Supporting Information

Ash and alkali poisoning mechanisms for commercial vanadium-titanic-based catalysts

Yangyang Guo^{a, c}, Lei Luo^a, Bailong Mu^a, Jian Wang^a, Tingyu Zhu^{a,b,c1}

^aBeijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China

^bCenter for Excellence in Regional Atmospheric Environment, Institute of Urban Environment,

Chinese Academy of Sciences, Xiamen 361021, China

°National Engineering Laboratory for Flue Gas Pollutants Control Technology and Equipment,

Tsinghua University, Beijing 100084, China

¹ Corresponding author. Tel./fax:+86-10-82544821;

E-mail address: tyzhu@ipe.ac.cn (T. Zhu)

1. Effect of H₂O vapor and SO₂ coexistence on SCR and M-SCR catalysts

Moreover, the effect of H_2O vapor and SO_2 coexistence on the SCR and M-SCR catalysts were performed, and the results were shown in Figure S1. As shown in Figure S1, the introduction of H_2O vapor and SO_2 simultaneously makes NO conversion a decreased by about 9% and 10% over SCR and SCR-ash catalysts, respectively. And M-SCR and M-SCR-ash catalysts decreased by about 11% and 12%, respectively. However, when cut off the H_2O vapor and SO_2 , the NO conversion of catalysts significantly rebounded. This phenomenon was the same as single effect of H_2O vapor and the effect was reversible. In addition, the effect of H_2O vapor, indicating the promotion effect of SO_2 also occurred in this system.

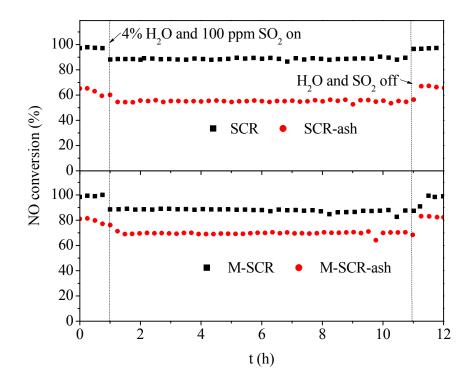


Figure S1. Effect of H₂O vapor and SO₂ coexistence on the SCR and M-SCR catalysts