Supporting information

Synthesis of V-MoS₂ Layered Alloys as Stable Li-ion Battery Anodes

Yu Lei^{1,2,3}, Kazunori Fujisawa^{2,3,4}, Fu Zhang^{1,2,3}, Natalie Briggs^{1,3}, Amir Reza Aref⁵, Yin-Ting Yeh^{4,6}, Zhong Lin^{3,4}, Joshua A. Robinson^{1,2,3}, Ramakrishnan Rajagopalan^{7*}, Mauricio Terrones^{1,2,3,4,8,9*}

¹Department of Materials Science and Engineering & Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; ²Center for Atomically Thin Multifunctional Coatings; ³Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; ⁴Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; ⁵Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; ⁶The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States; ⁷Department of Engineering, The Pennsylvania State University, Dubois, Pennsylvania 15801, United States; ⁸Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan; and ⁹Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States. Correspondence and requests for materials should be addressed to R.R. (email rur12@psu.edu) or M.T. (email mut11@psu.edu).

Figure S1 Heating profile showing the time-dependent temperature at the center of the furnace, where the MoS_2 and $V(C_2H_5)_2$ are placed along with that of sulfur powder placed at the entrance of the furnace, independently heated using a heating coil.

Figure S2 EDS spectra of (a) $Mo_{0.6}V_{0.4}S_2$, (b) $Mo_{0.85}V_{0.15}S_2$, and (c) MoS_2 , respectively

Figure S3 High resolution XPS spectra of $Mo_{0.6}V_{0.4}S_2$, (a)V 2p; (b) Mo 3d; (c) S 2p; and (d) C 1s

peaks.

Figure S4 XRD patterns of $Mo_{0.6}V_{0.4}S_2$, $Mo_{0.85}V_{0.15}S_2$, MoS_2 , and the carbon substrate. Only (002) peak of MoS_2 is found in $Mo_{0.6}V_{0.4}S_2$, $Mo_{0.85}V_{0.15}S_2$ and MoS_2 , besides the peaks from the substrates. Y-axis is in Log scale.

Figure S5. (a) HAADF-STEM image of the $Mo_{0.6}V_{0.4}S_2$, and the corresponding EDS mappings for (b)S, (c) Mo, and (d)V. (e) STEM image of $Mo_{0.6}V_{0.4}S_2$ shows monolayer, bilayer, and multilayer regions.

Figure S6 The 1st charge and discharge profiles of $Mo_{0.6}V_{0.4}S_2$, $Mo_{0.85}V_{0.15}S_2$, MoS_2 , and PGS from 0.4 V to 2.5 V vs. Li⁺/Li when the current density is 50 mA g⁻¹.

Figure S7 Cyclic voltammetry of the MoS_2 , $Mo_{0.85}V_{0.15}S_2$, and $Mo_{0.6}V_{0.4}S_2$ at a scan rate of 1 mV s⁻¹ in the voltage range of 0.4 to 2.5 V *vs.* Li⁺/Li.

Figure S8 Cycling performance of $Mo_{0.6}V_{0.4}S_2$ at 200 mA g⁻¹.

Figure S9 EIS spectra of $Mo_{0.6}V_{0.4}S_2$, $Mo_{0.85}V_{0.15}S_2$, and MoS_2 before charge/discharge.

Table S1 XPS summary of $Mo_{0.6}V_{0.4}S_2$

	Mo at. %	V at. %	S at. %
M0 _{0.6} V _{0.4} S ₂	24.8	17.9	57.3

Table S2 Comparison of V-MoS₂ with other reported MoS_2 related materials' performance as the anode materials for the lithium-ion battery (LIB)

	Synthetic Method	Discharge Specific Capacity	Current Density (mA g ⁻¹)	Voltage Range (V)	Ref.
MoseVarSe		$(mAh g^{-1})$ 1086			
$\frac{1000.6 \ 0.482}{M00.95 V_{0.15} S_2}$	Electrodeposition/solid	917	_	0.40-	This
<u>MoS₂</u>	state reaction	666	50	2.50	work
Exfoliated MoS ₂	Exfoliation	500	50	0.01-3.00	1
Bulk MoS ₂	As-received	200	50	0.01- 3.00	1
Amorphous MoS ₂	Atomic layer deposition	851	148	0.01- 3.00	2
MoS ₂ nanowalls/carbon/cellulose	Wet chemical approach/thermal treatment	880	100	0.01- 3.00	3
MoS ₂ nanosheets	Hydrothermal	705.8	50	0.01- 3.00	4
Ordered mesoporous MoS ₂	Nano-casting approach	645	50	0.01- 3.00	5
MoS ₂ nanourchin/carbon	Solvothermal	721	50	0.01- 3.00	6
Carbonized MoS ₂ nanosheets/cellulose nanofibrils hybrid film	Solution-based papermaking process/carbonization	740	50	0.01- 3.00	7
Mesocarbon microbead (MCMB)	As-received	362	50	0.00- 2.00	8

Table S3 Charge transfer resistance (R_{ct}), the resistance associated to SEI film and the contact at the interface (R_s), and internal resistance of the test battery (R_1) with the different cathodes before and after charge/discharge ($Mo_{0.6}V_{0.4}S_2$, $Mo_{0.85}V_{0.15}S_2$, or MoS_2 ; the anode is Li metal)

Testing condition	Sample	$R_{ct}(\Omega)$	$R_{s}(\Omega)$	$R_1(\Omega)$
Before charge/discharge	$Mo_{0.6}V_{0.4}S_2$	43.0	111.3	3.3
	$Mo_{0.85}V_{0.15}S_2$	56.5	168.5	2.0
	MoS ₂	91.7	184.5	2.3

After charge/discharge	$Mo_{0.6}V_{0.4}S_2$	50.0	130.9	2.4
	$Mo_{0.85}V_{0.15}S_2$	73.6	200.0	1.9
	MoS ₂	254.8	210.5	3.8

Reference

1. Xiao, J.; Choi, D. W.; Cosimbescu, L.; Koech, P.; Liu, J.; Lemmon, J. P., Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries. *Chem. Mater.* **2010**, *22* (16), 4522-4524.

2. Nandi, D. K.; Sen, U. K.; Choudhury, D.; Mitra, S.; Sarkar, S. K., Atomic layer deposited MoS2 as a carbon and binder free anode in Li-ion battery. *Electrochimica Acta* **2014**, *146*, 706-713.

3. Sen, U. K.; Mitra, S., High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder. *ACS Appl. Mater. Interface* **2013**, *5* (4), 1240-1247.

4. Shiquan, W.; Guohua, L.; Guodong, D.; Jiang, X.; Chuanqi, F.; Zaiping, G.; Seung-Joo, K., Hydrothermal synthesis of molybdenum disulfide for lithium ion battery applications. *Chinese Journal of chemical engineering* **2010**, *18* (6), 910-913.

5. Fang, X.; Yu, X.; Liao, S.; Shi, Y.; Hu, Y.-S.; Wang, Z.; Stucky, G. D.; Chen, L., Lithium storage performance in ordered mesoporous MoS2 electrode material. *Microporous and Mesoporous Materials* **2012**, *151*, 418-423.

6. Wang, Y.; Xing, G.; Han, Z. J.; Shi, Y.; Wong, J. I.; Huang, Z. X.; Ostrikov, K. K.; Yang, H. Y., Pre-lithiation of onionlike carbon/MoS 2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. *Nanoscale* **2014**, *6* (15), 8884-8890.

7. Cao, S.; Shi, L.; Miao, M.; Fang, J.; Zhao, H.; Feng, X., Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils. *Electrochimica Acta* **2019**, *298*, 22-30.

8. Xia, L.; Lee, S.; Jiang, Y. B.; Xia, Y. G.; Chen, G. Z.; Liu, Z. P., Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. *ACS Omega* **2017**, *2* (12), 8741-8750.