**Supporting Information** 

## Thermoelectric and mechanical properties of environmentally friendly Mg<sub>2</sub>Si<sub>0.3</sub>Sn<sub>0.67</sub>Bi<sub>0.03</sub>/SiC composites

Leilane R. Macario<sup>†</sup>, Yixuan Shi<sup>†</sup>, Parisa Jafarzadeh<sup>†</sup>, Tianze Zou<sup>††</sup>, Jan B. Kycia<sup>††</sup>, Holger Kleinke<sup>\*,†</sup>

<sup>†</sup> Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo,

Waterloo, ON N2L 3G1, Canada

<sup>††</sup> Department of Physics and Astronomy and Guelph-Waterloo Physics Institute, University of

Waterloo, Waterloo, ON, Canada N2L 3G1

\*Email: kleinke@uwaterloo.ca

| Area                    | Mg   | Si   | Sn   | Bi  |
|-------------------------|------|------|------|-----|
| 1                       | 66.1 | 10.5 | 22.4 | 1.0 |
| 2                       | 66.6 | 10.3 | 22.2 | 0.9 |
| 3                       | 66.4 | 10.1 | 22.8 | 0.7 |
| Average                 | 66.3 | 10.3 | 22.5 | 0.9 |
| Nominal composition wt% | 66.7 | 10.0 | 22.3 | 1.0 |

Table S1. Area scan results (percentages) of the  $Mg_2Si_{0.30}Sn_{0.67}Bi_{0.03}$  sample.

Table S2. Densities and specific heat of Mg2Si0.30Sn0.67Bi0.03 / SiC composites.

|                                                             | Density Archimedes | Theoretical density |       |
|-------------------------------------------------------------|--------------------|---------------------|-------|
| Sample                                                      | $(g.cm^{-1})$      | (%)                 | Ср    |
| Mg2Si0.30Sn0.67Bi0.03                                       | 3.19               | 99                  | 0.524 |
| $Mg_{2}Si_{0.30}Sn_{0.67}Bi_{0.03} + 0.5 \text{ wt-\% SiC}$ | 3.18               | 98                  | 0.527 |
| $Mg_{2}Si_{0.30}Sn_{0.67}Bi_{0.03} + 1.0 \text{ wt-\% SiC}$ | 3.19               | 99                  | 0.531 |
| $Mg_{2}Si_{0.30}Sn_{0.67}Bi_{0.03} + 1.5 \text{ wt-\% SiC}$ | 3.18               | 98                  | 0.535 |
| $Mg_{2}Si_{0.30}Sn_{0.67}Bi_{0.03}+3.0 \text{ wt-\% SiC}$   | 3.18               | 98                  | 0.545 |

Equation S1. Hashin model<sup>1</sup>.

$$E_{c} = E_{m} \left( \frac{E_{m}V_{m} + E_{r}\{V_{r}+1\}}{E_{r}V_{m} + E_{m}\{V_{r}+1\}} \right),$$

where,  $E_c$  is Young's modulus of the composite,  $E_m$  is Young's modulus of the matrix,  $E_r$  is Young's modulus of the reinforcing phase ( $E_r$  equals to 440 GPa)<sup>2</sup>,  $V_m$  is volume fraction of the matrix, and  $V_r$  is volume fraction of the reinforcing phase (here: SiC).

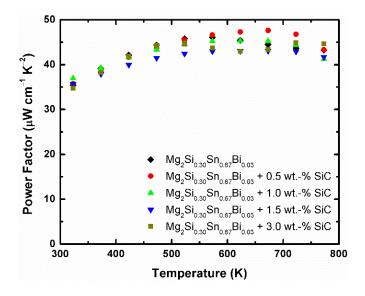



Figure S1. Power factor of Mg2Si0.30Sn0.67Bi0.03 composites with 0, 0.5, 1.0, 1.5, and 3.0 wt.-%

of SiC.

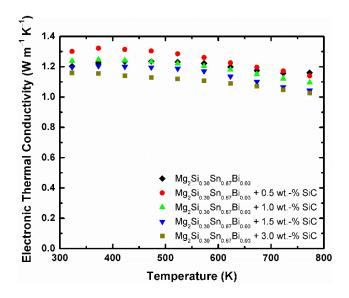



Figure S2. Calculated electronic thermal conductivity of Mg2Si0.30Sn0.67Bi0.03 composites with 0,

0.5, 1.0, 1.5, and 3.0 wt.-% of SiC.

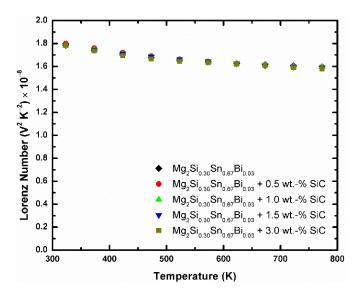



Figure S3. Calculated Lorenz numbers between 300 K and 800 K of Mg<sub>2</sub>Si<sub>0.30</sub>Sn<sub>0.67</sub>Bi<sub>0.03</sub> composites with 0, 0.5, 1.0, 1.5, and 3.0 wt.-% of SiC.

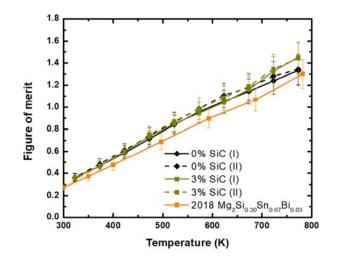



Figure S4. Figure of merit values from the two different pellets of Mg<sub>2</sub>Si<sub>0.30</sub>Sn<sub>0.67</sub>Bi<sub>0.03</sub> (black symbols); Mg<sub>2</sub>Si<sub>0.30</sub>Sn<sub>0.67</sub>Bi<sub>0.03</sub>/3.0 wt.-% SiC composite (mustard symbols), compared to the 2018 data on Mg<sub>2</sub>Si<sub>0.30</sub>Sn<sub>0.67</sub>Bi<sub>0.03</sub> (orange symbol).



**Figure S5**. Electrical conductivity, power factor, lattice thermal diffusivity, and figure of merit of Mg<sub>2</sub>Si<sub>0.30</sub>Sn<sub>0.67</sub>Bi<sub>0.03</sub> composites with 0, 0.5, 1.0, 1.5, 3.0, and 5.0 wt.-% of SiC.

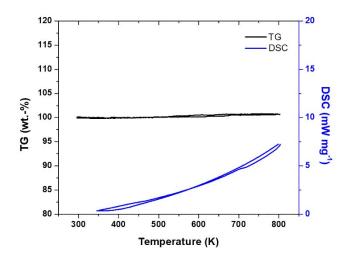



Figure S6. TG and DSC of Mg2Si0.3Sn0.67Bi0.03.

## REFERENCES

- Hashin, Z. The Elastic Moduli of Heterogeneous Materials. J. Appl. Mech. 1962, 29 (1), 143–150.
- (2) Schreiber, E.; Soga, N. Elastic Constants of Silicon Carbide. J. Am. Ceram. Soc. 1966, 49
  (6), 342–342.