SUPPORTING INFORMATION

Cascade π-Extended Decarboxylative Annulation Involving CyclicDiaryliodonium Salts: Site-Selective Synthesis of Phenanthridines andBenzocarbazoles via a Traceless Directing Group Strategy
Zenghui Ye, Yong Li, Kai Xu, Na Chen and Fengzhi Zhang*
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R.China
Table of contents
I . General information S2
II. Conditions optimization of phenanthridine and benzocarbazole S2
III. General procedure to synthesize phenanthridine and benzocarbazole S4
IV. Characterization of the phenanthridine and benzocarbazole S4
V. Control experiment S18
VI. Crystal data S21
VII. NMR spectra of all compounds. S22

[^0]
I . General information

All reagents were obtained from commercial suppliers and used without further purification. Yields for all compounds were determined by the column chromatography which was generally performed on silica gel (200-300 mesh) using petroleum ether 40-60 (PE)/EtOAc as eluent, and reactions were monitored by thin layer chromatography (TLC) on a glass pate coated with silica gel with fluorescent indicator (GF254) using UV light. The ${ }^{1} \mathrm{H}$ reree and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ADNANCE III 500 MHz using CDCl_{3} as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl_{3} with 7.28 for ${ }^{1} \mathrm{H}$ and 77.03 for ${ }^{13} \mathrm{C}$, and to DMSO- d_{6} with 2.50 for ${ }^{1} \mathrm{H}$ and 39.52 for ${ }^{13} \mathrm{C}$. Signals are abbreviated as follows: s, singlet; d , doublet; t , triplet; q , quartet; m , multiplet, and coupling constants are expressed in hertz. Melting points were measured on a $\mathrm{SGW}_{\circledR} \mathrm{X}-4 \mathrm{~B}$ apparatus and uncorrected. HRMS were recorded on Agilent 6210TOF LC/MS mass spectrometer.

II. Conditions optimization of phenanthridine and benzocarbazole.

Entry ${ }^{\text {a }}$	$\begin{gathered} \hline \mathbf{2 a} \\ \text { (eq.) } \end{gathered}$	Ligand	Catalyst	Base	Solvent	Yield(\%) ${ }^{\text {b }}$	
						3 aa	4a
1	1.1	--	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	30	-
$2^{\text {c }}$	1.1	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	40	-
3	1.1	--	--	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	-	-
4	1.1	--	$\mathrm{Pd}(\mathrm{OAc})_{2}$	--	DMF	-	-
5	1.1	--	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMA	10	-
6	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMSO	30	-
7	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	toluene	19	-
8	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{Ac}_{2} \mathrm{O}$	-	-
9	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	dioxane	22	-
10	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DCE	11	-
11	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	DMF	18	-
12	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	-	-
13	1.1		$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMF	19	-
14	1.1	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	KOH	DMF	19	-
15	1.1	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{KO}^{\prime} \mathrm{Bu}$	DMF	-	-
16	1.1	2,6-Bi $\left({ }^{(} \mathrm{Bu}\right)$ pyridine	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	15	-
17	1.1	2,2'-Bipyridine	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	22	-
18	1.1	1,10-phen	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	14	-
19	1.1	PPh_{3}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	47	-

20	1.1		$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	38	-
21	1.1	PPh_{2}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	36	-
22	1.1	$\mathrm{P}(\mathrm{cy})_{3}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	9	-
23	1.1	S-Phos	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	6	-
24	1.1	$\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	23	-
25	1.1	$\left(\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}\right)_{3} \mathrm{P}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	26	-
26	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	58	-
$27^{\text {d }}$	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	42	-
$28^{\text {e }}$	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	55	-
29	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	38	-
30	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	5	-
31	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	DABCO	DMF	30	-
32	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Et}_{3} \mathrm{~N}$	DMF	46	-
$33^{\text {f }}$	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	43	-
348	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	43	-
35	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	49	-
36	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{~mol} \%)$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	25	-
$37^{\text {h }}$	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	66	-
$38^{\text {i }}$	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	72	-
$39^{\text {j }}$	1.1	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	73	-
$40^{\text {i }}$	1.3	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	73	-
$41^{\text {i }}$	1.6	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	87	-
$42^{\text {i }}$	2.0	$\mathrm{Ph}_{2} \mathrm{POEt}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	94	-
43	1.1	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	30
44	2	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	41
$45^{\text {i }}$	2	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	84
46^{j}	2	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	68
$47^{\text {i }}$	2	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-	HOAc	-	-
$48^{\text {i }}$	2	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	KOAc	HOAc	-	19
$49^{\text {i }}$	2	-	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	HOAc	-	31
$50^{\text {i }}$	2	$\mathrm{Ph}_{2} \mathrm{POEt}(10 \%-20 \%)$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	26-27
$51^{\text {i }}$	2	-	PdCl_{2}	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	20
$52^{\text {i }}$	2	-	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	38
53^{i}	2	-	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	51
$54^{\text {i }}$	2	-	$\left[\mathrm{Ru}\left(p \text {-cymene) } \mathrm{Cl}_{2}\right]_{2}\right.$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	-
$55^{\text {i }}$	2	-	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	-
$56^{\text {i }}$	2	-	$\mathrm{Co}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	HOAc	-	-

${ }^{\text {a }}$ Reaction condtions: indole-2-carboxylic acid $\mathbf{1 a}(0.3 \mathrm{mmol})$, Pd catalyst ($10 \mathrm{~mol} \%$), ligand (20 $\mathrm{mol} \%$), base (2.2 equiv), solvent (1 mL), $12 \mathrm{~h}, 145^{\circ} \mathrm{C}$, air atmosphere. ${ }^{\mathrm{b}}$ Isolated yields. ${ }^{\mathrm{c}} 24 \mathrm{~h}$. ${ }^{\mathrm{d}} \mathrm{N}_{2}$ atmosphere. ${ }^{\mathrm{e}} \mathrm{O}_{2}$ atmosphere. ${ }^{\mathrm{f}} 3.3$ eq. base. ${ }^{\mathrm{g}} 1.1$ eq. base. ${ }^{\mathrm{h}} 0.75 \mathrm{~mL}$ solvent. ${ }^{\mathrm{i}} 2 \mathrm{~mL}$ solvent. ${ }^{j} 3 \mathrm{~mL}$ solvent.

III. General procedure to synthesize phenanthridine and benzocarbazole.

In a 15 mL thick-walled tube was charged with substrate $\mathbf{1 a}$ ($48.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a $(256.9 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1 \mathrm{mg}, 0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and DMF $(2 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic phase was washed with water ($10 \mathrm{~mL} x \mathrm{3}$) and saturated brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (PE/EA $=500: 1$) on silica gel to provide the desired indolo [1,2-f]phenanthridine 3aa ($75.4 \mathrm{mg}, 94 \%$) as a white solid.

For $1 \mathbf{m m o l}$ scale synthesize phenanthridine: In a 30 mL thick-walled tube was charged with substrate 1a ($161.1 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathbf{2 a}(513.6 \mathrm{mg}, 1.2 \mathrm{mmol}), \operatorname{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}$, $0.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(303.6 \mathrm{mg}, 2.2 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(43.2 \mu \mathrm{~L}, 0.2$ $\mathrm{mmol})$ and DMF $(6 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water (20 mL) before it was extracted with EtOAc ($25 \mathrm{~mL} \times 3$). The combined organic phase was washed with water (20 mL x 3) and saturated brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=500: 1$) on silica gel to provide the desired indolo[1,2-f]phenanthridine 3aa ($225.0 \mathrm{mg}, 84 \%$) as a white solid.

In a 15 mL thick-walled tube was charged with substrate $\mathbf{1 a}(48.3 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{2 a}$ $(256.9 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1 \mathrm{mg}, 0.66 \mathrm{mmol})$ and HOAc (2 mL). The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic phase was washed with water (10 $\mathrm{mL} x 3$) and saturated brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=20: 1)$ on silica gel to provide the desired $9 H$-dibenzo $[a, c]$ carbazole $\mathbf{4 a}(66.8 \mathrm{mg}, 84 \%)$ as a white solid.

IV. Characterization of the phenanthridine and benzocarbazole.

indolo[1,2-f]phenanthridine (3aa):

Following the general procedure, 3aa was purified by PE/EtOAc (500:1) and obtained as a white solid ($75.4 \mathrm{mg}, 94 \%$ yield); $\mathrm{Mp}=149-150{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J$ $=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.21-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.62$ (ddd, $J=8.5,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.0,135.2,133.9,130.4,128.7,128.2,127.8,126.8,126.1,124.1$, 124.0, 123.0, 122.4, 122.1, 122.0, 121.8, 121.0, 116.3, 114.2, 96.2. HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$268.1121, found 268.1109. The spectra data matched with values reported in the literature. ${ }^{1,2}$

12-methylindolo[1,2-f]phenanthridine (3ab):

Following the general procedure, 3ab was purified by PE/EtOAc (500:1) and obtained as a white solid ($70.1 \mathrm{mg}, 82 \%$ yield) $; \mathrm{Mp}=184-185{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.16-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (ddd, $J=8.5,7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{ddd}, J=8.2,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 8136.0, 135.3, 132.3, 131.2, 130.7, 128.7, 128.1, 127.7, 126.8, 126.2, 124.1, 123.9, 123.7, $122.8,122.4,122.0,120.7,116.2,113.9,95.8,21.4$. The spectra data matched with values reported in the literature. ${ }^{1}$

12-methoxyindolo[1,2-f]phenanthridine (3ac)

Following the general procedure, 3ac was purified by PE/EtOAc (20:1) and obtained as a yellow solid ($72.3 \mathrm{mg}, 81 \%$ yield) $; \mathrm{Mp}=173-174{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28$ (dd, $J=13.6,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.19-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (ddd, $J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})$,
3.96 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 155.2,135.9,135.8,131.4,129.1,128.8,128.2$, $127.8,126.8,126.0,124.1,124.0,122.9,122.4,121.9,115.9,115.1,112.0,102.2,95.9,55.7$. The spectra data matched with values reported in the literature. ${ }^{1}$

11-methoxyindolo[1,2-f]phenanthridine (3ad):

Following the general procedure, 3ad was purified by PE/EtOAc (20:1) and obtained as a yellow solid ($77.6 \mathrm{mg}, 87 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ; \mathrm{Mp}=131-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.42-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.13$ $(\mathrm{m}, 1 \mathrm{H}), 8.07-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (ddd, J $=8.5,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=$ 8.6, 2.1 Hz, 1H), $4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,135.9,134.5,134.4$, $128.5,128.1,127.2,126.5,126.4,124.7,123.9,123.6,122.9,122.3,122.2,121.3,115.9$, $110.8,99.1,96.0,56.0$. The spectra data matched with values reported in the literature. ${ }^{1}$

12-fluoroindolo[1,2-f]phenanthridine (3ae):

Following the general procedure, 3ae was purified by PE/EtOAc (500:1) and obtained as a light green solid ($77.8 \mathrm{mg}, 90 \%$ yield). $\mathrm{Mp}=132-133{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.33(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43-8.39(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=$ $9.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{ddd}, J=8.5,7.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})$, $7.10(\mathrm{td}, J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6\left(J_{\mathrm{C}-\mathrm{F}}=239.0 \mathrm{~Hz}\right), 136.7$, $135.5,131.2\left(J_{\mathrm{C}-\mathrm{F}}=10.4 \mathrm{~Hz}\right), 130.5,128.8,128.2,128.1,126.9,125.6,124.2,124.0,123.2$, $122.4,121.9,115.9,115.0\left(J_{\mathrm{C}-\mathrm{F}}=9.8 \mathrm{~Hz}\right), 110.0\left(J_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}\right), 105.5\left(J_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}\right)$, 96.0; HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{FN}[\mathrm{M}+\mathrm{H}]+286.1027$, found 286.1027.

12-chloroindolo[1,2-f]phenanthridine (3af):

Following the general procedure, 3af was purified by $\mathrm{PE} / \mathrm{EtOAc}(500: 1)$ and obtained as a white solid ($76.0 \mathrm{mg}, 84 \%$ yield); $\mathrm{Mp}=173-174{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47-8.40(\mathrm{~m}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}$,
$2 \mathrm{H}), 8.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.5,135.6,132.2,131.5,128.9,128.4,128.3,127.4,127.0,125.7,124.3,124.2$, $123.4,122.5,122.2,122.1,120.2,116.2,115.1,95.6 ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{ClN}$ $[\mathrm{M}+\mathrm{H}]^{+} 302.0731$, found 302.0734

14-(4-methoxyphenyl)indolo[1,2-f]phenanthridine (3ag):

Following the general procedure, $\mathbf{3 a g}$ was purified by PE/EtOAc (20:1) and obtained as a yellow solid ($104.2 \mathrm{mg}, 93 \%$ yield) $; \mathrm{Mp}=198-200{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.23(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{dd}, J=8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.35$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.54$ $-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 159.0,135.9,132.7,132.1,131.7,128.8,128.0,127.7,127.6$, $127.5,127.0,125.3,124.1,123.1,122.6,122.4,122.3,121.7,119.9,116.5,114.6,114.0$, 113.5, 55.4; HRMS m/z (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]+374.1539$, found 374.1535.

14-(4-(trifluoromethyl)phenyl)indolo[1,2-f]phenanthridine (3ah):

Following the general procedure, 3ah was purified by PE/EtOAc (500:1) and obtained as a white solid ($122.2 \mathrm{mg}, 99 \%$ yield). $\mathrm{Mp}=175-176{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.38(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}$, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.68(\mathrm{~m}$, $3 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,135.7,132.8,131.5,131.0,130.4,129.5\left(J_{\mathrm{C}-\mathrm{F}}=32.3\right.$ $\mathrm{Hz}), 128.9,127.9,127.9,127.8,126.3,126.1\left(J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 125.3,124.4\left(J_{\mathrm{C}-\mathrm{F}}=272.3 \mathrm{~Hz}\right)$, 124.1, 123.4, 123.0, 122.7, 122.3, 122.2, 119.4, 116.6, 114.2, 112.2.; HRMS m/z (ESI) : calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+411.1229$, found 411.1231 .

4-(indolo[1,2-flphenanthridin-14-yl)benzonitrile (3ai):

Following the general procedure, 3ai was purified by $\mathrm{PE} / \mathrm{EtOAc}(500: 1)$ and obtained as a yellow solid ($103.9 \mathrm{mg}, 94 \%$ yield) $; \mathrm{Mp}=202-203{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.18(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8141.6, 132.9, 132.9, 131.9, 130.5, 129.0, 128.1, 128.0, $127.8,126.0,125.2,124.2,123.6,123.1,122.8,122.3,122.3,119.1,119.1,116.6,114.3$, 111.1; HRMS m/z (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]{ }^{+}$391.1206, found 391.1210.

14-(thiophen-2-yl)indolo[1,2-f]phenanthridine (3aj):

Following the general procedure, 3aj was purified by $\mathrm{PE} / \mathrm{EtOAc}(500: 1)$ and obtained as a yellow solid ($99.6 \mathrm{mg}, 95 \%$ yield). $\mathrm{Mp}=161-163{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.38(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-$ $7.66(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $2 \mathrm{H}), 7.24(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.6,132.7,132.2,128.8$, $128.4,127.9,127.9,127.9,126.9,126.4,125.6,124.1,123.4,122.9,122.4,122.4,122.2$, 119.9, 116.6, 114.0, 105.3; HRMS m/z (ESI) : calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{NS}[\mathrm{M}+\mathrm{H}]+350.0998$, found 350.1002 .

14-(furan-2-yl)indolo[1,2-flphenanthridine (3ak):

Following the general procedure, 3ak was purified by $\mathrm{PE} / \mathrm{EtOAc}(500: 1)$ and obtained as a brown solid ($60.0 \mathrm{mg}, 60 \%$ yield); $\mathrm{Mp}=140-142{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.36(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}$, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H})$, $7.62(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.1,142.3,135.5,132.9,131.0,128.8,128.1,127.9,126.0,125.4$, 124.1, 123.5, 122.9, 122.5, 122.4, 122.3, 119.9, 116.7, 114.2, 111.6, 110.4, 102.5; HRMS m/z (ESI): calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]{ }^{+} 334.1226$, found 334.1232.

pyrrolo[1,2-flphenanthridine (3al):

Following the general procedure, 3al was purified by PE/EtOAc (500:1) and obtained as a white solid ($63.9 \mathrm{mg}, 98 \%$ yield); $\mathrm{Mp}=131-133{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J$ $=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=2.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.47$ (m, 2H), 7.42 (dddd, $J=18.7,8.2,7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=3.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (dd, $J=3.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.2,129.3,128.5,128.1,126.3,125.9$, $124.8,124.0,123.8,122.8,122.5,121.7,115.0,113.1,112.2,102.0$. The spectra data matched with values reported in the literature. ${ }^{2}$

2,7-dimethylindolo[1,2-f]phenanthridine (3ba):

Following the general procedure, 3ba was purified by $\mathrm{PE} / \mathrm{EtOAc}(500: 1)$ and obtained as a white solid ($44.3 \mathrm{mg}, 50 \%$ yield); $\mathrm{Mp}=132-134{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.34(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}$, $1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.5,137.6,135.7,135.6$, $134.0,130.5,129.2,125.7,124.7,124.2,124.1,123.7,122.2,121.8,121.7,121.0,119.8$, 116.7, 114.3, 95.9, 22.0, 21.5; HRMS m/z (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+296.1434$, found 296.1438 .

6,11-dimethylpyrrolo[1,2-f]phenanthridine (3bb):

Following the general procedure, $\mathbf{3} \mathbf{b b}$ was purified by $\mathrm{PE} / \mathrm{EtOAc}(500: 1)$ and obtained as a light green solid ($39.0 \mathrm{mg}, 53 \%$ yield); $\mathrm{Mp}=125-127{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.42(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.63(\mathrm{~m}$, $3 \mathrm{H}), 7.22$ (dddd, $J=20.7,8.2,1.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2,137.5,132.8,129.5$, $127.3,125.9,125.0,123.6,122.7,122.6,122.2,119.3,115.2,112.9,112.0,101.6,21.7,21.5 ;$ HRMS m/z (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+246.1277$, found 246.1279.

5,7,10,12-tetramethylpyrrolo[1,2-f]phenanthridine (3bc):

Following the general procedure, 3bc was purified by PE/EtOAc (500:1) and obtained as a yellow solid ($43.5 \mathrm{mg}, 53 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.44(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ; \mathrm{Mp}=153-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.05$ $(\mathrm{dd}, J=4.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=4.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.4,133.6,133.3,132.5,132.3,130.0,126.8$, $125.5,123.9,123.6,122.5,121.0,118.8,110.1,106.0,24.6,24.6,21.5,21.0 ;$ HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+274.1590$, found 274.1593.

2,7-difluoroindolo[1,2-f]phenanthridine (3bd):

Following the general procedure, 3bd was purified by PE/EtOAc (500:1) and obtained as a light yellow solid ($45.4 \mathrm{mg}, 57 \%$ yield); $\mathrm{Mp}=182-184{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.29(\mathrm{PE} / \mathrm{EtOAc}=20: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 8.16-8.07(\mathrm{~m}), 8.02(\mathrm{dd}, J=9.0,5.3$ Hz), $7.85-7.79(\mathrm{~m}), 7.65(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}$), $7.45-7.35(\mathrm{~m}), 7.18-7.11(\mathrm{~m}), 7.03$ (ddd, J $=8.8,7.6,2.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=247.0 \mathrm{~Hz}\right), 162.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=247.0 \mathrm{~Hz}), 136.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=10.2 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 133.9,130.2,127.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $9.1 \mathrm{~Hz}), 125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.9 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 122.9,122.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 122.4$, $121.4,117.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 116.0,114.0,110.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right), 109.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right)$, 103.6, 97.6; HRMS m/z (ESI) : calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+304.0932$, found 304.0931 .

2,7-dichloroindolo[1,2-f]phenanthridine (3be):

Following the general procedure, 3be was purified by PE/EtOAc (500:1) and obtained as a light yellow solid ($46.4 \mathrm{mg}, 46 \%$ yield) ; $\mathrm{Mp}=208-210^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.34(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{ddd}, J=7.8,1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.34(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.4$, $128.2,125.1,124.0,123.7,123.4,123.0,122.5,121.5,116.4,114.0,97.7 ;$ HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+336.0341$, found 336.0347.

6,11-dichloropyrrolo [1,2-f]phenanthridine (3bf):

Following the general procedure, 3bf was purified by PE/EtOAc (500:1) and obtained as a white solid ($70.4 \mathrm{mg}, 82 \%$ yield); $\mathrm{Mp}=178-180^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.37(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=3.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=9.0,7.5,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.95(\mathrm{dd}, J=3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $134.6,134.4,133.8,128.3,127.5,126.4,125.2,124.4,124.1,122.6,122.4,119.6,115.2$, 113.9, 113.1, 103.4; HRMS m/z (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+286.0185$, found 286.0192. The ${ }^{13} \mathrm{C}$-NMR of $\mathbf{3 b f}$ is not obvious due to poor solubility.

2,7-bis(trifluoromethyl)indolo[1,2-f]phenanthridine (3bg):

Following the general procedure, $\mathbf{3 b g}$ was purified by PE/EtOAc (500:1) and obtained as a yellow solid ($56.8 \mathrm{mg}, 47 \%$ yield); $\mathrm{Mp}=187-189{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{t}, J=9.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=$ $8.5,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $136.4,133.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=32.2 \mathrm{~Hz}\right), 130.2,127.1,126.2,125.1,124.2,124.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right)$,
$123.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 123.7,123.6,122.8,121.8,121.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 119.7\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=4.5 \mathrm{~Hz}), 113.9,113.4\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}\right), 98.4 ;$ HRMS m$/ \mathrm{z}(\mathrm{ESI}):$ calcd for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}[\mathrm{M}+$ $H]^{+} 404.0868$, found 404.0874 .

6,11-bis(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (3bh):

Following the general procedure, $\mathbf{3 b h}$ was purified by PE/EtOAc (500:1) and obtained as a green solid ($44.5 \mathrm{mg}, 42 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.35(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ; \mathrm{Mp}=167-169{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}$, $1 \mathrm{H}), 7.81(\mathrm{dd}, J=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{dd}, J=3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83-6.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.4,131.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=33.4 \mathrm{~Hz}\right.$), 131.0 $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=32.2 \mathrm{~Hz}\right), 130.9,128.2,126.9,126.0,125.1,123.6,123.3,122.9,122.2\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $3.5 \mathrm{~Hz}), 120.3\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 120.0\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 114.2,113.3,112.4\left(\mathrm{dd}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $4.5 \mathrm{~Hz}), 104.0$; HRMS m/z (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+354.0712$, found 354.0706 .

7-fluoro-1,3-dimethylindolo[1,2-f]phenanthridine (3bi):

Following the general procedure, 3bi was purified by PE/EtOAc (500:1) and obtained as a white solid ($65.8 \mathrm{mg}, 70 \%$ yield); $\mathrm{Mp}=144-146{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.48(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{dd}, J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{dd}, J=8.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J=8.6$, $7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), \quad 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.7\left(J_{\mathrm{C}-\mathrm{F}}=\right.$ $245.7 \mathrm{~Hz}), 136.8,136.6\left(J_{\text {C-F }}=11.0 \mathrm{~Hz}\right), 135.5,134.9,132.8,132.6,130.5,127.9,126.1(J$ $\left.{ }_{\mathrm{C}-\mathrm{F}}=9.8 \mathrm{~Hz}\right), 122.6,122.4,122.0,121.1,120.5,119.0\left(J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 113.8,110.1\left(J_{\mathrm{C}-\mathrm{F}}=\right.$ $22.0 \mathrm{~Hz}), 103.3\left(J_{\mathrm{C}-\mathrm{F}}=27.1 \mathrm{~Hz}\right), 101.9,25.0,21.5 ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}(\mathrm{ESI})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{FN}[\mathrm{M}$ $+\mathrm{H}]+314.1340$, found 314.1339 .

6-fluoro-10,12-dimethylpyrrolo[1,2-f]phenanthridine (3bj):

Following the general procedure, 3bj was purified by PE/EtOAc (500:1) and obtained as a white solid ($48.2 \mathrm{mg}, 61 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ; \mathrm{Mp}=144-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=2.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{dd}, J=10.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=3.9,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7$ $\left(J_{\text {C-F }}=247.0 \mathrm{~Hz}\right), 134.9,134.3\left(J_{\text {C-F }}=10.5 \mathrm{~Hz}\right), 134.0,132.3,129.2,126.3\left(J_{\text {C-F }}=9.5 \mathrm{~Hz}\right)$, $125.6,122.8,120.4,118.4,112.9,112.4,111.4\left(J_{\text {C-F }}=22.1 \mathrm{~Hz}\right), 107.6,101.7,\left(J_{\text {C-F }}=25.2\right.$ Hz), 24.7, 21.4; HRMS m/z (ESI): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{FN}[\mathrm{M}+\mathrm{H}]{ }^{+}$264.1183, found 264.1186.

The mixture of ethyl indolo[1,2-f]phenanthridine-2-carboxylate (3bk) and ethyl indolo [1,2-f]phenanthridine-7-carboxylate (3bk'):

Following the general procedure, inseparable 3bk and 3bk' were purified by $\mathrm{PE} / \mathrm{EtOAc}$ (2:1) and obtained as a yellow solid ($66.2 \mathrm{mg}, 65 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=2: 1$); HRMS m/z (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+340.1332$, found 340.1332 .

The mixture of ethyl pyrrolo[1,2-f]phenanthridine-11-carboxylate (3bl) and ethyl pyrrolo[1,2-f]phenanthridine-6-carboxylate (3bl'):

Following the general procedure, inseparable 3bl and 3bl' were purified by $\mathrm{PE} / \mathrm{EtOAc}$ (20:1) and obtained as a green solid ($65.1 \mathrm{mg}, 75 \%$ yield); $\mathrm{R}_{\mathrm{f}}=0.3(\mathrm{PE} / \mathrm{EtOAc}=20: 1$); HRMS m/z (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]+290.1176$, found 290.1177.

9H-dibenzo[a, c]carbazole(4a):

Following the general procedure, $\mathbf{4 a}$ was purified by PE/EtOAc (20:1) and obtained as a white solid ($66.8 \mathrm{mg}, 84 \%$ yield); $\mathrm{Mp}=194-196{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.42(\mathrm{~s}, 1 \mathrm{H}), 8.95-8.87(\mathrm{~m}, 2 \mathrm{H}), 8.82(\mathrm{dd}, J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.63-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.79$ (ddt, $J=8.2,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (ddd, $J=8.3,7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{ddd}, J=8.4,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.1,7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=8.1$,
7.1, 1.1 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 138.5, 134.2, 129.6, 129.3, 127.6, 127.0, $126.5,126.2,124.0,123.7,123.6,123.6,123.4,122.6,122.3,121.4,120.1,111.9,111.3$. The spectra data matched with values reported in the literature. ${ }^{3}$

2,7-dimethyl-9H-dibenzo[a, c]carbazole (4b):

Following the general procedure, $\mathbf{4 b}$ was purified by $\mathrm{PE} / \mathrm{EtOAc}(20: 1)$ and obtained as a white solid ($120.2 \mathrm{mg}, 88 \%$ yield); $\mathrm{Mp}=223-226{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=10.3,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.60(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.43-8.34(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{dt}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33$ (ddd, $J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}$, $3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 138.5,136.5,135.8,134.2,129.3,127.3$, 124.1, 123.7, 123.6, 123.4, 123.0, 122.3, 121.4, 119.9, 111.1, 21.4, 21.3. HRMS m/z (ESI): calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+296.1434$, found 296.1441.

2,7-difluoro-9H-dibenzo[$a, c]$ carbazole (4c):

Following the general procedure, $\mathbf{4 c}$ was purified by $\mathrm{PE} / \mathrm{EtOAc}(20: 1)$ and obtained as a white solid ($30.7 \mathrm{mg}, 34 \%$ yield); $\mathrm{Mp}=230-232{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE} / \mathrm{EtOAc}=10: 1) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.47(\mathrm{~s}, 1 \mathrm{H}), 8.99-8.87(\mathrm{~m}, 2 \mathrm{H}), 8.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ (dd, $J=10.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=10.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dt}, J=8.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 161.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245.2 \mathrm{~Hz}\right), 160.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.5 \mathrm{~Hz}\right), 138.5,134.2(\mathrm{~d}, J$ $\left.{ }_{\text {C-F }}=3.3 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\text {C-F }}=8.6 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.0 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.2 \mathrm{~Hz}\right)$, $125.8,124.2,123.4\left(\mathrm{~d}, J_{\text {C-F }}=9.2 \mathrm{~Hz}\right), 123.2,122.7,121.4,120.4,115.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right)$, $112.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right), 111.9,111.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 108.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 107.1(\mathrm{~d}$, $\left.J_{\text {C-F }}=22.5 \mathrm{~Hz}\right)$. HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 304.0932$, found 304.0928.

2,7-dichloro-9H-dibenzo $[a, c]$ carbazole (4d):

Following the general procedure, $\mathbf{4 d}$ was purified by PE/EtOAc (20:1) and obtained as a white solid ($33.1 \mathrm{mg}, 33 \%$ yield); $\mathrm{Mp}=228-231^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE} / \mathrm{EtOAc}=10: 1) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.68(\mathrm{dd}, J=10.6,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 8.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J$ $=8.1,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=8.1,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 138.5,133.7,132.8,132.2,130.6,127.3,126.6,126.4,126.3,124.3,124.3,123.8,123.7$, $122.9,122.1,121.6,121.3,120.6,112.0,111.2$. HRMS m/z (ESI): calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}[\mathrm{M}+$ $H]^{+} 336.0341$, found 336.0345 .

12-methyl-9H-dibenzo $[a, c]$ carbazole (4e):

Following the general procedure, $\mathbf{4 e}$ was purified by PE/EtOAc (20:1) and obtained as a white solid ($70.4 \mathrm{mg}, 83 \%$ yield); $\mathrm{Mp}=235-237{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.2(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.28(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{t}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.57$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{td}, J=7.5,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $136.8,134.3,129.7,129.2,128.7,127.5,126.9,126.3,126.1,125.1,123.9,123.9,123.8$, $123.4,122.7,122.2,121.1,111.5,110.9,21.5$. The spectra data matched with values reported in the literature. ${ }^{4}$

12-methoxy-9H-dibenzo $[a, c]$ carbazole (4f):

Following the general procedure, $\mathbf{4 f}$ was purified by $\mathrm{PE} / \mathrm{EtOAc}(20: 1)$ and obtained as a white solid ($56.5 \mathrm{mg}, 64 \%$ yield); $\mathrm{Mp}=144-146{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.28(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{td}, J=8.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.79(\mathrm{dd}, J=8.1,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.57(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (dddd, $J=11.2,8.1$, $7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.3,7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, $J=$ 8.2, $6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 154.1,134.7,133.5,129.6,129.2,127.6,126.9,126.4,126.0,123.9,123.9$, $123.8,123.3,123.3,122.8,122.1,113.2,112.4,111.1,103.9,55.8$. The spectra data matched with values reported in the literature. ${ }^{4}$

11-methoxy-9H-dibenzo[a, c]carbazole (4g):

Following the general procedure, $\mathbf{4 g}$ was purified by PE/EtOAc (20:1) and obtained as a white solid ($25 \mathrm{mg}, 28 \%$ yield); $\mathrm{Mp}=212-215{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathbf{H} \mathbf{N M R}$ ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.30(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.84(\mathrm{~m}, 2 \mathrm{H}), 8.75(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.54(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{ddt}, J=8.1,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{ddd}, J=8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{ddd}, J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 157.1$, $139.9,133.6,129.3,128.7,127.5,127.0,126.2,125.9,123.9,123.5,123.3,122.7,122.1$, $121.9,117.8,111.6,109.5,95.1,55.3$. HRMS m/z (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 298.1226 , found 298.1240 .

12-fluoro-9H-dibenzo $[a, c]$ carbazole (4h):

Following the general procedure, $\mathbf{4 h}$ was purified by PE/EtOAc (20:1) and obtained as a white solid ($26 \mathrm{mg}, 30 \%$ yield); $\mathrm{Mp}=206-209{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{ddd}, J=13.9,8.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.76$ (dd, $J=8.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{dd}, J=10.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.68(\mathrm{~m}$, $4 \mathrm{H}), 7.59$ (ddd, $J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{td}, J=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 157.4\left(\mathrm{~d}, J_{\text {C-F }}=231.7 \mathrm{~Hz}\right), 135.7,135.1,129.6,129.2,127.8,127.1,126.8$, $126.2,124.0,123.9,123.7\left(\mathrm{~d}, J_{\text {C-F }}=4.5 \mathrm{~Hz}\right), 123.6,123.4,122.5,122.3,112.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.2\right.$ $\mathrm{Hz}), 111.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.2 \mathrm{~Hz}\right), 111.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 106.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.0 \mathrm{~Hz}\right)$. The spectra data matched with values reported in the literature. ${ }^{4}$

12-chloro-9H-dibenzo[a, c]carbazole (4i):

Following the general procedure, $\mathbf{4 i}$ was purified by PE/EtOAc (20:1) and obtained as a white solid ($29.8 \mathrm{mg}, 35 \%$ yield); $\mathrm{Mp}=208-211^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20(\mathrm{PE} / \mathrm{EtOAc}=20: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{ddd}, J=13.5,8.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.76(\mathrm{dd}, J=8.2$,
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.62-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{ddd}, J=$ 8.2, 6.9, 1.2 Hz, 1H), 7.45 (dd, $J=8.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 137.0$, $135.3,129.6,129.0,127.8,127.1,126.9,126.3,124.6,124.5,124.0,123.9,123.9,123.5$, $123.4,122.4,120.5,113.2,110.7$. The spectra data matched with values reported in the literature. ${ }^{4}$

9-methyl-9H-dibenzo[a, $c]$ carbazole (4j):

Following the general procedure, $\mathbf{4} \mathbf{j}$ was purified by PE/EtOAc (500:1) and obtained as a white solid ($106.5 \mathrm{mg}, 76 \%$ yield); $\mathrm{Mp}=142-144{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE} / \mathrm{EtOAc}=50: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.02-8.97(\mathrm{~m}, 1 \mathrm{H}), 8.90(\mathrm{td}, J=8.2,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.68-8.64(\mathrm{~m}$, $1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{ddd}, J=8.3,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 140.4,134.1,130.2,129.2,127.7,126.7,126.3,126.1,124.2,123.9$, $123.8,123.4,123.3,123.3,122.4,121.5,120.4,112.3,110.4,34.5$. The spectra data matched with values reported in the literature. ${ }^{3}$

2,7,9-trimethyl-9H-dibenzo[a, c]carbazole (4k):

Following the general procedure, $\mathbf{4 k}$ was purified by PE/EtOAc (500:1) and obtained as a white solid ($50 \mathrm{mg}, 33 \%$ yield); $\mathrm{Mp}=196-198{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE} / \mathrm{EtOAc}=50: 1) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8$, $136.6,135.3,134.8,129.7,128.9,127.2,125.2,124.9,123.8,123.6,123.5,123.4,123.2$, $122.8,122.7,121.8,120.1,113.3,109.5,34.6,22.0$. The spectra data matched with values reported in the literature. ${ }^{5}$

9-benzyl-9H-dibenzo [a, c]carbazole (41):

Following the general procedure, $\mathbf{4 1}$ was purified by PE/EtOAc (500:1) and obtained as a white solid ($66.2 \mathrm{mg}, 62 \%$ yield); $\mathrm{Mp}=198-201{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30(\mathrm{PE} / \mathrm{EtOAc}=50: 1) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.96(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J$ $=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.72-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.2,7.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddt}, J=8.4,6.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3,137.5,134.7$, $131.0,129.9,129.1,127.5,127.4,127.1,126.4,126.0,125.7,124.2,124.1,123.9,123.9$, $123.7,123.5,123.2,122.9,122.0,120.9,114.0,110.0,50.2$. The spectra data matched with values reported in the literature. ${ }^{5}$

V. Control experiment:

In a 15 mL thick-walled tube was charged with methyl 1 H -indole-2-carboxylate 5 (52.6 $\mathrm{mg}, 0.3 \mathrm{mmol})$, 2a ($256.9 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1 \mathrm{mg}$, $0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and $\mathrm{DMF}(2 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water $(10 \mathrm{~mL})$ before it was extracted with EtOAc ($15 \mathrm{~mL} x \mathrm{3}$). No desired product 3aa was detected by TLC.

In a 15 mL thick-walled tube was charged with indole $\mathbf{6}(35.2 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{2 a}(256.9$ $\mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1 \mathrm{mg}, 0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and DMF $(2 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). Trace product 3aa was detected by TLC.

In a 15 mL thick-walled tube was charged with 1-methyl-1H-indole-2-carboxylic acid 7 $(52.5 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathbf{2 a}(256.9 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1$ $\mathrm{mg}, 0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and DMF (2 mL). The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water $(10 \mathrm{~mL})$ before it was extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic phase were washed with water ($10 \mathrm{~mL} \times 3$) and saturated brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=500: 1)$ on silica gel to provide the desired 9-methyl-9H-dibenzo[a,c]carbazole $\mathbf{8}$ as white solid ($70.2 \mathrm{mg}, 83 \%$).

In a 15 mL thick-walled tube was charged with 1-methyl-3-(naphthalen-1-yl)-1 H -indole-2-carboxylic acid 9 ($90.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2a (256.9 $\mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1 \mathrm{mg}, 0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and $\mathrm{DMF}(2 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145{ }^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic phase were washed with water ($10 \mathrm{~mL} \times 3$) and saturated brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=500: 1)$ on silica gel to provide the desired 1-methyl-3-(naphthalen-1-yl)-1H-indole 10 as white solid ($47 \mathrm{mg}, 60 \%$).

In a 15 mL thick-walled tube was charged with 1-methyl- 1 H -indole-2-carboxylic acid 7 ($52.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2-iodo-1,1'-biphenyl $11(105.6 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1 \mathrm{mg}, 0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06$ $\mathrm{mmol})$ and DMF $(2 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145^{\circ} \mathrm{C}$ (pre-heated oil
bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc ($15 \mathrm{~mL} x 3$). The combined organic phase were washed with water ($10 \mathrm{~mL} \times 3$) and saturated brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EA}=500: 1$) on silica gel to provide the desired 9-methyl-9H-dibenzo $[a, c]$ carbazole $\mathbf{8}$ as white solid ($30.4 \mathrm{mg}, 36 \%$).

In a 15 mL thick-walled tube was charged with substrate $\mathbf{1 a}(48.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, 2-iodo-1,1'-biphenyl 11 ($105.6 \mu \mathrm{~L}, 0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(91.1$ $\mathrm{mg}, 0.66 \mathrm{mmol})$, ethyl diphenylphosphinite $\left(\mathrm{Ph}_{2} \mathrm{POEt}\right)(13 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ and DMF $(2 \mathrm{~mL})$. The reaction tube was sealed and stirred at $145^{\circ} \mathrm{C}$ (pre-heated oil bath) for 12 h . The reaction mixture was then cooled to r.t. and diluted with water $(10 \mathrm{~mL})$ before it was extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic phase were washed with water ($10 \mathrm{~mL} \times 3$) and saturated brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EA}=500: 1)$ on silica gel to provide the desired indolo [1,2-f]phenanthridine $\mathbf{3 a a}(9 \mathrm{mg}, 10 \%)$ as a white solid.

1-methyl-3-(naphthalen-1-yl)-1 \mathbf{H}-indole (10)

White solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{dd}, J=8.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, J=$ $8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dt}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $8.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.3,6.8,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34$ (ddd, $J=8.2,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.16$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0,134.0,133.1,132.6,128.2,128.1,127.6$, $126.9,126.6,125.7,125.6,125.6,121.9,120.5,119.6,115.0,109.4,32.9$. HRMS m/z (ESI): calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}[\mathrm{M}+\mathrm{H}]+258.1277$, found 258.1278 .

Refrence:

1. Xie, C.; Zhang, Y.; Huang, Z.; Xu, P., J. Org. Chem. 2007, 72, 5431-5434.
2. Yan, L.; Zhao, D.; Lan, J.; Cheng, Y.; Guo, Q.; Li, X.; Wu, N.; You, J., Org. Biomol. Chem. 2013, 11, 7966-7977.
3. Wu, Y.; Peng, X.; Luo, B.; Wu, F.; Liu, B.; Song, F.; Huang, P.; Wen, S., Org. Biomol. Chem. 2014, 12, 9777-9780.
4. Bhunia, S. K.; Polley, A.; Natarajan, R.; Jana, R., Chem. Eur. J. 2015, 21, 16786-16791.
5. Kitano, H.; Matsuoka, W.; Ito, H.; Itami, K., Chem. Sci., 2018, 9, 7556-7561.

VI. Crystal data

Table S1. Crystal Data and Structure Refinement for 3bi (CCDC 1951128)

Formula	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}$
Formula weight	313.36
Temperature $/ \mathrm{K}$	288
Crystal system	monoclinic
Space group	$\mathrm{P} 2(1) / \mathrm{n}$
a / \AA	$10.4961(6)$
b / \AA	$7.6672(5)$
c / \AA	$19.0105(13)$
$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	$95.616(6)$
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	$1522.54(17)$
Z	4
$D_{\text {cald }} / \mathrm{g} \cdot \mathrm{cm}{ }^{-3}$	1.367
μ / mm^{-1}	0.088
$\mathrm{~F}(000)$	656
Crystal size $/ \mathrm{mm}{ }^{3}$	$0.30 \times 0.30 \times 0.20$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
θ range $/{ }^{\circ}$	$3.30-26.37$
Index ranges	$-13 \leq \mathrm{h} \leq 13,-9 \leq \mathrm{k} \leq 9,-23 \leq 1 \leq 23$
Data/restraints $/$ parameters	$3108 / 0 / 217$
$R_{l}\left[\mathrm{I}>2 \sigma(\mathrm{I}]^{a}\right.$	0.0518
$w R_{2}$ (all data) ${ }^{\mathrm{b}}$	0.1252

VII. NMR spectra of all compounds:

indolo[1,2-f]phenanthridine (3aa):

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

10	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \text { f1 } \end{array}$	$\begin{gathered} 90 \\ (\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

12-methylindolo[1,2-f]phenanthridine (3ab)

 $\underbrace{0}$
${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}^{2}\right.$

12-methoxyindolo [1,2-flphenanthridine (3ac)

${ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11-methoxyindolo[1,2-f|phenanthridine (3ad)

12-fluoroindolo[1,2-f|phenanthridine (3ae)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

12-chloroindolo[1,2-f]phenanthridine (3af)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	구국	Et		¢న్లఱ్ల్ల్ల్ల
¢iousiom	11	N	$\bigcirc{ }^{\text {cricil }}$	1 -viris

14-(4-methoxyphenyl)indolo[1,2-flphenanthridine (3ag)

14-(4-(trifluoromethyl)phenyl)indolo[1,2-flphenanthridine (3ah)

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]
4-(indolo[1,2-f]phenanthridin-14-yl)benzonitrile (3ai)

14-(thiophen-2-yl)indolo[1,2-flphenanthridine (3aj):

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad$.

14-(furan-2-yl)indolo[1,2-flphenanthridine (3ak)

pyrrolo[1,2-f]phenanthridine (3al)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2,7-dimethylindolo[1,2-f]phenanthridine (3ba)

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 40 | 138 | 136 | 134 | 132 | 130 | $\begin{array}{rllll}128 \\ \mathrm{f} 1 & \begin{array}{l}126 \\ (\mathrm{ppm})\end{array} & 124 & 122 & 120 \\ 118 & 116 & 114\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	1
										f1 (p					50		S0			

6,11-dimethylpyrrolo[1,2-f]phenanthridine (3bb)

${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl})$

5,7,10,12-tetramethylpyrrolo[1,2-f]phenanthridine (3bc)

$\underbrace{\infty \infty \infty} \underbrace{\infty}$

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

				$\begin{aligned} & \text { Hy } \\ & \text { \$8 } \\ & \hline-1 \end{aligned}$		$\begin{aligned} & 4{ }^{4} \\ & 08 \\ & -1 \\ & \hline \end{aligned}$	$\begin{gathered} \text { H } \\ \stackrel{4}{\circ} \\ \hline \end{gathered}$								$\begin{aligned} & \text { H } \\ & \stackrel{1}{\circ} \\ & \stackrel{5}{5} \end{aligned}$						
0.0	9. 5	9. 0	8.5	8. 0	7.5	7.0	6. 5	6. 0	5.5	5. 0		4.0	3.5	3.0	2.5	2. 0	1.5	1.0	0.5	0.0	-0.5
								6.0	5.5		(ppm)	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

2,7-difluoroindolo[1,2-f]phenanthridine (3bd)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-1. $80 \mathrm{E}+09$
-1. $70 \mathrm{E}+09$
-1. $60 \mathrm{E}+09$
-1. $50 \mathrm{E}+09$
$-1.40 \mathrm{E}+09$
$-1.30 \mathrm{E}+09$
$-1.20 \mathrm{E}+09$
$-1.10 \mathrm{E}+09$
$-1.00 \mathrm{E}+09$
$-9.00 \mathrm{E}+08$
$-9.00 \mathrm{E}+08$
$-8.00 \mathrm{E}+08$
$-7.00 \mathrm{E}+08$
$-6.00 \mathrm{E}+08$
$-5.00 \mathrm{E}+08$
$-4.00 \mathrm{E}+08$
$-3.00 \mathrm{E}+08$
$-2.00 \mathrm{E}+08$
$-1.00 \mathrm{E}+08$

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

?

, 0
$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$ 80
$70 \quad 60$
50
-
30
10

2,7-dichloroindolo[1,2-f]phenanthridine (3be)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6,11-dichloropyrrolo[1,2-f]phenanthridine (3bf)

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	0
										(p									

2,7-bis(trifluoromethyl)indolo[1,2-f]phenanthridine (3bg)

 $1 \stackrel{4}{2}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

6,11-bis(trifluoromethyl)pyrrolo[1,2-flphenanthridine (3bh)

$\cdots \cdots \infty \times \infty-\infty \infty \infty$

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

7-fluoro-1,3-dimethylindolo[1,2-f]phenanthridine (3bi):

Number	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$
1	7.85 (1H, d, J = 8.0 Hz)	121.2
2	7.42 (1H, ddd, $J=8.6,7.1,1.4 \mathrm{~Hz})$	122.4
3	8.27 (1H, dd, $J=8.4,2.8 \mathrm{~Hz})$	113.8
4	-	130.5
5	-	132.8
6	7.37 (1H, t, J = 7.2 Hz)	122.0
7	-	-
8	-	134.9
9	7.28 (1H, d, J = 5.5 Hz)	101.9
10	-	136.6
11	-	119.0
12	-	127.9
13	-	122.6
14	7.82 (1H, d, J = 5.0 Hz)	120.6
15	-	136.8
16	7.17 (1H, d, J = 3.1 Hz)	132.6
17	-	135.5
18	8.16 (1H, dd, J = 11.2, 2.4 Hz)	103.3
19	-	162.7
20	$7.03-6.98(1 \mathrm{H}, \mathrm{m})$	110.1
21	8.20 (1H, dd, $J=8.8,6.2 \mathrm{~Hz})$	126.1
22	2.81 (3H, s)	25.0
23	2.47 (3H, s)	21.5

6-fluoro-10,12-dimethylpyrrolo[1,2-f]phenanthridine (3bj)
${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ かimo noon

${ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The mixture of ethyl indolo[1,2-f]phenanthridine-2-carboxylate (3bk) and ethyl indolo[1,2-f]phenanthridine-7-carboxylate (3bk')

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

The mixture of ethyl pyrrolo[1,2-f]phenanthridine-11-carboxylate (3bl) and ethyl pyrrolo[1,2-f]phenanthridine-6-carboxylate (3bl')

 'HNMR ($500 \mathrm{MHz}, \mathrm{CDCl}$)

9H-Dibenzo[a,c]carbazole(4a):

2,7-dimethyl-9H-dibenzo[a,c]carbazole (4b):

2,7-difluoro-9H-dibenzo[a,c]carbazole (4c):

2,7-dichloro-9H-dibenzo[a,c]carbazole(4d):

${ }^{3}{ }^{3} \mathrm{CNMR}$ (126 MHz , DMSO- d_{6})

12-methyl-9H-dibenzo[a,c]carbazole (4e):

[^2]
12-methoxy-9H-dibenzo[a,c]carbazole (4f):

11-methoxy-9H-dibenzo [a,c]carbazole (4g):

12-fluoro-9H-dibenzo[a,c]carbazole (4h):

12-chloro-9H-dibenzo[a,c]carbazole (4i):

9-methyl-9H-dibenzo[a,c]carbazole (4j):

2,7,9-trimethyl-9H-dibenzo[a,c]carbazole (4k):

[^3]
9-benzyl-9H-dibenzo $[a, c]$ carbazole (41):

[^4]
1-methyl-3-(naphthalen-1-yl)-1H-indole (10)

[^5]
[^0]: * Corresponding author, zhangfengzhi@zjut.edu.cn

[^1]: $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$

[^2]:

[^3]:

[^4]:

[^5]:

