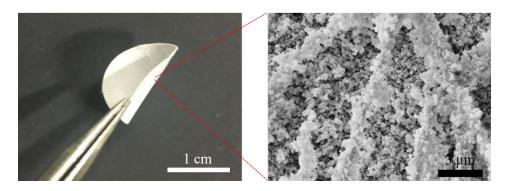
Supporting Information

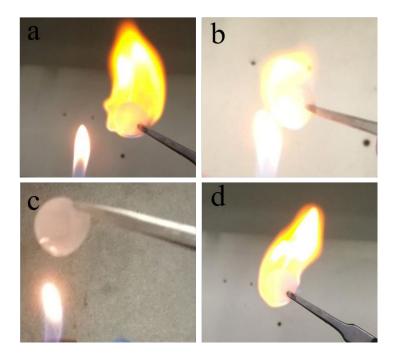
Fluorinated ether based electrolyte enabling sodium-metal batteries

with exceptional cycling stability

Qiang Yi,^{1,2} Yao Lu¹, Xiaorui Sun^{2,3}, Hua Zhang³, Hailong Yu³ and Chunwen Sun^{1,2*}


¹CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

²School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China


³Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China

* Corresponding authors.

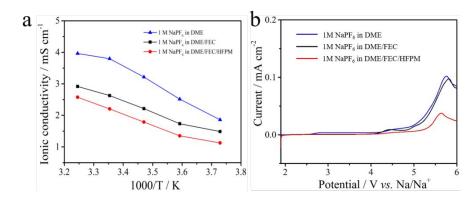
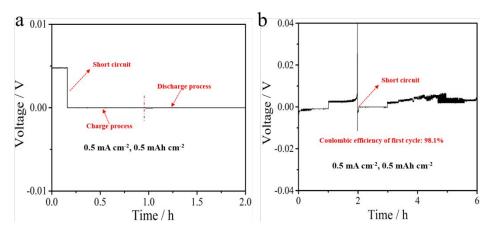
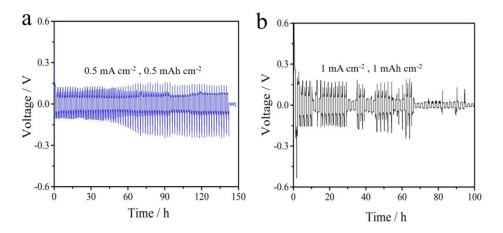

Tel.: +86-10-82854648, fax: +86-10-82854648. Email: <u>sunchunwen@binn.cas.cn</u> (C. Sun)

Figure S1. Photographs and SEM images of the nonflammable porous separator (NPS).


Figure S2. Flame test of different electrolytes absorbed in porous separators: (a) NaPF₆-DME, (b) NaPF₆-FE and (c) NaPF₆-FRE, (d) EC/PC based liquid electrolyte.

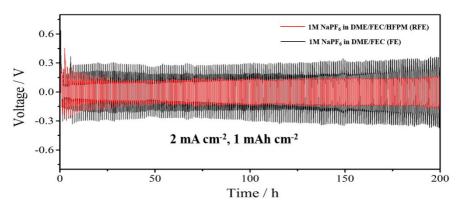
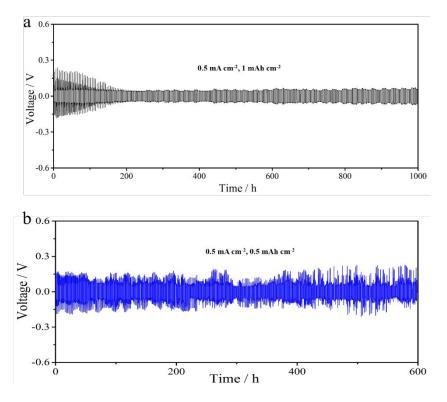
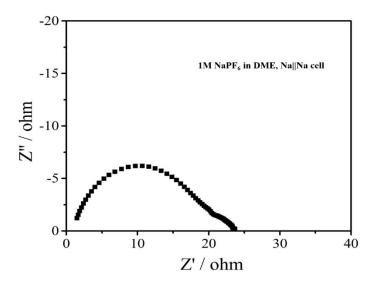

Figure S3. (a) Ionic conductivities of different electrolytes at different temperatures. (b) The electrochemical window of different electrolytes evaluated by a linear sweep voltammetry (LSV) from 1.9 V to 6.0 V.

a 0 min	1 min	3 min	5 min
		-	B. M. Sand a
	and the second second	and the set of the set of	and a set of the set of the set of the
b ^{0 min}	1 min	3 min	5 min
~		~	~
			Share a land
	to 1 and the second		
C 0 min	1 min	3 min	5 min
-		1.1.4	-

Figure S4. In situ optical observations of Na plating in different electrolytes: (a) NaPF₆-DME, (b) NaPF₆-FE and (c) NaPF₆-FRE. All the scale bars are 500 μ m. The plating current is 2 mA cm⁻².

Figure S5. (a) Cycling performance of the Na symmetric cell with NaPF₆-DME electrolyte at 0.5 mA cm⁻² and 0.5 mAh cm⁻². (b) Cycling performance of the Na ||Cu cell with NaPF₆-DME electrolyte at 0.5 mA cm⁻² and 0.5 mAh cm⁻².

Figure S6. Cycling performance of Na symmetric cells with commercial carbonate-based electrolyte: (a) at 0.5 mA cm⁻² and 0.5 mAh cm⁻², and (b) at 1 mA cm⁻² and 1 mAh cm⁻².

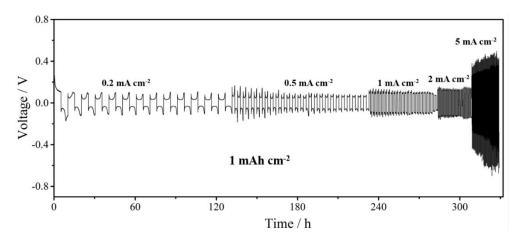
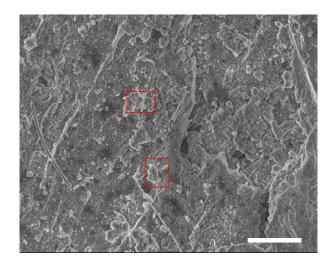
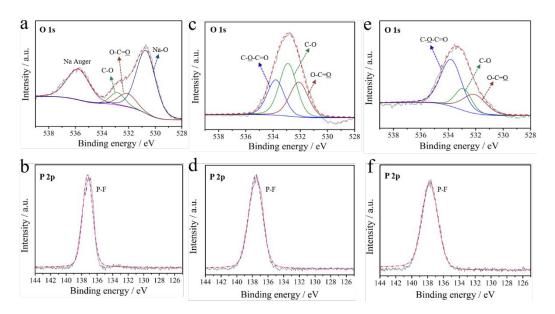
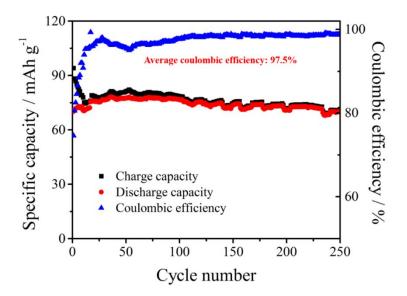
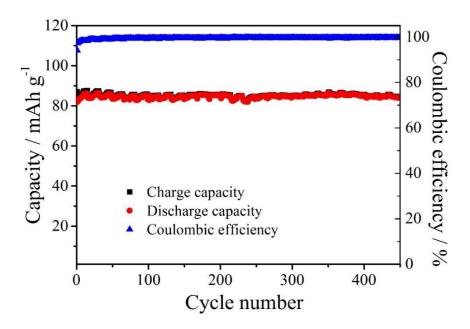

Figure S7. Cycling performance of the Na symmetric cell with NaPF₆-FRE electrolyte absorbed in NPS at 2 mA cm⁻² and 1 mAh cm⁻².

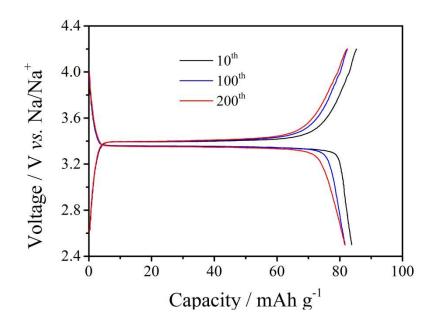
Figure S8. Cycling performance of the Na symmetric cell with (a) NaPF₆-FRE electrolyte absorbed in glass fiber separator at 0.5 mA cm⁻² and 1 mAh cm⁻² and (b) NaPF₆-FE electrolyte absorbed in glass fiber separator at 0.5 mA cm⁻² and 0.5 mAh cm⁻².

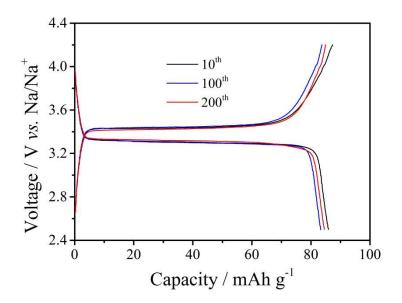
Figure S9. Nyquist plots of the Na symmetric cell with NaPF₆-DME electrolyte before cycling test.

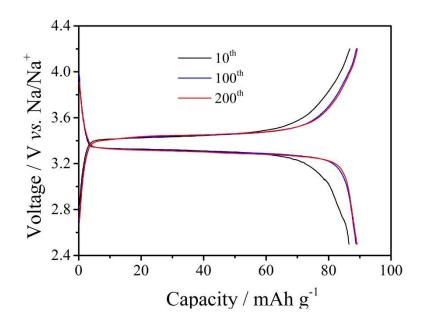
Figure S10. Rate performance of the Na symmetric cells with NaPF₆-FRE electrolyte absorbed in NPS at different current densities.

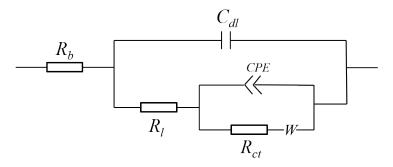





Figure S11. SEM images of the Na surface in the cell with Commercial NaPF₆-EC/PC electrolyte after 2 cycles at 0.5 mA cm⁻² and 1mAh cm⁻². The scale bars are 5 μ m.


Figure S12. XPS spectra of Na surface after 50 cycles at 1 mA cm⁻² with different electrolytes: O1s and P2p spectra of Na surface after cycling with NaPF₆-DME (a, b), NaPF₆-FE (c, d) and NaPF₆-FRE and (e, f) electrolyte.


Figure S13. Cycling performance of the NVP||Na cells with 1M NaPF₆-DME electrolyte absorbed in glass fiber at 0.5 C.


Figure S14. Cycling performance of the NVP||Na cells with 1M NaPF₆-FE electrolyte absorbed in NPS at 0.5 C.


Figure S15. Typical charge/discharge curves of the NVP||Na cell with 1M NaPF₆-DME electrolyte absorbed in NPS at 0.5 C after different cycles.

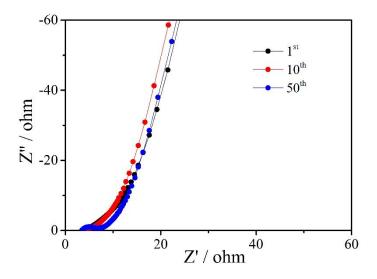
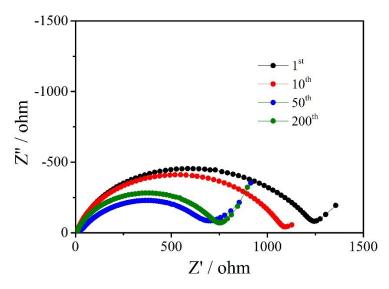
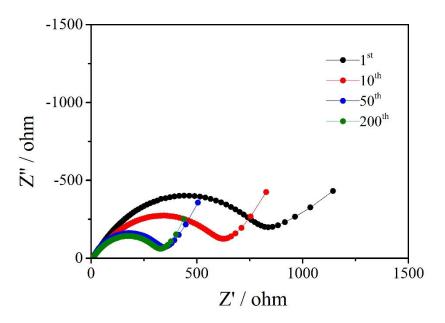
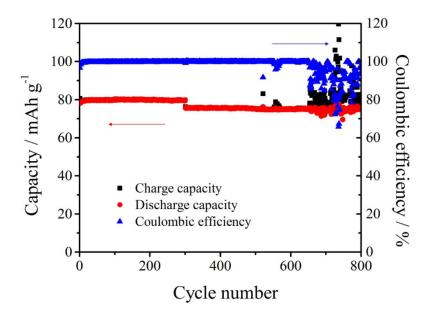

Figure S16. Typical charge/discharge curves of the NVP||Na cell with 1M NaPF₆-FE electrolyte absorbed in NPS at 0.5 C after different cycles.

Figure S17. Typical charge/discharge curves of the NVP||Na cell with 1M NaPF₆-FRE electrolyte absorbed in NPS at 0.5 C after different cycles.

Figure S18. Equivalent circuit utilized for fitting electrochemical impedance spectroscopy. R_b , R_l , R_{ct} and Z_w corresponding to bulk resistance, liquid electrolyte resistance, charge transfer resistance and Warburg impedance.^[S1-S2] Interfacial resistance (R_i) corresponds to the intercept of the semi-circle with the real axis at the lower frequency.

Figure S19. Nyquist plots of the NVP||Na cell with NaPF₆-DME electrolyte after different cycles at 1 C.

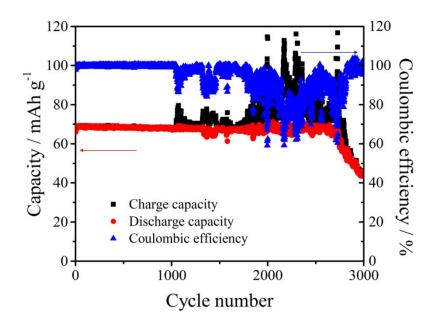

Figure S20. Nyquist plots of the NVP||Na cell with NaPF₆-FE electrolyte after different cycles at 1 C.

Figure S21. Nyquist plots of NVP||Na cell with NaPF₆-FRE electrolyte after different cycles at 1 C.

Figure S22. Cycling performance of the NVP||Na cells with commercial carbonate-based electrolyte absorbed in NPS at 0.5 C and 1C.

Figure S23. Cycling performance of the NVP||Na cells with commercial carbonate-based electrolyte absorbed in NPS at 5 C.

 Table S1. Comparison of the cycling performance of NVP-based cathodes based cells

 with different electrolytes cycled at 5 C.

Cathode	Electrolyte	Capacity retention	Reference
NVP@rGO	1M NaClO ₄ in EC/DMC	81% after 3000 cycles	S3
NVP@C	1M NaClO ₄ in PC	88% after 700 cycles	S4
NVP@C@CMK-3	1M NaClO ₄ in PC/FEC	68% after 2000 cycles	S5
NVP@C@HC	1M NaClO ₄ in EC/DMC/FEC	90.4% after 500 cycles	S6
NVP	1M NaPF ₄ in DME/FEC/HFPM	94.1% after 2000 cycles	This work

References

(S1) Ates, M.; Sarac, A. S. Capacitive Behavior of Polycarbazole and Poly (N-vinylcarbazole)-Coated Carbon Fiber Microelectrodes in Various Solutions. J. Appl. Electrochem. 2009, 39, 2043–2048.

- (S2) Sarac, A. S.; Ates, M.; Kilic, B. Electrochemical Impedance Spectroscopic Study of Polyaniline on Platinum, Glassy Carbon and 661 Carbon Fiber Microelectrodes. *Int. J. Electrochem. Sci.* 2008, *3*, 777–662786.
- (S3) Zhang, J.; Fang, Y.; Xiao, L.; Qian, J.; Cao,Y.; Ai, X.;Yang, H. Graphene-Scaffolded Na₃V₂ (PO₄)₃ Microsphere Cathode with High Rate Capability and Cycling Stability for Sodium Ion Batteries. *ACS Appl. Mater. Interfaces* 2017, 9, 7177–7184.
- (S4) Shen, W.; Li, H.; Guo, Z.; Wang, C.; Li, Z.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Double-Nanocarbon Synergistically Modified Na₃V₂(PO₄)₃: an Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. *ACS Appl. Mater. Interfaces* 2016, *8*, 15341-15351.
- (S5) Jiang, Y.; Yang, Z.; Li, W.; Zeng, L.; Pan, z.; Wang, M.; Wei, X.; Hu, G.; Gu, L.;
 Yu, Y. Nanoconfined Carbon-Coated Na₃V₂(PO₄)₃ Particles in Mesoporous Carbon
 Enabling Ultralong Cycle Life for Sodium-Ion Batteries. *Adv. Energy Mater.* 2015, *5*, 1402104.
- (S6) Chen, L.; Zhao, Y.; Liu, S.; Zhao, L. Hard Carbon Wrapped Na₃V₂(PO₄)₃@C
 Porous Composite Extending Cycling Lifespan for Sodium-Ion Batteries. *ACS Appl. Mater. Interfaces* 2017, *9*, 44485-44493.