Supporting Information

Estimation of extracellular matrix production using cultured-chondrocyte-based gate ion-sensitive fieldeffect transistor

Hiroto Satake and Toshiya Sakata*

Department of Materials Engineering, School of Engineering, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
*Corresponding author. E-mail: sakata@biofet.t.u-tokyo.ac.jp

Table of Contents
Figure S1. Conceptual structure of solution-gate ISFET sensor for electrical measurement.

Figure S1 (a) Conceptual structure of solution-gate ISFET sensor for electrical measurement. The channel size, a width (W) and length (L) were designed to be 340 and $10 \mu \mathrm{~m}$, respectively. Hydroxy groups at the oxide membrane in a solution exhibit the equilibrium reaction with hydrogen ions. (b) Calibration curve, which was analyzed on the basis of $V_{\mathrm{G}}-I_{\mathrm{D}}$ electrical characteristic. In the $V_{\mathrm{G}}-I_{\mathrm{D}}$ electrical characteristic of the ISFET sensors used in this study, the shift in V_{G} at a constant I_{D} of 1 mA was estimated as the change in V_{T} when the pH was changed from pH 4.01 to 9.18 . The pH sensitivity of this ISFET sensor was about $56 \mathrm{mV} / \mathrm{pH}$, which almost showed a Nernstian response at $25^{\circ} \mathrm{C} . V_{\mathrm{G}}$ at pH 4.01 was offset to 0 . (c) Photograph of chondrocytes cultured on the gate insulator for 3 weeks in the culture medium with 1% (v/v) ITS and $200 \mu \mathrm{~g} / \mathrm{mL}$ APM. Scale bar, $250 \mu \mathrm{~m}$.

