Supporting information: Fast biofilm penetration and anti-PAO1 activity of nebulized azithromycin in nanoarchaeosomes

María Julia Altube ¹, Melina María Belén Martínez², Barbara Malheiros³, Paulo César Maffía², Leandro Ramos Souza Barbosa³, Maria Jose Morilla¹ and Eder Lilia Romero¹

- 1. Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
- 2. Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- 3. Institute of Physics, University of São Paulo (USP), São Paulo, Brazil

Table of contents

S.1 Small angle x ray scattering (SAXS) measurements.

Page SI 1

S.2 Activity of AZ-nanovesicles against S. aureus.

Page SI 2

S.3 Activity of AZ-nanovesicles against PAO1: virulence factors, effect of mucins and biofilm penetration. Page SI 2

S.3 References. Page SI 3

S.1 Small angle x ray scattering (SAXS) measurements

Data analysis was evaluated according to:

$$I(q) \propto k \left(w_1 P_{Uni}(q) + w_2 P_{MLV}(q) \right)$$
 (equation 1)

Where I(q) is (scattered intensity), k is related to the experimental setup and must be the same for a set of scattering curves measured with the same experimental set up. In equation 1, w_1 and w_2 are the weight in the scattering curve of the uni- and multilamellar structures, respectively. Using this approach, it is possible to describe that:

$$P_{Uni}(q) = \frac{2\pi P_t(q)}{q^2}$$
 and $P_{Mult}(q) = \frac{2\pi P_t(q)}{q^2} S_{mult}(q)$ (equation 2)

where $P_t(q)$ is the infinity bilayer form factor and can be modelled considering that the membranes are composed by three distinct regions: the polar head group, the paraffinic (CH_2) chains and the inner most methyl group (CH_3) region. In this scenario, each region has its own electron density and thickness. Thus, it is possible to write $P_t(q)$ as $[^{1-2}]$:

$$P_t(q) =$$

$$\left\{ \frac{2}{q} \left\{ \Delta \rho_{CH_3} sin(qR_{CH_3}) + \Delta \rho_{par} \left(sin(q(R_{CH_3} + R_{par})) - sin(qR_{CH_3}) \right) + \Delta \rho_{pol} \left(sin(q(R_{CH_3} + R_{par} + R_{pol})) - sin(q(R_{CH_3} + R_{par})) \right) \right\} \right\}$$
 (equation 3)

where $\Delta \rho_{\text{CH}_3} = \rho_{\text{CH}_3} - \rho_{\text{sol}}$; $\Delta \rho_{\text{pol}} = \rho_{\text{pol}} - \rho_{\text{sol}}$ and $\Delta \rho_{\text{par}} = \rho_{\text{par}} - \rho_{\text{sol}}$. The lipid bilayer thickness in this model is $2(R_{\text{pol}} + R_{\text{par}} + R_{\text{CH}_3})$. During the fitting procedure, some of these parameters were allowed to vary within a narrow range: R_{CH_3} (1.5 Å < R_{CH_3} < 3.5 Å), ρ_{CH_3} (0.15 e/Å 3 < ρ_{CH_3} < 0.20 e/Å 3) and ρ_{par} (0.25 e/Å 3 < ρ_{par} < 0.30 e/Å 3), in accordance with data from the literature [1,3,4]

The other Pt(q) parameters could vary in a corresponding broader range. All SAXS curves were analysed with the global fitting procedure using GENFIT software [5].

For the multilamellar vesicles (MLV) the Modified Caillé Theory (MCT) [2 , 6] was used to calculate S(q) in equation 1. This model considers the bending of the membrane and the fluctuations in the space between bilayers by a statistical approach. For that, a disorder parameter $\eta_{Caillé}$ is added to the equation, that can be written as [6 , 7]:

$$S(q) = N + 2 \left\{ \sum_{n=1}^{N-1} \left[(N-n)\cos{(nqd)} e^{-0.5772\eta_{Caille}\left(\frac{qd}{2\pi}\right)^2} (\pi n)^{-\eta\left(\frac{qd}{2\pi}\right)^2} \right] \right\}$$
 (equation 4)

where N is the number of stacked bilayers, d is the repetitions distance (or the centers of two consecutive bilayers) and $\eta_{Caill\acute{e}}$ is described as [6]:

$$\eta_{Caill\acute{e}} = \frac{\pi \kappa_B I}{2d^2 \sqrt{KB}}$$
 (equation 5)

where K is bending modulus of the bilayers and B is the bulk modulus for compression. During the fitting process, N and η and d were allowed to vary as well.

S.2 Activity of AZ-nanovesicles against S. aureus

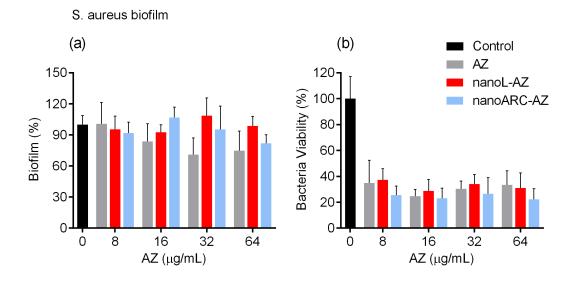


Figure S.2 Disruption of preformed biofilm (a) and antibacterial activity (b) of *S. aureus* upon 24 h incubation with AZ or AZ-nanovesicles.

S.3 Activity of AZ-nanovesicles against PAO1: virulence factors, effect of mucins and biofilm penetration

The number of nanovesicles per milliliter of suspension was calculated with equation 68.

$$N_{nv} = \frac{M_{lipid} N_A}{1000 N_{tot}}$$
 (equation 6)

 N_A is the Avogadro number and it is equal to 6.02E23. M_{lipid} is the molar concentration of lipid. The mean MW used for lipids was 10³ daltons. N_{tot} is the total number of lipids per nanovesicle and was calculated with equation 7.

$$N_{tot} = 17.69 \left[\left(\frac{d}{2} \right)^2 + \left(\frac{d}{2} - 5 \right)^2 \right]$$
 (equation 7)

d is the mean size of nanovesicles. The mean size used for nanovesicles was 150 nm.

S.4 References

- 1. Domingues, M. M.; Bianconi, M. L.; Barbosa, L. R.; Santiago, P. S.; Tabak, M.; Castanho, M. A.; Itri, R.; Santos, N. C., rBPl21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures. *Biochimica et Biophysica Acta (BBA)-Biomembranes* **2013**, *1828* (11), 2419-2427.
- 2. Fernandez, R. M.; Riske, K. A.; Amaral, L. Q.; Itri, R.; Lamy, M. T., Influence of salt on the structure of DMPG studied by SAXS and optical microscopy. *Biochimica et Biophysica Acta (BBA)-Biomembranes* **2008**, 1778 (4), 907-916.
- 3. Rozenfeld, J. H.; Duarte, E. L.; Barbosa, L. R.; Lamy, M. T., The effect of an oligonucleotide on the structure of cationic DODAB vesicles. *Physical Chemistry Chemical Physics* **2015**, *17* (11), 7498-7506.
- 4. da Costa-Silva, T. A.; Galisteo, A. J.; Lindoso, J. A. L.; Barbosa, L. R.; Tempone, A. G., Nanoliposomal buparvaquone immunomodulates Leishmania infantum-infected macrophages and is highly effective in a murine model. *Antimicrobial agents and chemotherapy* **2017**, *61* (4), e02297-16.
- 5. Spinozzi, F.; Ferrero, C.; Ortore, M. G.; De Maria Antolinos, A.; Mariani, P., GENFIT: software for the analysis of small-angle X-ray and neutron scattering data of macromolecules in solution. *Journal of applied crystallography* **2014**, *47* (3), 1132-1139.
- 6. Zhang, R.; Tristram-Nagle, S.; Sun, W.; Headrick, R.; Irving, T.; Suter, R. M.; Nagle, J. F., Small-angle x-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. *Biophysical journal* **1996**, *70* (1), 349-357.
- 7. Zhang, R.; Suter, R. M.; Nagle, J. F., Theory of the structure factor of lipid bilayers. *Physical Review E* **1994**, *50* (6), 5047.
- 8. NanoSciences, E. http://www.liposomes.org/2009/01/number-of-lipid-molecules-per-liposome.html (accessed April 2019).