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1- Evanescent modes at the interface of a uniaxial anisotropic and an 

isotropic  medium 

 

In order to obtain the characteristic equations for the slab waveguide shown in Figure S1, a vector-

potential approach is utilized. This approach helps us to more efficiently distinguish and derive the 

possible modal groups, rather than the usual approach to construct the solutions at the field level.1, 

2 This is because that in contrast to the field approach one can derives a Helmholtz equation for 

vector potentials even for an anisotropic medium, though such an equation is not valid for field 

components in general. We first consider the Maxwell equations as: 

   , ,E r i B r      (1a) 

   , ,H r i D r     (1b) 

 , 0B r     (1c) 

 , 0D r     (1d) 

where the harmonic representation as  exp i t  is considered, with 2 1i   . We consider also the 

constitutive relations including the ME effect as: 

     ˆ, : ,rD r E r      (2a) 
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, ,H r B r 


  (2b) 

Since the magnetic flux density  ,B r   is a pure solenoidal vector quantity it can be described as 

the curl of another vector, which is called the magnetic vector potential, as: 

 

B A   (3) 

in which we have dropped the argument  ,r  for simplicity. Inserting eq. (3) in eq. (1a) gives: 

E i A     (4) 

in which   is the electric scalar potential. Using (1) to (4), we can derive the following equation 

for the magnetic vector potential: 

 21
ˆ :

ˆ : 0

r

r

A A A

i

  


  








    

 

 (5) 

Equation (3) only defines the rotational part of the magnetic vector potential. We are free to 

employ a gauge theory to fix its solenoidal part. In order to do so, we can define a generalized 

Lorentz gauge in the form of: 

1ˆr A
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Using (6), (5) is further simplified to a Helmholtz equation in the form of: 
2 2

0 ˆ : 0rA k A     (7) 



in which 0k     is the wave vector of the light in free space. Solutions to (7) are called wave 

potentials. The field components obtained using eqs. (3), (4) and (6). 

We consider here the solutions to the optical modes excited at the interface of a uniaxial anisotropic 

material and an isotropic dielectric located at 0z  and 0z  , respectively. The optic axis is parallel 

to the interface, and without any loss of generality we consider the wave to propagate along the x-

axis and evanescent along the z-axis. Moreover, the only non-zero elements of the permittivity 

tensor are 
r xx r yy r     and 

r zz r   . The optical modes in such a system are decomposed into 

two individual sets; namely TMx and TMz, where they are constructed by the choice of the magnetic 

vector potential as  ,0,0xA A  and  0,0, zA A , respectively. It is easily verified that a choice as 

 0, ,0yA A will not satisfy the boundary conditions. For each case, the solutions to wave potentials 

can be constructed as  ,A r    exp d

zA z     exp i z  and 

      2,
, exp expzA r A z i z



      for 0z  , and 0z  , respectively, where i     is the 

propagation constant (  is the phase constant and  is the attenuation constant), 
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      and    

2
d

z   2
0r d k   . Moreover,  ,x z  . 

We first consider solutions to the TMx modes. Satisfying the tangential boundary conditions for the 

Ex and Hy field components, the propagation constant of the optical modes at the interface is 

obtained as: 

  xTM
0r d r r r dk        (8) 

Interestingly, only it is only the 
r  component of the permittivity which affect the propagation 

constant of the TMx mode. Moreover, eq. (8) is quite similar to the propagation constant of plasmon 

polaritons at the interface of two isotropic materials with the relative permittivity of  
r and 

r d , 

respectively. In order to have evanescent modes, the real parts of  2,x
z and  d

z should be positive, 

which lead us to the criterion
r r d   . This means that in order to have evanescent TMx modes, 

the material should be metallic at least in the direction of the optic axis. 

The propagation constant for the TMz mode can be derived as: 

    zTM 2 2 2
0rd r rd r r rdk           (9) 

In order to have bound TMz modes, the real parts of the damping factors  2,z
z and  d

z should be 

positive, which leads to more difficult criterion, as shown in table S1.  



The last criterion (C4) for TMz modes has been so far considered in the literature1 as the criterion 

to excite the bound Dyakonov mode at the interface of uniaxial anisotropic/isotropic materials, as

r r d r     , when both r  and r  can be positive.  Moreover for r r d    and r r d    

Table S1. Bound modes at the interfaces of isotropic/isotropic and  

anisotropic/isotropic materials. Scale bar is 02 r d k  . 

 

 



both TMx and TMz modes can be excited, even if 0r   , for which the material is called 

hyperbolic. Interestingly, whereas the only non-zero field components for both TMx and TMz modes 

are xE , zE , and yH , the field profiles are different as shown in table S1, and the overall polarization 

state would be different for these cases. Notably for an isotropic/isotropic interface, TMz and TMx 

modes are degenerate. 

All the criteria above are only valid for lossless materials. However, for real materials, the dielectric 

loss is not negligible as the imaginary part of the permittivity can be even larger than the real part, 

especially at the energies near to the inter band transitions, as happens also for Bi2Se3 material. For 

the sake of completeness for our discussions regarding the interface modes, we have computed here 

the propagation constants of the optical modes at the interface of Bi2Se3/air and Bi2Se3/a-C, where 

a-C stands for amorphous carbon.  

As noted in the main text, Bi2Se3 has three distinguished energy ranges: It is dielectric at E < 1.06 

eV , hyperbolic type I ( 0r    and 0r  ) at 1.06 eV < E < 1.73 eV, and hyperbolic type II (

0r    and 0r  ) at E >1.73 eV. These frequency ranges are denoted by D, H II , and H I  

respectively. both TMx and TMz  modes  can be excited in the whole frequency range at the  

 

 

Figure S1: Propagation constant of a) TMx mode at Bi2Se3/air, b) TMz mode at Bi2Se3/air for c) 

TMx modes at Bi2Se3/a-C, and d) a) TMz modes at Bi2Se3/a-C interfaces. Spatial field distribution 

for Ex field component at a given time and selected energies are depicted at the insets. 



Bi2Se3/air interface, while there is a clear gap at the excitation energies of the forwardly propagating 

(    zTM 2 2 2
0rd r rd r r rdk          , see eq. (9)) TMz modes, as attenuation constant 

becomes negative in some energy ranges. At these energies, a backwardly propagating mode ((

   zTM 2 2 2
0rd r rd r r rdk          , see eq. (9))) with a negative phase velocity is still 

possible, which can only be excited at discontinuities and tapers3.  Moreover, despite the case of 

isotropic plasmons in a Drude metal like silver or aluminum, the hyperbolic plasmon dispersion in 

Bi2Se3 are in general more attached to the light line, due to the huge dielectric loss. 

 

2- EFTEM images for several Bi2Se3 particles 

Figure S2: shows the EFTEM series for a Bi2Se3 particle with the thickness of 55 nm  

positioned on a carbon substrate, which supports wedge modes. 

 

 

Complete Band diagram of a Bi2Se3 rib waveguide 

In order to emphasize the extremely huge number of PDOS in the Bi2Se3 rib waveguide, the full 

photonic dispersion diagram as well as the computed PDOS is demonstrated in Figure S3. In order 

to calculate the PDOS from the numerical data, the method described in ref. 4 is used. 



 
Figure S3: (a) Dispersion diagram and (b) photonic local density of states (PDOS) 

sustained by a Bi2Se3 rib waveguide on a amorphous carbon substrate. L = 400 nm, H = 

50nm, and h = 55 nm. 
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