Supporting information

Evolutionary engineering of cyanobacteria to enhance the production of α -farnesene from CO₂

Napisa Pattharaprachayakul^{1,2}, Hyun Jeong Lee¹, Aran Incharoensakdi², Han Min Woo^{1*}

¹Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea

²Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 Thailand

*Corresponding author:

Han Min Woo

Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU),

2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea

Tel: +82 31 290 7808; Fax: +82 31 290 7882;

E-mail address: hmwoo@skku.edu (H. M. Woo)

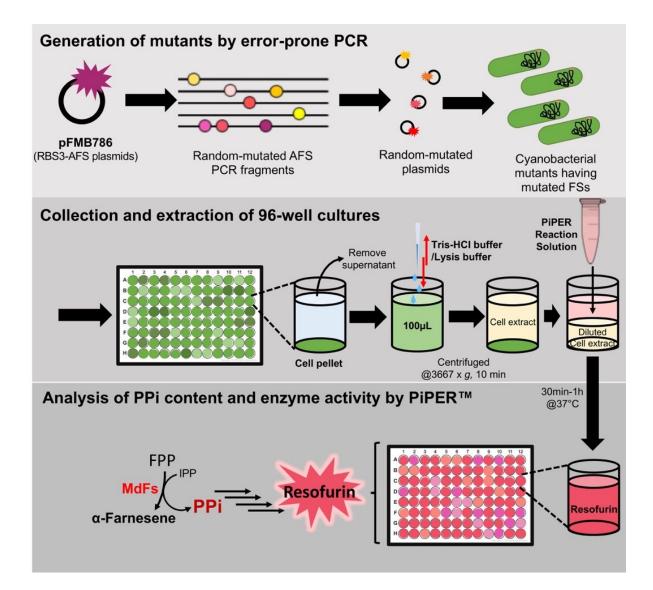
ORCID: 0000-0002-8797-0477

Name	Relevant characteristics $(5' \rightarrow 3')$	Source
RBS-1	CAAAagatetAATAAAGGAGGTTTAAAGCTATGgaatttegegtgeacetgeag	This study
RBS-2	CAAAagatetTAGCATCGAACATAGAGAGGTCAGACATGgaatttegegtgeae	This study
RBS-3	<u>CAAAagatetTGTATTCGTAGGGTACAGTTT</u> A TGgaatttegegtgeacet	This study
RBS-R	TTGGATGCTCTTGAATTGCC	This study

Table S1. RBS sequences and oligonucleotides used for gene cloning in this study.

Note: The restriction enzyme sites were shown as lower cases. RBS and coding regions of AFS were underlined and bold letters, respectively.

Name	Relevant characteristics $(5^{\circ} \rightarrow 3^{\circ})$	Source
Promoter checking		
Native MEP		
dxs-proF	GGGTCGACAGACTGAGCCCA	This study
dxs-proR	TGTCGTTGAGCACGACCAAC	This study
dxr-proF	CGAGACCGGCCAAACCAG	This study
dxr-proR	CAGTTACTTGCGACAGCCGT	This study
ispD-proF	GCACTCAAATTCCAGCCTCC	This study
ispD-proR	GCTCAACGACGACATCAATC	This study
ispE-proF	CGCTTCCAGTTCTGGTTGTG	This study
ispE-proR	TTGGCCTTCGTAAAGTTGG	This study
ispF-proF	TGGGATCGAAACGTACGCTG	This study
ispF-proR	CGCCTCCTCCACGGACTGAT	This study
ispG-proF	CTCGCGCAGGCTGGTGACTA	This study
ispG-proR	CTCAGAAGCCGATAAAGAC	This study
ispH-proF	CTTTCCGCAGCTCCAAG	This study
ispH-proR	GAGCTGGTGGCGACCGTCTC	This study
idi-proF	CAACAAGCCCTTCGGCTCCA	This study
idi-proR	TGCCTGTGAACGTCGGTACC	This study
ispA-proF	TCTGACGACCGATTCGAC	This study
ispA-proR	CCTGGAATGGGTTGAGATG	This study
NSI		
UP-pTrcI	CGACAGGTTTCCCGACTGGA	This study
Pr_AFS-R1	CAGCCGTTGCGCAGGTATTC	This study


 Table S2. Oligonucleotides used for DNA sequencing.

NSII

10011		
Up-pTrcI	CGACAGGTTTCCCGACTGGA	This study
DXS-R1	TAAAGGCCAGGTGCAGGCGGG	This study
Gene checking		
Native MEP		
7942_dxs_F	ACGTTCACTGCAGCCAGCAG	This study
7942_dxs_R	CATGATCAGTCCAGGTCTTG	This study
7942_dxr_F	TCGCCTCCCTCGCTTCAGCA	This study
7942_dxr_R	TAGACCTCAGGCACATCGAT	This study
7942_ispD_F	ATCGGGGTAAGCTGAAGTC	This study
7942_ispD_R	GCACTCAAATTCCAGCCTCC	This study
7942_ispF_F	ATCTAGGCCACATGACGTCA	This study
7942_ispF_R	TGGGATCGAAACGTACGCTG	This study
7942_ispE_F	ATCAGATTGCGCCCGAAGC	This study
7942_ispE_R	GAGCTAGTGCTGGATGGGAT	This study
7942_ispG_F	TCGCCCAAGGGTTGGTCGAT	This study
7942_ispG_R	GCGAAAACCGCCTATCAGGA	This study
7942_ispH_F	GCAATTGGCGATCGCGGCTT	This study
7942_ispH_R	GTGGAGTCGAGAGTCACGAT	This study
7942_idi_F	CAGCACATGCCAGTTCAGAC	This study
7942_idi_R	GTTGGACCAATGACCGTGGC	This study
7942_ispA_F	GTCAAGCTGAAGGTGGGCAC	This study
7942_ispA_R	CGGTAGCGAAATAGCGATCG	This study
NSI		
DXS-F1	CGTGTCGCTCAAGGCGCACT	This study
DXS-R1	TAAAGGCCAGGTGCAGGCGGG	This study
idi-F1	AACCCGTGCCCGTGCTGA	This study
idi-R1	TACACCAGAAAGGGGGCGCAG	This study

ispA-F1	ATCGATGCCACCCCTGGG	This study
ispA-R1	AGCCGAACGCCCTAGGTATA	This study
NSII		
PrHW882F	TAATGTTTTTTGCGCCGACA	FMB lab collection
PrHW883R	TTGGATGCTCTTGAATTGCC	FMB lab collection
Pr_AFS-F1	CACCACTTTGCCCACCTGAA	This study
Pr_AFS-R1	CAGCCGTTGCGCAGGTATTC	This study
Pr_AFS-F2	CTACCTGATCAACCAGCGCC	This study
Pr_AFS-R2	CATCGCCATCTTTGTACAGG	This study

Figure S1. A Scheme of 96-well based screening and sample preparation for analyzing mutants generated from error-prone PCR.

Generation of mutants by error-prone PCR. The template used in error-prone PCR was pFMB786 (described in Table 1). Error-prone PCR was performed by using GeneMorph® II Random Mutagenesis Kit (Agilent) and following its manual instruction, which high- and low-rate of mutation were obtained from 25 and 500 ng of initial template, respectively. Randomly mutated

PCR libraries were cut and ligated with pSe2Bb1k plasmid backbone before transformed into *E. coli* DH10 β . Randomly-mutated plasmids were continually collected and transformed into SeHL33. The colonies selection was done with cultivation on BG-11 supplemented with spectinomycin and kanamycin.

Collection and extraction of 96-well cultures. Each selective colony was inoculated in 96-well microplate along with controls until reaching $OD_{730} > 1$ and then transferred 100 µL of culture to new 96-well plates (Clear 96-Well Plate, Greiner Bio-One) containing BG-11 with 1 mM IPTG addition. Preparation of samples before fluorescence screening was firstly collecting cell pellets and then removing supernatants. Cell pellets were then washed and lysed by mixing with pH 7.5 Tris-HCl and lysis buffer (B-PERTM, Thermo Science) respectively. Diluted cell extracts from day-3 and -8 after induction were transferred to new 96-well plate (µClear® 96 Well Plate, Greiner Bio-One) for PPi signal detection and OD_{730} measurement.

Analysis of PPi content and enzyme activity by PiPERTM. PiPERTM reaction solution must be prepared fresh before use (described in the instruction) and added into 96-well plate containing cell extracts (with 100 μ L in total volume). The reaction was run for 30 – 60 min at 37°C in microplate reader. Resofurin fluorescence was measured and calculated at 560 nm with 590 nm excitation wavelength. Note that the enzyme activity assay is described in second part of instruction.