5 377

Cu-graphite 388+5 353+5 35+8

Ni-graphite 394 +4 356 +5 38+6
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Figure S13. (a) Comparison of representative EIS spectra after formation cycling for pristine
graphite electrodes, graphite electrodes sputtered with 10 nm Cu, and graphite electrodes
sputtered with 10 nm of Ni. (b) Equivalent circuit model used to quantify the impedance data. (c)
Example overlay of experimental data and fit using the model.
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Table S6. Tabulated average EIS equivalent circuit fit results (n = 4) for half cells after undergoing
formation cycling.

Electrode Type R1(Q) R2(Q) Rs: (Q) R4 (Q) Zwr (Q) Zw,1(Q) Zw,p
graphite 15+0.3 19+03 81+05 15%+03 15+1 0.73 £0.07 0.399 + 0.002
Cu-graphite 1.5+05 26+04 85+0.7 15+0.1 18#2 09+0.1 0.402 +0.003
Ni-graphite 1.7+0.5 19+01 7808 1.2+0.2 16+2 0.77 £ 0.06 0.403 +0.004
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Figure S15. Electrochemistry of graphite/NMC622 cells under symmetric C/2 discharge and
charge conditions. (a) areal capacities, and (b) coulombic efficiency, and (c) capacity retention.
Representative voltage profiles for (d) graphite, (e) Cu-graphite, and (f) Ni-graphite. Anodes in
the cells consisted of pristine graphite electrodes, graphite electrodes sputtered with 10 nm Cu, or
graphite electrodes sputtered with 10 nm of Ni. Error bars represent one standard deviation from
the mean (n = 2).
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Figure S16. Images of anodes post 300 cycles at C/2 and 6C/1C rates in NMC622/graphite full
pouch cells. Cells were in the charged state upon disassembly. The white-grey colored regions,
apparent for the cells cycled at the 6C rate, is deposited Li metal.
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Table S7. Normalized lithium plating capacities for fully lithiated electrodes subjected to voltage
holds of -10, -15 and -20 mV for 6 hours.

Normalized Li Plating Capacities

Electrode Type -10 mV voltage -15 mV voltage -20 mV voltage
hold hold hold
graphite 0.30+0.03 0.65 £ 0.05 1.00 £ 0.05
Cu-graphite 0.20£0.05 0.48 £0.05 0.65+0.03
Ni-graphite 0.20+ 0.08 0.48 £0.03 0.60+0.03
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Table S8. Normalized Li(110)/Cu(220) peak area ratios from XRD measurements of electrodes
recovered from half cells subjected to voltage holds of -10, -15 and -20 mV for 6 hours.

Normalized Li(110)/Cu(220) Peak Area Ratio

Electrode Type
-10 mV voltage hold -15 mV voltage hold -20 mV voltage hold

graphite 0.26 £ 0.03 0.49 £0.09 1.00 £+ 0.08
Cu-graphite 0.13+0.05 0.28 + 0.08 0.6+0.1
Ni-graphite 0.08 +0.08 0.28 £ 0.08 0.54 +0.05
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Figure S17. Cross-section SEM images at different magnifications of the Li plated on the (a-c)
uncoated graphite, (d-f) Cu-coated graphite, and (g-i) Ni-coated graphite electrodes at 5000x
magnification.
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Graphite

Figure S18. Backscatter SEM images at different magnifications of the Li plated on the (a-c)
uncoated graphite, (d-f) Cu-coated graphite, and (g-i) Ni-coated graphite electrodes at 1000x
magnification.
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Areal

Area 2

Area 3

Figure S19. Backscatter SEM images at different magnifications of the Li plated on the (a-c)
uncoated graphite, (d-f) Cu-coated graphite, and (g-i) Ni-coated graphite electrodes at 5000x
magnification.
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