
S-1 

 

Supporting Information 

 

Visualizing morphogenesis through instability formation in 4-D printing 

 

Dong Wu†, ‡, Jiaqi Song†, ‡, Zirui Zhai§, Mutian Hua†, Cheolgyu Kim†, Imri Frenkel†, Hanqing 

Jiang§, Ximin He†,* 

 

† Department of Materials Science and Engineering, University of California, Los Angeles 

(UCLA), Los Angeles, California 90095, United States 

§ School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, 

Arizona 85281, United States 

‡ D.W. and J.S. contributed equally. 

 

*Corresponding author. 

E-mail address: ximinhe@ucla.edu (X. H) 

 

 

 

 

 

 

 

 

 

 

 

 

 



S-2 

 

S1. Theory and simulation 

The shape transition of hydrogels is a transient multi-physics process, which involves mass 

diffusion of water into/out of the gel and large deformation of the gel network. To model this 

complicated behavior, the inhomogeneous field theory that couples large deformation and mass 

diffusion developed by Hong et al.1 and the finite element method developed by Wang et al.2 were 

used and implemented in the environment of commercial multi-physics modeling software 

COMSOL. 

In the inhomogeneous field theory of gel, a standard approach in continuum mechanics is 

used for the kinematics of the network. The stress-free initial state is taken as the reference state. 

In large deformation, deformation gradient 
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is used to map between the reference state (with coordinate X) and the current state (with 

coordinate x(X, t)). 

For mass diffusion, the conservation of mass can be expressed as 
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where C is the nominal solvent concentration, and J is the nominal flux. An equivalent way to 

express the flux is through the true flux ji 

i i K Kj n da J N dA= , 

where da  and dA  are the areas of the element, while in  and KN  are the unit vectors normal 

to the interface, in the current state and the reference state, respectively. Using the conservation of 

mass in an integration form, 
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and divergence theorem, the differential form in true flux can be expressed as 
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The nominal concentration C relates to the deformation via the condition of incompressibility 

1 detC+ = F , 
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where   is the volume per small molecule, and true concentration of solvent relates to the 

nominal concentration via 

detc C=F . 

The true flux is given by the gradient of the chemical potential, 
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where D(T) is the temperature dependent intrinsic diffusivity and  is the normalized chemical 

potential (by Bk T ) of the solvent inside the gel. Thus, the conservation of mass can be derived as 
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This equation can be directly implemented using the heat transfer equation or coefficient form of 

the PDE interface of COMSOL. 

A user-defined hyperelastic material node under solid mechanics interface can be used to 

describe the constitutive relation. One choice of the free energy density is the Flory-Huggins model, 

where the normalized nominal free energy density ˆ ( )W F  is given by1 
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where N  is a dimensionless materials property representing the shear modulus of the dry 

polymer and   is molecule volume of water. The shear modulus of the dry polymer BNk T  is 

related to the normalized shear modulus by B
B

k T
Nk T N


= . T is the temperature, Bk  is the 

Boltzmann constant and   is the temperature dependent dimensionless materials properties 

representing the enthalpy of mixing. All the materials parameters can be determined or derived 

from the experiment results (Table S1). With the solid mechanics and the PDE interface of 

COMSOL, the transient analysis of the gels with coupled mass diffusion and large deformation 

can now be formed. More details of this implementation can be found.1-3 
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2D instability simulation of pumpkin models  

To simplify the modeling of pumpkin models and focus on the instability phenomenon, a 2D 

plane stress condition is assumed here. It is also assumed that a surface energy is associated with 

the free boundary of the gel,4 which creates a surface traction t  in the current configuration a 

0t t n=   

where n  is the outer unit vector associated with the free boundary, and 0t  is set as 0.02 N/m for 

all the 2D instability simulations. The surface traction is applied after the gel system is fully 

swelled. The outer boundary is set as no displacement restriction and zero chemical potential. The 

displacement and chemical potential fields have continued values between the two layers of gels. 

Hundreds of quadratic elements have been used for both displacement and chemical potential field 

discretization. 

 

3D growing simulations of various plant models 

  The hydrogels are modeled with real dimensions of the initial gel states. Thousands of linear 

elements have been used for both displacement and chemical potential field discretization. All the 

outer boundaries are without displacement restriction and at zero chemical potential. The 

displacement and chemical potential fields have continued value between different gels. Because 

of geometric symmetry, 1/8 of the model is used for the simulation of the flower.  

 

Table S1. Parameters used in the simulation 

Parameter Description Value 

drygel  Density of dry gel 1.395g·cm-3 

water  
Density of water 1000 kg·m-3 

T Water temperature 293.15 K 

Bk  Boltzmann constant 1.38064852

× 10−23𝐽 ⋅ 𝐾-1 

waterv  Molecular volume of water 29 32.99 10 m−  
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drygel  Poisson’s ratio of dry gel 0.5 

0  Length swelling ratio of all gels from dry state to initial state 1.5 

3.5sE  Young’s modulus of 3.5 s gel at initial state 23.8 kPa 

4sE  Young’s modulus of 4 s gel at initial state 38.6 kPa 

8sE  Young’s modulus of 8 s gel at initial state 186 kPa 

10sE  Young’s modulus of 10 s gel at initial state 295 kPa 

3s  Length swelling ratio of 3 s gel from initial state to final state 1.77 

3.5s  Length swelling ratio of 3.5 s gel from initial state to final state 1.73 

4s  Length swelling ratio of 4 s gel from initial state to final state 1.70 

8s  Length swelling ratio of 8 s gel from initial state to final state 1.40 

10s  Length swelling ratio of 10 s gel from initial state to final state 1.37 

 

S2. Design of the pumpkin model 

    A Computer-aided design (CAD) model was utilized to print the pumpkin models with 

various core-shell radius ratios. The profile of the CAD model is shown as Figure S1. Different 

core-shell ratios were achieved by only tuning the radius of the core, A. The other parameters, 

including the height of the model and the diameter of the outer radius of the shell, were fixed to 

eliminate the potential interference.  
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Figure S1. Profile of the CAD model. The core-shell radius ratio is tuned by the radius of the 

core, A, which is the only varying parameter in this profile. The core-shell ratio of the model 

(A/B) varies from 0.2 to 0.6 in this work. 

 

S3. Analytical Calculation 

    To understand the roles of different parameters in the buckling formation of the pumpkin 

model, including the swelling ratio difference and the core/shell ratio, a well-known model 

involving three states has been adopted as shown in Figure S2.5 

 

Figure S2. A model of the swelling of hydrogel includes three states: the stress-free initial state before 

growth, the stress-free state after growth, and the stressed final state after growth. Three tensors are utilized 

to map one state to another: the growth tensor G, the deformation tensor A, and the deformation gradient 

F, which are related to each other by F=AG. Reproduced with permission from reference 6.6 Copyright 

2011 IOP Publishing Ltd. 

 

The initial state of hydrogel is considered as stress-free while the final state, which can be 

achieved after growth, is taken as stressed. Besides, a stress-free state after unconstrained and 

homogeneous growth is assumed to analyze the growth process. 

The stress-free growth is characterized by the growth tensor, 𝐆 = diag[𝑔𝑟 , 𝑔𝜃, 𝑔𝑧], and the 

deformation attributed to the constrain imposed by the surrounding elements is characterized by 

the deformation tensor, 𝐀 = diag[𝛼𝑟 , 𝛼𝜃, 𝛼𝑧]. The deformation gradient of the final state to the 

initial state, 𝐅 = diag[𝜆𝑟 , 𝜆𝜃, 𝜆𝑧], can be achieved by the multiplication of the growth tensor and 

the deformation tensor: 𝐅 = 𝐀𝐆, where r is the radial direction, θ is the circumferential direction 

and z is the longitudinal direction.  

Assuming that the deformation is elastic and incompressible, det(𝐴) = 1, then 
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det(𝐹) = det(𝐺) = 𝜆𝑟𝜆𝜃𝜆𝑧 = 𝑔𝑟𝑔𝜃𝑔𝑧 

    Therefore, the principal stretches in deformation gradient can be written as 

𝜆𝑟 =
𝑔𝑟𝑔𝜃𝑔𝑧

𝜆𝜃𝜆𝑧
= 𝑔𝑟𝛼𝑟 

𝜆𝜃 =
𝑙𝑟

𝑙𝑅
=

𝑟 ∙ 𝜃

𝑅 ∙ 𝜃
=

𝑟

𝑅
= 𝑔𝜃𝛼𝜃 

𝜆𝑧 = 𝑔𝑧𝛼𝑧 (𝜆𝑧 = 1 if there is no deformation in z direction) 

where R and r are the distance between the same arbitrary element in shell and the center of the 

concentric circles before and after swelling, 𝑙𝑟 and 𝑙𝑅 are the corresponding arc length. 

    Previously, Jin et al. has reported the analysis of the crease formation in the soft tissue 

growing outside the non-swelling rigid core.6 Based on their model, we went further to analyze 

the buckling formation of the core-shell structure, in which both the core and the shell swell while 

shell can swell more than the core. Due to the swelling of both the core and the shell, the 2-step 

swelling process is proposed as shown in Figure S3.  

 

Figure S3. The swelling process is divided into 2 steps involving 3 different states: the initial stress-free 

State I; the stress-free State II after the homogeneous growth of the core and the shell with the same growth 

ratio, 𝑔𝑐𝑜𝑟𝑒; the final stressed state after complete growth of the model. 

 

    The initial state, denoted as State I, is taken as stress-free. Both the core and the shell are 

assumed to swell with the same ratio, 𝑔𝑐𝑜𝑟𝑒, simultaneously and homogeneously to a stress-free 

State II: 

a = 𝑔𝑐𝑜𝑟𝑒𝐴                   (1) 

𝐵′ = 𝑔𝑐𝑜𝑟𝑒𝐵                  (2) 

Define 𝑔 as the relative growth ratio from stress-free State II to stressed State III: 
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𝑔𝑟 = 𝑔𝜃 = 𝑔𝑧 =
𝑔𝑠ℎ𝑒𝑙𝑙

𝑔𝑐𝑜𝑟𝑒
= 𝑔 

The principal stretches will be: 

𝜆𝑟 =
𝑔𝑟𝑔𝜃𝑔𝑧

𝜆𝜃
=

𝑔3

𝜆𝜃
; 𝜆𝜃 =

𝑙𝑟

𝑙𝑅
=

𝑟∙𝜃

𝑅∙𝜃
=

𝑟

𝑅
; 𝜆𝑧 = 1 

The field of deformation r(R) is determined by: 

𝑟2 − 𝑎2 = 𝑔𝑟𝑔𝜃𝑔𝑧(𝑅2 − 𝑎2) 

At the surface r = b and 𝑅 = 𝐵′, then 

𝑏2 − 𝑎2 = 𝑔𝑟𝑔𝜃𝑔𝑧(𝐵′2
− 𝑎2) 

𝑏2 = 𝑔𝑟𝑔𝜃𝑔𝑧(𝐵′2
− 𝑎2) + 𝑎2 = 𝑔3(𝐵′2

− 𝑎2) + 𝑎2 

The critical condition for the onset of circumferential creases at the surface of the shell is 𝛼𝑟 𝛼𝜃⁄ =

2.4, or 

   
𝛼𝑟

𝛼𝜃
= (

𝜆𝑟

𝑔𝑟
) (

𝜆𝜃

𝑔𝜃
)⁄ = (

𝑔𝜃𝑔𝑧

𝜆𝜃
) (

𝜆𝜃

𝑔𝜃
) =⁄ 𝑔𝜃

2𝑔𝑧𝐵′2
𝑏2⁄ = 𝑔3𝐵′2

(𝑔3(𝐵′2
− 𝑎2) + 𝑎2)⁄     (3) 

Put (1) and (2) into (3), then 

𝛼𝑟

𝛼𝜃
= 𝑔3𝐵2 (𝑔3(𝐵2 − 𝐴2) + 𝐴2)⁄ = 2.4   (4) 

which can also be written as 

𝑔3 ((
𝐴

𝐵
)

2

− 𝑔3 ((
𝐴

𝐵
)

2

− 1))⁄ = 2.4 

As a result, the function 𝑔 (
𝐴

𝐵
) can be achieved as 

𝑔 = √

2.4

2.4 − 1.4 (
𝐴
𝐵)

−2
3

 

which is plotted as Figure 5(f). 

    To further investigate the influence of the deformation in z direction on the critical condition 

of surface buckling, here we introduce 𝜆𝑧 into the calculation. Therefore, the equation (4) can be 

rewritten as 
𝛼𝑟

𝛼𝜃
= 𝑔3𝐵2 (𝜆𝑧(𝑔3(𝐵2 − 𝐴2) + 𝐴2))⁄ = 2.4 

The critical relative growth ratio, 𝑔, is plotted versus A/B with different 𝜆𝑧 shown as 
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Figure S4. The critical relative growth ratio, 𝑔, for onset of the surface buckling as a function of A/B for 

isotropic growth with different deformation in z direction. (black: 𝜆𝑧 = 1; red: 𝜆𝑧 = 0.75; blue: 𝜆𝑧 = 0.5). 

 

S4. Printing pumpkin model with a hollow core 

Pumpkins are commonly regarded as hollow structures, which are different from our solid-

core model. To further validate the mechanism of buckling formation in our model, a hollow-core 

model was printed. The core-shell ratio of this model is 6/10. The shell was cured for 4s and the 

core was cured for 10s. The hollow core was created by printing ring patterns with a radius ratio 

of 5/6 (instead of circles) for the 11st ~ 40th layers out of the totally 50 layers and printing (solid) 

circle patterns for the top and bottom layers to form the two closed ends, i.e. the stem and the base 

of the pumpkin model. Thus, an empty space was created at the center of the core. As Figure S5 

shows, buckling occurred on such a hollow-core structure in a similar fashion as occurred with the 

solid-core structures shown in Figure 1-4. Despite the wall of the tubular core was thin, the core 

was still strong enough to provide the swelling mismatch and the polar constrain to the whole 

pumpkin model, which are considered as the essential factors for the buckling formation. Hence, 

this indicates our solid-core structures are good representative of the real pumpkin in terms of 

buckling behaviors. In another word, the similarity of buckling behaviors of the hollow- and solid-

core structures proves that the key conditions for buckling occurrence are the mismatch between 

the core and the shell in swelling ratio and modulus, as well as the constraint boundary at the two 

polar ends of the 3D model. 
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Figure S5. The images of the printed pumpkin model with a hollow core, specifically a 4s-cured shell and 

a 10s-cured closed-tube core: (a) side-view, (b) top-view of the initial state; (c) side-view and (d) top-view 

of the final state. Similar buckling formed with such a hollow-core structure as well, proving that the key 

factors for buckling are swelling mismatch and polar constrain, regardless of the filling of the core. The 

core-shell ratio of the model is 6/10. The radius ratio of the tubular core is 5/6. The hollow part ranges from 

the 11st to the 40th layer while the other layers are solid. The scale bar is 5 mm. 

 

S5. Printing patterns of different biomimetic structures 

2D flat layered structures were printed, rinsed with ethanol and then immersed in buffer 

solution to mimic the morphologic formation of four different plants. The thickness of each layer 

is 0.1 mm. As shown in Figure S6, an 8-layer thin disk with a 3s-cured shell (a) and a 10s-cured 

core (e) was printed to lead to wave-like shape mimicking cabbage leaves. A structure with a rigid 

core (f) and double-layer petals (b) was printed to mimic chrysanthemum. Each layer for the core 

were cured for 10s while for the petals were printed for 8s for the first 2 layers and 3s for the other 

4 layers. Rigid lines and curves within soft matrixes were printed to mimic leaves of rose (c), (g) 

and Bauhinia pods (d), (h). The lines were cured for 15 second each layer while the matrixes were 

cured for 4s. 
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Figure S6. Projected patterns of four different biomimetic structures: (a) a shell and (e) a core mimicking 

cabbage flowers/leaves; (b) petals and (f) a core of chrysanthemum; (c) mesophyll and (g) veins of leaves 

of rose; (d) a strip and (h) ridges mimicking helix strips of Bauhinia pods.  

 

S6. Reversibility of the synthetic morphogenesis process 

To test the reversibility of the process, different methods have been tried to bring the buckling 

model back to its original state, including immersing it in ethanol and different pH conditions as 

well as drying in air.  

The reverse process can be achieved by drying the pumpkin model in air or immersing it in 

ethanol. As Figure S7 shows the pumpkin models shrink back to their initial as-printed size and 

the buckle disappeared. The morphologies are slightly different from the original ones, because 

the original state contains only ethanol in the hydrogel network, whereas the shrunken models 

from drying in air and ethanol contains phosphate salts precipitated from the buffer solution, and 

the latter also contains ethanol inside the gel.  

By changing the surrounding buffer from pH 7 to pH 3-4.5, the hydrogel shrunk, and the 

buckling disappeared as well, although cracking occurred with the gel network arising from the 

delamination between the shell and the core. Such breakdown of the structure can be attributed to 

the internal stress induced by the mismatch between core and shell in shrinkage as well as the non-

uniform shrinkage inside either core or shell. It is expected, by improving the mechanical property 

of the hydrogel, a full reversibility can be also achieved with a tougher gel.  

Subsequently, by soaking the shrunken pumpkin model from drying and ethanol back in water, 

the complete cycle of swelling and buckling ↔ de-swelling and de-buckling ↔ re-swelling and 

re-buckling was be achieved, which demonstrated the reversibility of the deformation process. 

 

Figure S7. Different states of the printed 4s-10s pumpkin models: (a) as-printed state; (b) swollen and 

buckling state after immersion in water (c) shrunk state after dehydration in air; (d) shrunk state in ethanol. 

The scale bar is 5 mm. 
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