SUPPORTING INFORMATION

Cascade π -Extended Decarboxylative Annulation Involving Cyclic Diaryliodonium Salts: Site-Selective Synthesis of Phenanthridines and Benzocarbazoles via a Traceless Directing Group Strategy

Zenghui Ye, Yong Li, Kai Xu, Na Chen and Fengzhi Zhang* College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China

Table of contents

I . General information	S2
II. Conditions optimization of phenanthridine and benzocarbazole	S2
Ⅲ. General procedure to synthesize phenanthridine and benzocarbazole	S4
IV. Characterization of the phenanthridine and benzocarbazole	S4
V. Control experiment	S18
VI. Crystal data	S21
VII. NMR spectra of all compounds	.S22

_

 $^{^{}st}$ Corresponding author, zhangfengzhi@zjut.edu.cn

I. General information

All reagents were obtained from commercial suppliers and used without further purification. Yields for all compounds were determined by the column chromatography which was generally performed on silica gel (200-300 mesh) using petroleum ether 40-60 (PE)/EtOAc as eluent, and reactions were monitored by thin layer chromatography (TLC) on a glass pate coated with silica gel with fluorescent indicator (GF254) using UV light. The ¹H reree and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker ADNANCE III 500 MHz using CDCl₃ as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.28 for ¹H and 77.03 for ¹³C, and to DMSO-*d*₆ with 2.50 for ¹H and 39.52 for ¹³C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and coupling constants are expressed in hertz. Melting points were measured on a SGW_® X-4B apparatus and uncorrected. HRMS were recorded on Agilent 6210TOF LC/MS mass spectrometer.

II. Conditions optimization of phenanthridine and benzocarbazole.

Entry ^a	2a	Ligand	Catalyst	Base	Solvent	Yield(%)b	
	(eq.)					3aa	4a
1	1.1		$Pd(OAc)_2$	K_2CO_3	DMF	30	-
2°	1.1	-	$Pd(OAc)_2$	K_2CO_3	DMF	40	-
3	1.1			K_2CO_3	DMF	-	-
4	1.1		$Pd(OAc)_2$		DMF	-	-
5	1.1		$Pd(OAc)_2$	K_2CO_3	DMA	10	-
6	1.1		$Pd(OAc)_2$	K_2CO_3	DMSO	30	-
7	1.1		$Pd(OAc)_2$	K_2CO_3	toluene	19	-
8	1.1		$Pd(OAc)_2$	K_2CO_3	Ac_2O	-	-
9	1.1		$Pd(OAc)_2$	K_2CO_3	dioxane	22	-
10	1.1		$Pd(OAc)_2$	K_2CO_3	DCE	11	-
11	1.1		$Pd(OAc)_2$	Na_2CO_3	DMF	18	-
12	1.1		$Pd(OAc)_2$	Cs_2CO_3	DMF	-	-
13	1.1		$Pd(OAc)_2$	K_3PO_4	DMF	19	-
14	1.1	-	$Pd(OAc)_2$	KOH	DMF	19	-
15	1.1	-	$Pd(OAc)_2$	KO ^t Bu	DMF	-	-
16	1.1	2,6-Bi(^t Bu) pyridine	$Pd(OAc)_2$	K_2CO_3	DMF	15	-
17	1.1	2,2'-Bipyridine	$Pd(OAc)_2$	K_2CO_3	DMF	22	-
18	1.1	1,10-phen	$Pd(OAc)_2$	K_2CO_3	DMF	14	-
19	1.1	PPh ₃	$Pd(OAc)_2$	K_2CO_3	DMF	47	-

20	1.1		$Pd(PPh_3)_4$	K ₂ CO ₃	DMF	38	-
21	1.1	PPh_2	$Pd(OAc)_2$	K_2CO_3	DMF	36	-
22	1.1	$P(cy)_3$	$Pd(OAc)_2$	K_2CO_3	DMF	9	-
23	1.1	S-Phos	$Pd(OAc)_2$	K_2CO_3	DMF	6	-
24	1.1	$(p\text{-MeOC}_6\text{H}_4)_3\text{P}$	$Pd(OAc)_2$	K_2CO_3	DMF	23	-
25	1.1	$(n-C_8H_{17})_3P$	$Pd(OAc)_2$	K_2CO_3	DMF	26	-
26	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	58	-
27^{d}	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	42	-
28e	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	55	-
29	1.1	Ph ₂ POEt	$Pd_2(dba)_3$	K_2CO_3	DMF	38	-
30	1.1	Ph ₂ POEt	$Pd(dppf)Cl_2$	K_2CO_3	DMF	5	-
31	1.1	Ph ₂ POEt	$Pd(OAc)_2$	DABCO	DMF	30	-
32	1.1	Ph ₂ POEt	$Pd(OAc)_2$	Et ₃ N	DMF	46	-
$33^{\rm f}$	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	43	-
34 ^g	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	43	-
35	1.1	Ph ₂ POEt	$Pd(OAc)_2 (5mol\%)$	K_2CO_3	DMF	49	-
36	1.1	Ph ₂ POEt	$Pd(OAc)_2(2.5mol\%)$	K_2CO_3	DMF	25	-
37^{h}	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	66	-
38^{i}	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	72	-
39 ^j	1.1	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	73	=
40 ⁱ	1.3	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	73	-
41 ⁱ	1.6	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	87	-
42 ⁱ	2.0	Ph ₂ POEt	$Pd(OAc)_2$	K_2CO_3	DMF	94	-
43	1.1	-	$Pd(OAc)_2$	K_2CO_3	HOAc	-	30
44	2	-	$Pd(OAc)_2$	K_2CO_3	HOAc	-	41
$45^{\rm i}$	2	-	$Pd(OAc)_2$	K_2CO_3	HOAc	-	84
46 ^j	2	-	$Pd(OAc)_2$	K_2CO_3	HOAc	-	68
$47^{\rm i}$	2	-	$Pd(OAc)_2$	-	HOAc	-	-
$48^{\rm i}$	2	-	$Pd(OAc)_2$	KOAc	НОАс	-	19
49^{i}	2	-	$Pd(OAc)_2$	K ₂ HPO ₄	НОАс	-	31
$50^{\rm i}$	2	Ph ₂ POEt (10%-20%)	$Pd(OAc)_2$	K ₂ CO ₃	HOAc	-	26-27
51 ⁱ	2	-	$PdCl_2$	K ₂ CO ₃	HOAc	-	20
52^{i}	2	-	Pd ₂ (dba) ₃	K ₂ CO ₃	HOAc	-	38
$53^{\rm i}$	2	-	$Pd(TFA)_2$	K ₂ CO ₃	HOAc	-	51
$54^{\rm i}$	2	-	$[Ru(p ext{-cymene})Cl_2]_2$	K ₂ CO ₃	HOAc	-	-
55 ⁱ	2	-	$Cu(OAc)_2$	K ₂ CO ₃	HOAc	-	-
56 ⁱ	2		Co(OAc) ₂	K ₂ CO ₃	HOAc		

^aReaction condtions: indole-2-carboxylic acid **1a** (0.3 mmol), Pd catalyst (10 mol %), ligand (20 mol %), base (2.2 equiv), solvent (1 mL), 12 h, 145 °C, air atmosphere. ^b Isolated yields. ^c 24h. ^d N_2 atmosphere. ^e O_2 atmosphere. ^f 3.3 eq. base. ^g 1.1 eq. base. ^h 0.75 mL solvent. ⁱ 2 mL solvent. ^j 3 mL solvent.

III. General procedure to synthesize phenanthridine and benzocarbazole.

In a 15 mL thick-walled tube was charged with substrate 1a (48.3 mg, 0.3 mmol), 2a (256.9 mg, 0.6 mmol), Pd(OAc)₂ (6.8 mg, 0.03 mmol), K₂CO₃ (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph₂POEt) (13 μL, 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). The combined organic phase was washed with water (10 mL x 3) and saturated brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (PE/EA = 500:1) on silica gel provide desired to indolo[1,2-f]phenanthridine **3aa** (75.4 mg, 94%) as a white solid.

For 1 mmol scale synthesize phenanthridine: In a 30 mL thick-walled tube was charged with substrate 1a (161.1 mg, 1 mmol), 2a (513.6 mg, 1.2 mmol), Pd(OAc)₂ (22.4 mg, 0.1 mmol), K_2CO_3 (303.6 mg, 2.2 mmol), ethyl diphenylphosphinite (Ph₂POEt) (43.2 μ L, 0.2 mmol) and DMF (6 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (20 mL) before it was extracted with EtOAc (25 mL x 3). The combined organic phase was washed with water (20 mL x 3) and saturated brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (PE/EA = 500:1) on silica gel to provide the desired indolo[1,2-f]phenanthridine 3aa (225.0 mg, 84%) as a white solid.

In a 15 mL thick-walled tube was charged with substrate 1a (48.3 mg, 0.3 mmol), 2a (256.9 mg, 0.6 mmol), $Pd(OAc)_2$ (6.8 mg, 0.03 mmol), K_2CO_3 (91.1 mg, 0.66 mmol) and HOAc (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). The combined organic phase was washed with water (10 mL x 3) and saturated brine (10 mL), dried over Na_2SO_4 , and concentrated *in vacuo*. The residue was purified by column chromatography (PE/EA = 20:1) on silica gel to provide the desired 9H-dibenzo[a, c]carbazole 4a (66.8 mg, 84%) as a white solid.

IV. Characterization of the phenanthridine and benzocarbazole.

indolo[1,2-f]phenanthridine (3aa):

Following the general procedure, **3aa** was purified by PE/EtOAc (500:1) and obtained as a white solid (75.4 mg, 94% yield); Mp =149-150 °C; $R_f = 0.40$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.59 (dd, J = 8.4, 1.1 Hz, 1H), 8.46 – 8.39 (m, 1H), 8.37 (dd, J = 8.0, 1.5 Hz, 1H), 8.31 – 8.24 (m, 1H), 8.21 – 8.14 (m, 1H), 7.90 – 7.85 (m, 1H), 7.62 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.47 – 7.35 (m, 3H), 7.31 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 136.0, 135.2, 133.9, 130.4, 128.7, 128.2, 127.8, 126.8, 126.1, 124.1, 124.0, 123.0, 122.4, 122.1, 122.0, 121.8, 121.0, 116.3, 114.2, 96.2. HRMS m/z (ESI): calcd for $C_{20}H_{14}N$ [M + H] ⁺ 268.1121, found 268.1109. The spectra data matched with values reported in the literature.^{1,2}

12-methylindolo[1,2-f]phenanthridine (3ab):

Following the general procedure, **3ab** was purified by PE/EtOAc (500:1) and obtained as a white solid (70.1 mg, 82% yield); Mp = 184-185 °C; R_f = 0.4 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.52 (dd, J = 8.4, 1.1 Hz, 1H), 8.33 (dd, J = 8.1, 1.4 Hz, 1H), 8.27 (d, J = 8.7 Hz, 1H), 8.25 – 8.20 (m, 1H), 8.16 – 8.10 (m, 1H), 7.63 (dd, J = 2.0, 1.0 Hz, 1H), 7.59 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.35 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.23 (dd, J = 8.7, 1.8 Hz, 1H), 7.19 (d, J = 0.8 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 136.0, 135.3, 132.3, 131.2, 130.7, 128.7, 128.1, 127.7, 126.8, 126.2, 124.1, 123.9, 123.7, 122.8, 122.4, 122.0, 120.7, 116.2, 113.9, 95.8, 21.4. The spectra data matched with values reported in the literature.¹

12-methoxyindolo[1,2-f]phenanthridine (3ac):

Following the general procedure, **3ac** was purified by PE/EtOAc (20:1) and obtained as a yellow solid (72.3 mg, 81% yield); Mp = 173-174 °C; R_f = 0.20 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.50 (dd, J = 8.5, 1.1 Hz, 1H), 8.36 (dd, J = 8.1, 1.5 Hz, 1H), 8.28 (dd, J = 13.6, 9.3 Hz, 2H), 8.19 – 8.11 (m, 1H), 7.60 (s, 1H), 7.55 – 7.49 (m, 2H), 7.37 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.22 (s, 1H), 7.04 (dd, J = 9.2, 2.6 Hz, 1H),

3.96 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ155.2, 135.9, 135.8, 131.4, 129.1, 128.8, 128.2, 127.8, 126.8, 126.0, 124.1, 124.0, 122.9, 122.4, 121.9, 115.9, 115.1, 112.0, 102.2, 95.9, 55.7. The spectra data matched with values reported in the literature.¹

11-methoxyindolo[1,2-f]phenanthridine (3ad):

Following the general procedure, **3ad** was purified by PE/EtOAc (20:1) and obtained as a yellow solid (77.6 mg, 87% yield); R_f = 0.20 (PE/EtOAc = 20:1); Mp = 131-132 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.42 – 8.37 (m, 1H), 8.25 (dd, J = 8.0, 1.3 Hz, 1H), 8.18 – 8.13 (m, 1H), 8.07 – 8.00 (m, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.71 (d, J = 8.6 Hz, 1H), 7.54 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H), 7.48 – 7.40 (m, 2H), 7.34 – 7.29 (m, 1H), 7.15 (s, 1H), 7.06 (dd, J = 8.6, 2.1 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 135.9, 134.5, 134.4, 128.5, 128.1, 127.2, 126.5, 126.4, 124.7, 123.9, 123.6, 122.9, 122.3, 122.2, 121.3, 115.9, 110.8, 99.1, 96.0, 56.0. The spectra data matched with values reported in the literature.¹

12-fluoroindolo[1,2-f]phenanthridine (3ae):

Following the general procedure, **3ae** was purified by PE/EtOAc (500:1) and obtained as a light green solid (77.8 mg, 90% yield). Mp = 132-133 °C; R_f = 0.33 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.43 – 8.39 (m, 1H), 8.30 (dd, J = 8.0, 1.3 Hz, 1H), 8.26 (dd, J = 9.2, 4.3 Hz, 1H), 8.22 – 8.18 (m, 1H), 8.10 – 8.05 (m, 1H), 7.56 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.43 (dd, J = 9.0, 2.6 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.16 (s, 1H), 7.10 (td, J = 9.0, 2.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 158.6 (J _{C-F} = 239.0 Hz), 136.7, 135.5, 131.2 (J _{C-F} = 10.4 Hz), 130.5, 128.8, 128.2, 128.1, 126.9, 125.6, 124.2, 124.0, 123.2, 122.4, 121.9, 115.9, 115.0 (J _{C-F} = 9.8 Hz), 110.0 (J _{C-F} = 25.4 Hz), 105.5 (J _{C-F} = 23.0 Hz), 96.0; HRMS m/z (ESI): calcd for C₂₀H₁₃FN [M + H] + 286.1027, found 286.1027.

12-chloroindolo[1,2-f]phenanthridine (3af):

Following the general procedure, **3af** was purified by PE/EtOAc (500:1) and obtained as a white solid (76.0 mg, 84% yield); Mp = 173-174 °C; $R_f = 0.4$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.47 – 8.40 (m, 1H), 8.34 (dd, J = 8.1, 1.5 Hz, 1H), 8.26 (d, J = 9.0 Hz,

2H), 8.11 (d, J = 9.2 Hz, 1H), 7.77 (d, J = 2.1 Hz, 1H), 7.59 (s, 1H), 7.56 – 7.48 (m, 2H), 7.39 (s, 1H), 7.31 (dd, J = 9.0, 2.2 Hz, 1H), 7.17 (d, J = 0.8 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 136.5, 135.6, 132.2, 131.5, 128.9, 128.4, 128.3, 127.4, 127.0, 125.7, 124.3, 124.2, 123.4, 122.5, 122.2, 122.1, 120.2, 116.2, 115.1, 95.6; HRMS m/z (ESI) calcd for C₂₀H₁₃CIN [M + H] $^{+}$ 302.0731, found 302.0734.

14-(4-methoxyphenyl)indolo[1,2-f]phenanthridine (3ag):

Following the general procedure, **3ag** was purified by PE/EtOAc (20:1) and obtained as a yellow solid (104.2 mg, 93% yield); Mp = 198-200 °C; R_f = 0.23 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.60 (dd, J = 8.4, 1.1 Hz, 1H), 8.44 (dd, J = 8.6, 0.8 Hz, 1H), 8.35 (dd, J = 8.1, 1.5 Hz, 1H), 8.28 – 8.22 (m, 1H), 7.87 – 7.80 (m, 1H), 7.65 – 7.57 (m, 2H), 7.54 – 7.48 (m, 2H), 7.48 – 7.31 (m, 4H), 7.23 – 7.17 (m, 1H), 7.16 – 7.11 (m, 2H), 3.97 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 159.0, 135.9, 132.7, 132.1, 131.7, 128.8, 128.0, 127.7, 127.6, 127.5, 127.0, 125.3, 124.1, 123.1, 122.6, 122.4, 122.3, 121.7, 119.9, 116.5, 114.6, 114.0, 113.5, 55.4; HRMS m/z (ESI) calcd for $C_{27}H_{20}NO$ [M + H] $^{+}$ 374.1539, found 374.1535.

14-(4-(trifluoromethyl)phenyl)indolo[1,2-f]phenanthridine (3ah):

Following the general procedure, **3ah** was purified by PE/EtOAc (500:1) and obtained as a white solid (122.2 mg, 99% yield). Mp = 175-176 °C; R_f = 0.38 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.62 (dd, J = 8.4, 1.0 Hz, 1H), 8.46 (d, J = 8.5 Hz, 1H), 8.37 (dd, J = 8.1, 1.4 Hz, 1H), 8.28 (dd, J = 8.2, 1.1 Hz, 1H), 7.85 (d, J = 8.0 Hz, 2H), 7.78 – 7.68 (m, 3H), 7.64 (s, 1H), 7.59 – 7.53 (m, 1H), 7.51 – 7.39 (m, 3H), 7.39 – 7.32 (m, 1H), 7.23 (s, 1H); 13 C NMR (126 MHz, CDCl₃) δ 140.2, 135.7, 132.8, 131.5, 131.0, 130.4, 129.5 (J C-F = 32.3 Hz), 128.9, 127.9, 127.9, 127.8, 126.3, 126.1 (J C-F = 4.0 Hz), 125.3, 124.4 (J C-F = 272.3 Hz), 124.1, 123.4, 123.0, 122.7, 122.3, 122.2, 119.4, 116.6, 114.2, 112.2.; HRMS m/z (ESI) : calcd for C₂₇H₁₆F₃N [M + H] + 411.1229, found 411.1231.

4-(indolo[1,2-f]phenanthridin-14-yl)benzonitrile (3ai):

Following the general procedure, **3ai** was purified by PE/EtOAc (500:1) and obtained as a yellow solid (103.9 mg, 94% yield); Mp = 202-203 °C; R_f = 0.18 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.61 (dd, J = 8.4, 1.1 Hz, 1H), 8.46 (d, J = 8.6 Hz, 1H), 8.37 (dd, J = 8.1, 1.4 Hz, 1H), 8.29 (dd, J = 8.2, 1.1 Hz, 1H), 7.92 – 7.83 (m, 2H), 7.77 – 7.70 (m, 2H), 7.69 – 7.61 (m, 2H), 7.57 – 7.51 (m, 1H), 7.51 – 7.40 (m, 3H), 7.40 – 7.33 (m, 1H), 7.23 (s, 1H); 13 C NMR (126 MHz, CDCl₃) δ 141.6, 132.9, 132.9, 131.9, 130.5, 129.0, 128.1, 128.0, 127.8, 126.0, 125.2, 124.2, 123.6, 123.1, 122.8, 122.3, 122.3, 119.1, 119.1, 116.6, 114.3, 111.1; HRMS m/z (ESI): calcd for C₂₇H₁₆N₂Na [M + Na] + 391.1206, found 391.1210.

14-(thiophen-2-yl)indolo[1,2-f]phenanthridine (3aj):

Following the general procedure, **3aj** was purified by PE/EtOAc (500:1) and obtained as a yellow solid (99.6 mg, 95% yield). Mp = 161-163 °C; R_f = 0.38 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.61 (dd, J = 8.4, 1.1 Hz, 1H), 8.43 (d, J = 8.5 Hz, 1H), 8.36 (dd, J = 8.1, 1.5 Hz, 1H), 8.28 (dd, J = 8.3, 1.2 Hz, 1H), 7.92 (dd, J = 8.2, 1.2 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.65 – 7.57 (m, 2H), 7.50 – 7.43 (m, 2H), 7.44 – 7.34 (m, 2H), 7.33 – 7.26 (m, 2H), 7.24 (dd, J = 3.4, 1.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 135.6, 132.7, 132.2, 128.8, 128.4, 127.9, 127.9, 127.9, 126.9, 126.4, 125.6, 124.1, 123.4, 122.9, 122.4, 122.4, 122.2, 119.9, 116.6, 114.0, 105.3; HRMS m/z (ESI) : calcd for $C_{24}H_{16}NS$ [M + H] + 350.0998, found 350.1002.

14-(furan-2-yl)indolo[1,2-f]phenanthridine (3ak):

Following the general procedure, **3ak** was purified by PE/EtOAc (500:1) and obtained as a brown solid (60.0 mg, 60% yield); Mp = 140-142 °C; R_f = 0.36 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.60 (dd, J = 8.4, 1.1 Hz, 1H), 8.42 (d, J = 8.4 Hz, 1H), 8.37 (dd, J = 8.1, 1.4 Hz, 1H), 8.28 (dd, J = 8.2, 1.1 Hz, 1H), 7.85 – 7.78 (m, 1H), 7.74 – 7.67 (m, 2H), 7.62 (s, 1H), 7.50 (s, 1H), 7.46 (s, 1H), 7.43 – 7.34 (m, 3H), 6.76 – 6.67 (m, 2H); 13 C NMR (126 MHz, CDCl₃) δ 148.1, 142.3, 135.5, 132.9, 131.0, 128.8, 128.1, 127.9, 126.0, 125.4, 124.1, 123.5, 122.9, 122.5, 122.4, 122.3, 119.9, 116.7, 114.2, 111.6, 110.4, 102.5; HRMS m/z (ESI): calcd for C₂₄H₁₆NO [M + H] $^{+}$ 334.1226, found 334.1232.

pyrrolo[1,2-f]phenanthridine (3al):

Following the general procedure, **3al** was purified by PE/EtOAc (500:1) and obtained as a white solid (63.9 mg, 98% yield); Mp = 131-133 °C; R_f = 0.40 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.36 (dd, J = 8.1, 1.3 Hz, 1H), 8.27 (dd, J = 8.2, 1.1 Hz, 1H), 8.04 (dd, J = 7.8, 1.3 Hz, 1H), 7.88 (dd, J = 8.2, 1.1 Hz, 1H), 7.80 (dd, J = 2.9, 1.5 Hz, 1H), 7.62 – 7.47 (m, 2H), 7.42 (dddd, J = 18.7, 8.2, 7.1, 1.3 Hz, 2H), 6.99 (dd, J = 3.8, 1.5 Hz, 1H), 6.76 (dd, J = 3.8, 2.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 133.2, 129.3, 128.5, 128.1, 126.3, 125.9, 124.8, 124.0, 123.8, 122.8, 122.5, 121.7, 115.0, 113.1, 112.2, 102.0. The spectra data matched with values reported in the literature.²

2,7-dimethylindolo[1,2-f]phenanthridine (3ba):

Following the general procedure, **3ba** was purified by PE/EtOAc (500:1) and obtained as a white solid (44.3 mg, 50% yield); Mp =132-134 °C; R_f = 0.34 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.43 (d, J = 8.3 Hz, 1H), 8.39 (s, 1H), 8.19 (d, J = 8.1 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 8.01 – 7.92 (m, 1H), 7.85 (s, 1H), 7.39 (d, J = 22.0 Hz, 4H), 7.20 – 7.16 (m, 1H), 2.60 (s, 3H), 2.53 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 138.5, 137.6, 135.7, 135.6, 134.0, 130.5, 129.2, 125.7, 124.7, 124.2, 124.1, 123.7, 122.2, 121.8, 121.7, 121.0, 119.8, 116.7, 114.3, 95.9, 22.0, 21.5; HRMS m/z (ESI) calcd for C₂₂H₁₈N [M + H] +296.1434, found 296.1438.

6,11-dimethylpyrrolo[1,2-f]phenanthridine (3bb):

Following the general procedure, **3bb** was purified by PE/EtOAc (500:1) and obtained as a light green solid (39.0 mg, 53% yield); Mp = 125-127 °C; R_f = 0.42 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 8.2 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.87 – 7.63 (m, 3H), 7.22 (dddd, J = 20.7, 8.2, 1.8, 0.7 Hz, 2H), 6.95 (d, J = 3.7 Hz, 1H), 6.73 (d, J = 3.2 Hz, 1H), 2.54 (s, 3H), 2.51 (s, 3H). 13 C NMR (126 MHz, CDCl₃) δ 138.2, 137.5, 132.8, 129.5, 127.3, 125.9, 125.0, 123.6, 122.7, 122.6, 122.2, 119.3, 115.2, 112.9, 112.0, 101.6, 21.7, 21.5; HRMS m/z (ESI): calcd for C₁₈H₁₆N [M + H] +246.1277, found 246.1279.

5,7,10,12-tetramethylpyrrolo[1,2-f]phenanthridine (3bc):

Following the general procedure, **3bc** was purified by PE/EtOAc (500:1) and obtained as a yellow solid (43.5 mg, 53% yield); $R_f = 0.44$ (PE/EtOAc = 20:1); Mp = 153-155 °C; 1H NMR (500 MHz, CDCl₃) δ 8.07 (q, J = 1.4 Hz, 2H), 8.00 (s, 1H), 7.21 – 7.16 (m, 2H), 7.05 (dd, J = 4.0, 1.4 Hz, 1H), 6.71 (dd, J = 4.0, 3.0 Hz, 1H), 2.89 (s, 3H), 2.80 (s, 3H), 2.49 (d, J = 4.4 Hz, 6H); ^{13}C NMR (126 MHz, CDCl₃) δ 134.4, 133.6, 133.3, 132.5, 132.3, 130.0, 126.8, 125.5, 123.9, 123.6, 122.5, 121.0, 118.8, 110.1, 106.0, 24.6, 24.6, 21.5, 21.0; HRMS m/z (ESI): calcd for $C_{20}H_{20}N$ [M + H] $^+$ 274.1590, found 274.1593.

2,7-difluoroindolo[1,2-f]phenanthridine (3bd):

Following the general procedure, **3bd** was purified by PE/EtOAc (500:1) and obtained as a light yellow solid (45.4 mg, 57% yield); Mp = 182-184 °C; R_f = 0.29 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 8.3 Hz), 8.16 – 8.07 (m), 8.02 (dd, J = 9.0, 5.3 Hz), 7.85 – 7.79 (m), 7.65 (dd, J = 9.4, 2.6 Hz), 7.45 – 7.35 (m), 7.18 – 7.11 (m), 7.03 (ddd, J = 8.8, 7.6, 2.4 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 162.7 (d, J _{C-F} = 247.0 Hz), 162.4 (d, J _{C-F} = 247.0 Hz), 136.4 (d, J _{C-F} = 10.2 Hz), 134.3 (d, J _{C-F} = 3.3 Hz), 133.9, 130.2, 127.3 (d, J _{C-F} = 9.1 Hz), 125.5 (d, J _{C-F} = 9.9 Hz), 124.5 (d, J _{C-F} = 8.6 Hz), 122.9, 122.8 (d, J _{C-F} = 2.4 Hz), 122.4, 117.9 (d, J _{C-F} = 3.0 Hz), 116.0, 114.0, 110.5 (d, J _{C-F} = 22.1 Hz), 109.7 (d, J _{C-F} = 23.2 Hz), 103.6, 97.6; HRMS m/z (ESI) : calcd for C₂₀H₁₂F₂N [M + H] + 304.0932, found 304.0931.

2,7-dichloroindolo[1,2-f]phenanthridine (3be):

Following the general procedure, **3be** was purified by PE/EtOAc (500:1) and obtained as a light yellow solid (46.4 mg, 46% yield); Mp =208-210 °C; R_f = 0.34 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 2.0 Hz, 1H), 8.31 (dd, J = 8.6, 0.9 Hz, 1H), 8.17 (d, J = 8.7 Hz, 1H), 8.10 – 8.07 (m, 2H), 7.86 (ddd, J = 7.8, 1.4, 0.7 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.34 (dd, J = 8.6, 2.0 Hz, 1H), 7.26 (d, J = 0.8 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 134.4, 128.2, 125.1, 124.0, 123.7, 123.4, 123.0, 122.5, 121.5, 116.4, 114.0, 97.7; HRMS m/z (ESI): calcd for $C_{20}H_{12}Cl_2N$ [M + H] $^+$ 336.0341, found 336.0347.

6,11-dichloropyrrolo[1,2-f]phenanthridine (3bf):

Following the general procedure, **3bf** was purified by PE/EtOAc (500:1) and obtained as a white solid (70.4 mg, 82% yield); Mp = 178-180 °C; R_f= 0.37 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, J = 8.7 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 2.3 Hz, 1H), 7.81 (d, J = 2.0 Hz, 1H), 7.70 (dd, J = 3.0, 1.4 Hz, 1H), 7.34 (ddd, J = 9.0, 7.5, 2.2 Hz, 2H), 6.95 (dd, J = 3.8, 1.3 Hz, 1H), 6.76 (t, J = 3.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 134.6, 134.4, 133.8, 128.3, 127.5, 126.4, 125.2, 124.4, 124.1, 122.6, 122.4, 119.6, 115.2, 113.9, 113.1, 103.4; HRMS m/z (ESI) calcd for C₁₆H₁₀Cl₂N [M + H] + 286.0185, found 286.0192. The ¹³C-NMR of **3bf** is not obvious due to poor solubility.

2,7-bis(trifluoromethyl)indolo[1,2-f]phenanthridine (3bg):

Following the general procedure, **3bg** was purified by PE/EtOAc (500:1) and obtained as a yellow solid (56.8 mg, 47% yield); Mp = 187-189 °C; R_f = 0.4 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.37 (d, J = 8.3 Hz, 1H), 8.32 (s, 1H), 8.27 (t, J = 9.3 Hz, 2H), 7.88 (d, J = 7.7 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.60 (d, J = 8.5 Hz, 1H), 7.50 (ddd, J = 8.5, 7.1, 1.3 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.32 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 136.4, 133.8 (d, J _{C-F} = 32.2 Hz), 130.2, 127.1, 126.2, 125.1, 124.2, 124.1 (d, J _{C-F} = 3.3 Hz),

123.8 (d, J_{C-F} = 2.0 Hz), 123.7, 123.6, 122.8, 121.8, 121.4 (dd, J_{C-F} = 4.5 Hz), 119.7 (dd, J_{C-F} = 4.5 Hz), 113.9, 113.4 (t, J_{C-F} = 4.3 Hz), 98.4; HRMS m/z (ESI) : calcd for $C_{22}H_{12}F_6N$ [M + H] + 404.0868, found 404.0874.

6,11-bis(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (3bh):

Following the general procedure, **3bh** was purified by PE/EtOAc (500:1) and obtained as a green solid (44.5 mg, 42% yield); $R_f = 0.35$ (PE/EtOAc = 20:1); Mp =167-169 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 8.5 Hz, 1H), 8.20 (s, 1H), 8.06 (s, 1H), 7.81 (dd, J = 2.9, 1.2 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 7.04 (dd, J = 3.8, 1.2 Hz, 1H), 6.83 – 6.78 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 133.4, 131.3 (d, J _{C-F} = 33.4 Hz), 131.0 (d, J _{C-F} = 32.2 Hz), 130.9, 128.2, 126.9, 126.0, 125.1, 123.6, 123.3, 122.9, 122.2 (dd, J _{C-F} = 3.5 Hz), 120.3 (dd, J _{C-F} = 3.5 Hz), 120.0 (dd, J _{C-F} = 3.5 Hz), 114.2, 113.3, 112.4 (dd, J _{C-F} = 4.5 Hz), 104.0; HRMS m/z (ESI): calcd for $C_{18}H_{10}F_{6}N$ [M + H] $^+$ 354.0712, found 354.0706.

7-fluoro-1,3-dimethylindolo[1,2-f]phenanthridine (3bi):

Following the general procedure, **3bi** was purified by PE/EtOAc (500:1) and obtained as a white solid (65.8 mg, 70% yield); Mp = 144-146 °C; R_f = 0.48 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, CDCl₃) δ 8.27 (dd, J = 8.4, 2.8 Hz, 1H), 8.20 (dd, J = 8.8, 6.2 Hz, 1H), 8.16 (dd, J = 11.2, 2.4 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 5.0 Hz, 1H), 7.42 (ddd, J = 8.6, 7.1, 1.4 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.28 (d, J = 5.5 Hz, 1H), 7.17 (d, J = 3.1 Hz, 1H), 7.03 – 6.98 (m, 1H), 2.81 (s, 3H), 2.47 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.7 (J _{C-F} = 245.7 Hz), 136.8, 136.6 (J _{C-F} = 11.0 Hz), 135.5, 134.9, 132.8, 132.6, 130.5, 127.9, 126.1 (J _{C-F} = 9.8 Hz), 122.6, 122.4, 122.0, 121.1, 120.5, 119.0 (J _{C-F} = 2.8 Hz), 113.8, 110.1 (J _{C-F} = 22.0 Hz), 103.3 (J _{C-F} = 27.1 Hz), 101.9, 25.0, 21.5; HRMS m/z (ESI): calcd for C₂₂H₁₇FN [M + H] $^{+}$ 314.1340, found 314.1339.

6-fluoro-10,12-dimethylpyrrolo[1,2-f]phenanthridine (3bj):

Following the general procedure, **3bj** was purified by PE/EtOAc (500:1) and obtained as a white solid (48.2 mg, 61% yield); $R_f = 0.30$ (PE/EtOAc = 20:1); Mp = 144-146 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.30 (dd, J = 9.0, 6.0 Hz, 1H), 7.92 (s, 1H), 7.71 (dd, J = 2.9, 1.1 Hz, 1H), 7.51 (dd, J = 10.2, 2.5 Hz, 1H), 7.20 (s, 1H), 7.09 – 7.04 (m, 1H), 7.02 (dd, J = 3.9, 1.1 Hz, 1H), 6.80 – 6.77 (m, 1H), 2.77 (s, 3H), 2.49 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.7 ($J_{C-F} = 247.0$ Hz), 134.9, 134.3 ($J_{C-F} = 10.5$ Hz), 134.0, 132.3, 129.2, 126.3 ($J_{C-F} = 9.5$ Hz), 125.6, 122.8, 120.4, 118.4, 112.9, 112.4, 111.4 ($J_{C-F} = 22.1$ Hz), 107.6, 101.7, ($J_{C-F} = 25.2$ Hz), 24.7, 21.4; HRMS m/z (ESI): calcd for $C_{18}H_{15}FN$ [M + H] + 264.1183, found 264.1186.

The mixture of ethyl indolo[1,2-f]phenanthridine-2-carboxylate (3bk) and ethyl indolo[1,2-f]phenanthridine-7-carboxylate (3bk'):

Following the general procedure, inseparable **3bk and 3bk'** were purified by PE/EtOAc (2:1) and obtained as a yellow solid (66.2 mg, 65% yield); $R_f = 0.20$ (PE/EtOAc = 2:1); HRMS m/z (ESI): calcd for $C_{23}H_{18}NO_2$ [M + H] + 340.1332, found 340.1332.

The mixture of ethyl pyrrolo[1,2-f]phenanthridine-11-carboxylate (3bl) and ethyl pyrrolo[1,2-f]phenanthridine-6-carboxylate (3bl'):

Following the general procedure, inseparable **3bl and 3bl'** were purified by PE/EtOAc (20:1) and obtained as a green solid (65.1 mg, 75% yield); $R_f = 0.3$ (PE/EtOAc = 20:1); HRMS m/z (ESI): calcd for $C_{19}H_{16}NO_2$ [M + H] + 290.1176, found 290.1177.

9H-dibenzo[a, c]carbazole(4a):

Following the general procedure, **4a** was purified by PE/EtOAc (20:1) and obtained as a white solid (66.8 mg, 84% yield); Mp =194-196 °C; $R_f = 0.20$ (PE/EtOAc = 20:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.42 (s, 1H), 8.95 – 8.87 (m, 2H), 8.82 (dd, J = 8.1, 1.3 Hz, 1H), 8.63 – 8.55 (m, 2H), 7.79 (ddt, J = 8.2, 6.9, 1.4 Hz, 2H), 7.73 (ddd, J = 8.3, 7.2, 1.3 Hz, 2H), 7.60 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.44 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 7.34 (ddd, J = 8.1,

7.1, 1.1 Hz, 1H). 13 C NMR (126 MHz, DMSO- d_6) δ 138.5, 134.2, 129.6, 129.3, 127.6, 127.0, 126.5, 126.2, 124.0, 123.7, 123.6, 123.6, 123.4, 122.6, 122.3, 121.4, 120.1, 111.9, 111.3. The spectra data matched with values reported in the literature.³

2,7-dimethyl-9H-dibenzo[a, c]carbazole (4b):

Following the general procedure, **4b** was purified by PE/EtOAc (20:1) and obtained as a white solid (120.2 mg, 88% yield); Mp = 223-226 °C; R_f = 0.20 (PE/EtOAc = 20:1); 1 H NMR (500 MHz, DMSO- d_6) δ 12.32 (s, 1H), 8.72 (dd, J = 10.3, 8.5 Hz, 2H), 8.60 (d, J = 8.0 Hz, 1H), 8.57 (d, J = 1.7 Hz, 1H), 8.43 – 8.34 (m, 1H), 7.71 (dt, J = 8.0, 0.8 Hz, 1H), 7.52 (dd, J = 8.6, 1.8 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.33 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 2.65 (s, 3H), 2.61 (s, 3H). 13 C NMR (126 MHz, DMSO- d_6) δ 138.5, 136.5, 135.8, 134.2, 129.3, 127.3, 124.1, 123.7, 123.6, 123.4, 123.0, 122.3, 121.4, 119.9, 111.1, 21.4, 21.3. **HRMS** m/z (ESI): calcd for $C_{22}H_{18}$ N [M + H] $^{+}$ 296.1434, found 296.1441.

2,7-difluoro-9*H*-dibenzo[*a*, *c*]carbazole (4c):

Following the general procedure, **4c** was purified by PE/EtOAc (20:1) and obtained as a white solid (30.7 mg, 34% yield); Mp = 230-232 °C; R_f = 0.30 (PE/EtOAc = 10:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.47 (s, 1H), 8.99 – 8.87 (m, 2H), 8.57 (d, J = 8.0 Hz, 1H), 8.44 (dd, J = 10.7, 2.7 Hz, 1H), 8.37 (dd, J = 10.1, 2.7 Hz, 1H), 7.73 (dt, J = 8.1, 0.8 Hz, 1H), 7.62 – 7.54 (m, 1H), 7.52 – 7.39 (m, 2H), 7.35 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 161.5 (d, J _{C-F} = 245.2 Hz), 160.9 (d, J _{C-F} = 244.5 Hz), 138.5, 134.2 (d, J _{C-F} = 3.3 Hz), 130.4 (d, J _{C-F} = 8.6 Hz), 127.0 (d, J _{C-F} = 9.0 Hz), 126.7 (d, J _{C-F} = 9.2 Hz), 125.8, 124.2, 123.4 (d, J _{C-F} = 9.2 Hz), 123.2, 122.7, 121.4, 120.4, 115.1 (d, J _{C-F} = 23.2 Hz), 112.0 (d, J _{C-F} = 22.6 Hz), 111.9, 111.6 (d, J _{C-F} = 3.5 Hz), 108.1 (d, J _{C-F} = 22.0 Hz), 107.1 (d, J _{C-F} = 22.5 Hz). **HRMS** m/z (ESI): calcd for C₂₀H₁₂F₂N [M + H] + 304.0932, found 304.0928.

2,7-dichloro-9*H*-dibenzo[*a*, *c*]carbazole (4d):

Following the general procedure, **4d** was purified by PE/EtOAc (20:1) and obtained as a white solid (33.1 mg, 33% yield); Mp = 228-231 °C; R_f = 0.30 (PE/EtOAc = 10:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.55 (s, 1H), 8.87 (t, J = 9.3 Hz, 2H), 8.68 (dd, J = 10.6, 2.2 Hz, 2H), 8.51 (d, J = 8.0 Hz, 1H), 7.79 – 7.65 (m, 2H), 7.59 (dd, J = 8.8, 2.2 Hz, 1H), 7.48 (ddd, J = 8.1, 7.0, 1.0 Hz, 1H), 7.37 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 138.5, 133.7, 132.8, 132.2, 130.6, 127.3, 126.6, 126.4, 126.3, 124.3, 124.3, 123.8, 123.7, 122.9, 122.1, 121.6, 121.3, 120.6, 112.0, 111.2. HRMS m/z (ESI): calcd for C₂₀H₁₂Cl₂N [M + H] + 336.0341, found 336.0345.

12-methyl-9*H*-dibenzo[*a*, *c*]carbazole (4e):

Following the general procedure, **4e** was purified by PE/EtOAc (20:1) and obtained as a white solid (70.4 mg, 83% yield); Mp = 235-237 °C; R_f = 0.2 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.28 (s, 1H), 8.90 (t, J = 9.3 Hz, 2H), 8.82 (d, J = 8.1 Hz, 1H), 8.57 (d, J = 7.9 Hz, 1H), 8.39 (s, 1H), 7.83 – 7.74 (m, 2H), 7.71 (td, J = 7.5, 6.9, 1.3 Hz, 1H), 7.64 – 7.55 (m, 2H), 7.27 (dd, J = 8.3, 1.4 Hz, 1H), 2.59 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 136.8, 134.3, 129.7, 129.2, 128.7, 127.5, 126.9, 126.3, 126.1, 125.1, 123.9, 123.9, 123.8, 123.4, 122.7, 122.2, 121.1, 111.5, 110.9, 21.5. The spectra data matched with values reported in the literature.⁴

12-methoxy-9*H*-dibenzo[*a*, *c*]carbazole (4f):

Following the general procedure, **4f** was purified by PE/EtOAc (20:1) and obtained as a white solid (56.5 mg, 64% yield); Mp = 144-146 °C; R_f = 0.20 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.28 (s, 1H), 8.88 (td, J = 8.9, 1.2 Hz, 2H), 8.79 (dd, J = 8.1, 1.3 Hz, 1H), 8.57 (dd, J = 8.0, 1.3 Hz, 1H), 8.01 (d, J = 2.3 Hz, 1H), 7.78 (dddd, J = 11.2, 8.1, 7.0, 1.2 Hz, 2H), 7.70 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.58 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.11 (dd, J = 8.7, 2.4 Hz, 1H), 3.98 (s, 3H). NMR (126 MHz, DMSO- d_6) δ 154.1, 134.7, 133.5, 129.6, 129.2, 127.6, 126.9, 126.4, 126.0, 123.9, 123.9, 123.8, 123.3, 123.3, 122.8, 122.1, 113.2, 112.4, 111.1, 103.9, 55.8. The spectra data matched with values reported in the literature.

11-methoxy-9*H*-dibenzo[*a*, *c*]carbazole (4g):

Following the general procedure, **4g** was purified by PE/EtOAc (20:1) and obtained as a white solid (25 mg, 28% yield); Mp = 212-215 °C; R_f = 0.20 (PE/EtOAc = 20:1); ¹**H NMR** (500 MHz, DMSO- d_6) δ 12.30 (s, 1H), 8.92 – 8.84 (m, 2H), 8.75 (dd, J = 8.2, 1.3 Hz, 1H), 8.54 (dd, J = 8.1, 1.4 Hz, 1H), 8.43 (d, J = 8.7 Hz, 1H), 7.77 (ddt, J = 8.1, 6.9, 1.4 Hz, 2H), 7.68 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.58 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.20 (d, J = 2.3 Hz, 1H), 6.97 (dd, J = 8.7, 2.4 Hz, 1H), 3.91 (s, 3H). ¹³**C NMR** (126 MHz, DMSO- d_6) δ 157.1, 139.9, 133.6, 129.3, 128.7, 127.5, 127.0, 126.2, 125.9, 123.9, 123.5, 123.3, 122.7, 122.1, 121.9, 117.8, 111.6, 109.5, 95.1, 55.3. **HRMS** m/z (ESI): calcd for C₂₁H₁₆NO [M + H] + 298.1226, found 298.1240.

12-fluoro-9*H*-dibenzo[*a*, *c*]carbazole (4h):

Following the general procedure, **4h** was purified by PE/EtOAc (20:1) and obtained as a white solid (26 mg, 30% yield); Mp = 206-209 °C; R_f = 0.20 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.52 (s, 1H), 8.89 (ddd, J = 13.9, 8.5, 1.2 Hz, 2H), 8.76 (dd, J = 8.2, 1.2 Hz, 1H), 8.58 (dd, J = 8.0, 1.3 Hz, 1H), 8.37 (dd, J = 10.6, 2.5 Hz, 1H), 7.84 – 7.68 (m, 4H), 7.59 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.30 (td, J = 9.1, 2.5 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 157.4 (d, J _{C-F} = 231.7 Hz), 135.7, 135.1, 129.6, 129.2, 127.8, 127.1, 126.8, 126.2, 124.0, 123.9, 123.7 (d, J _{C-F} = 4.5 Hz), 123.6, 123.4, 122.5, 122.3, 112.6(d, J _{C-F} = 9.2 Hz), 111.6 (d, J _{C-F} = 25.2 Hz), 111.3 (d, J _{C-F} = 3.8 Hz), 106.6 (d, J _{C-F} = 25.0 Hz). The spectra data matched with values reported in the literature.⁴

12-chloro-9*H*-dibenzo[*a*, *c*]carbazole (4i):

Following the general procedure, **4i** was purified by PE/EtOAc (20:1) and obtained as a white solid (29.8 mg, 35% yield); Mp = 208-211 °C; R_f = 0.20 (PE/EtOAc = 20:1); ¹H NMR (500 MHz, DMSO- d_6) δ 12.62 (s, 1H), 8.87 (ddd, J = 13.5, 8.5, 1.2 Hz, 2H), 8.76 (dd, J = 8.2,

1.2 Hz, 1H), 8.62 - 8.55 (m, 2H), 7.82 - 7.76 (m, 2H), 7.76 - 7.70 (m, 2H), 7.59 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.45 (dd, J = 8.6, 2.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO- d_6) δ 137.0, 135.3, 129.6, 129.0, 127.8, 127.1, 126.9, 126.3, 124.6, 124.5, 124.0, 123.9, 123.9, 123.5, 123.4, 122.4, 120.5, 113.2, 110.7. The spectra data matched with values reported in the literature.⁴

9-methyl-9*H*-dibenzo[*a*, *c*]carbazole (4j):

Following the general procedure, **4j** was purified by PE/EtOAc (500:1) and obtained as a white solid (106.5 mg,76% yield); Mp = 142-144 °C; R_f = 0.30 (PE/EtOAc = 50:1); ¹H NMR (500 MHz, DMSO- d_6) δ 9.02 – 8.97 (m, 1H), 8.90 (td, J = 8.2, 1.3 Hz, 3H), 8.68 – 8.64 (m, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.82 – 7.71 (m, 3H), 7.61 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.52 (ddd, J = 8.3, 7.0, 1.1 Hz, 1H), 7.39 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 4.45 (s, 3H). ¹³C NMR (126 MHz, DMSO- d_6) δ 140.4, 134.1, 130.2, 129.2, 127.7, 126.7, 126.3, 126.1, 124.2, 123.9, 123.8, 123.4, 123.3, 123.3, 122.4, 121.5, 120.4, 112.3, 110.4, 34.5. The spectra data matched with values reported in the literature.³

2,7,9-trimethyl-9H-dibenzo[a, c] carbazole (4k):

Following the general procedure, **4k** was purified by PE/EtOAc (500:1) and obtained as a white solid (50 mg,33% yield); Mp = 196-198 °C; R_f = 0.30 (PE/EtOAc = 50:1); ¹H NMR (500 MHz, CDCl₃) δ 8.72 (d, J = 8.5 Hz, 1H), 8.65 (d, J = 8.0 Hz, 2H), 8.63 (d, J = 8.4 Hz, 1H), 8.48 (s, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.54 – 7.51 (m, 1H), 7.51 – 7.48 (m, 1H), 7.45 – 7.39 (m, 2H), 4.42 (s, 3H), 2.70 (s, 3H), 2.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.8, 136.6, 135.3, 134.8, 129.7, 128.9, 127.2, 125.2, 124.9, 123.8, 123.6, 123.5, 123.4, 123.2, 122.8, 122.7, 121.8, 120.1, 113.3, 109.5, 34.6, 22.0. The spectra data matched with values reported in the literature.⁵

9-benzyl-9*H*-dibenzo[*a*, *c*]carbazole (4l):

Following the general procedure, **4I** was purified by PE/EtOAc (500:1) and obtained as a white solid (66.2 mg,62% yield); Mp = 198-201 °C; R_f = 0.30 (PE/EtOAc = 50:1); 1 H NMR (500 MHz, CDCl₃) δ 8.96 (dd, J = 8.2, 1.2 Hz, 1H), 8.87 (dd, J = 8.4, 1.2 Hz, 1H), 8.81 (dd, J = 8.4, 1.2 Hz, 1H), 8.72 – 8.68 (m, 1H), 8.28 (dd, J = 8.3, 1.2 Hz, 1H), 7.81 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.64 (ddt, J = 8.4, 6.9, 1.4 Hz, 2H), 7.54 – 7.45 (m, 4H), 7.42 – 7.36 (m, 2H), 7.34 (d, J = 7.2 Hz, 3H), 6.01 (s, 2H). 13 C NMR (126 MHz, CDCl₃) δ 141.3, 137.5, 134.7, 131.0, 129.9, 129.1, 127.5, 127.4, 127.1, 126.4, 126.0, 125.7, 124.2, 124.1, 123.9, 123.9, 123.7, 123.5, 123.2, 122.9, 122.0, 120.9, 114.0, 110.0, 50.2. The spectra data matched with values reported in the literature.⁵

V. Control experiment:

In a 15 mL thick-walled tube was charged with methyl 1H-indole-2-carboxylate **5** (52.6 mg, 0.3 mmol), **2a** (256.9 mg, 0.6 mmol), Pd(OAc)₂ (6.8 mg, 0.03 mmol), K₂CO₃ (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph₂POEt) (13 μ L, 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). No desired product **3aa** was detected by TLC.

In a 15 mL thick-walled tube was charged with indole **6** (35.2 mg, 0.3 mmol), **2a** (256.9 mg, 0.6 mmol), $Pd(OAc)_2$ (6.8 mg, 0.03 mmol), K_2CO_3 (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph_2POEt) (13 μ L, 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). Trace product **3aa** was detected by TLC.

In a 15 mL thick-walled tube was charged with 1-methyl-1H-indole-2-carboxylic acid 7 (52.5 mg, 0.3 mmol), **2a** (256.9 mg, 0.6 mmol), $Pd(OAc)_2$ (6.8 mg, 0.03 mmol), K_2CO_3 (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph_2POEt) (13 μL , 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). The combined organic phase were washed with water (10 mL x 3) and saturated brine (10 mL), dried over Na_2SO_4 , and concentrated in *vacuo*. The residue was purified by column chromatography (PE/EA = 500:1) on silica gel to provide the desired 9-methyl-9*H*-dibenzo[a,c]carbazole **8** as white solid (70.2 mg, 83%).

15 mL thick-walled In tube charged with a was 1-methyl-3-(naphthalen-1-yl)-1*H*-indole-2-carboxylic acid **9** (90.4 mg, 0.3 mmol), **2a** (256.9 mg, 0.6 mmol), Pd(OAc)₂ (6.8 mg, 0.03 mmol), K₂CO₃ (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph₂POEt) (13 μL, 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). The combined organic phase were washed with water (10 mL x 3) and saturated brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography (PE/EA 500:1) silica gel to provide desired 1-methyl-3-(naphthalen-1-yl)-1*H*-indole **10** as white solid (47 mg, 60%).

In a 15 mL thick-walled tube was charged with 1-methyl-1H-indole-2-carboxylic acid 7 (52.5 mg, 0.3 mmol), 2-iodo-1,1'-biphenyl **11** (105.6 μ L, 0.6 mmol), Pd(OAc)₂ (6.8 mg, 0.03 mmol), K₂CO₃ (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph₂POEt) (13 μ L, 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil

bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). The combined organic phase were washed with water (10 mL x 3) and saturated brine (10 mL), dried over Na_2SO_4 , and concentrated in *vacuo*. The residue was purified by column chromatography (PE/EA = 500:1) on silica gel to provide the desired 9-methyl-9*H*-dibenzo[a,c]carbazole **8** as white solid (30.4 mg, 36%).

In a 15 mL thick-walled tube was charged with substrate 1a (48.3 mg, 0.3 mmol), 2-iodo-1,1'-biphenyl 11 (105.6 µL, 0.6 mmol), Pd(OAc)₂ (6.8 mg, 0.03 mmol), K₂CO₃ (91.1 mg, 0.66 mmol), ethyl diphenylphosphinite (Ph₂POEt) (13 µL, 0.06 mmol) and DMF (2 mL). The reaction tube was sealed and stirred at 145 °C (pre-heated oil bath) for 12 h. The reaction mixture was then cooled to r.t. and diluted with water (10 mL) before it was extracted with EtOAc (15 mL x 3). The combined organic phase were washed with water (10 mL x 3) and saturated brine (10 mL), dried over Na₂SO₄, and concentrated in *vacuo*. The residue was purified by column chromatography (PE/EA = 500:1) on silica gel to provide the desired indolo[1,2-f]phenanthridine 3aa (9 mg, 10%) as a white solid.

1-methyl-3-(naphthalen-1-yl)-1*H*-indole (10)

White solid. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (dd, J = 8.4, 1.1 Hz, 1H), 7.95 (dt, J = 8.2, 0.9 Hz, 1H), 7.88 (dt, J = 8.0, 1.0 Hz, 1H), 7.62 (dd, J = 7.0, 1.4 Hz, 1H), 7.57 (dd, J = 8.1, 7.0 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.49 – 7.45 (m, 1H), 7.44 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.34 (ddd, J = 8.2, 7.0, 1.1 Hz, 1H), 7.27 (s, 1H), 7.16 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.0, 134.0, 133.1, 132.6, 128.2, 128.1, 127.6, 126.9, 126.6, 125. 7, 125.6, 125.6, 121.9, 120.5, 119.6, 115.0, 109.4, 32.9. HRMS m/z (ESI): calcd for C₁₉H₁₆N [M + H] + 258.1277, found 258.1278.

Refrence:

- 1. Xie, C.; Zhang, Y.; Huang, Z.; Xu, P., J. Org. Chem. 2007, 72, 5431-5434.
- 2. Yan, L.; Zhao, D.; Lan, J.; Cheng, Y.; Guo, Q.; Li, X.; Wu, N.; You, J., *Org. Biomol. Chem.* **2013**, *11*, 7966-7977.
- 3. Wu, Y.; Peng, X.; Luo, B.; Wu, F.; Liu, B.; Song, F.; Huang, P.; Wen, S., *Org. Biomol. Chem.* **2014**, *12*, 9777-9780.
- 4. Bhunia, S. K.; Polley, A.; Natarajan, R.; Jana, R., Chem. Eur. J. 2015, 21, 16786-16791.

5. Kitano, H.; Matsuoka, W.; Ito, H.; Itami, K., Chem. Sci., 2018, 9, 7556–7561.

VI. Crystal data

Table S1. Crystal Data and Structure Refinement for 3bi (CCDC 1951128)

Formula	$C_{22}H_{16}FN$
Formula weight	313.36
Temperature/K	288
Crystal system	monoclinic
Space group	P 2 (1)/n
a/Å	10.4961(6)
b/Å	7.6672(5)
c/Å	19.0105(13)
α/°	90
β/°	95.616(6)
γ/°	90
$V/\text{Å}^3$	1522.54(17)
Z	4
$D_{ m calcd}/{ m g\cdot cm^{-3}}$	1.367
μ/mm^{-1}	0.088
F(000)	656
Crystal size/mm ³	$0.30\times0.30\times0.20$
Radiation	$MoK\alpha (\lambda = 0.71073)$
θ range/°	3.30-26.37
Index ranges	$-13 \le h \le 13, -9 \le k \le 9, -23 \le l \le 23$
Data/restraints/parameters	3108/0/217
$R_I[I > 2\sigma(I)]^a$	0.0518
wR ₂ (all data) ^b	0.1252

VII. NMR spectra of all compounds:

indolo[1,2-f]phenanthridine (3aa):

12-methylindolo[1,2-f]phenanthridine (3ab)

12-methoxyindolo[1,2-f]phenanthridine (3ac)

11-methoxyindolo[1,2-f]phenanthridine (3ad)

12-fluoroindolo[1,2-f]phenanthridine (3ae)

¹H NMR (500 MHz, CDCl₃)

12-chloroindolo[1,2-f]phenanthridine (3af)

14-(4-methoxyphenyl)indolo[1,2-f]phenanthridine (3ag)

14-(4-(trifluoromethyl)phenyl)indolo[1,2-f]phenanthridine (3ah)

4-(indolo[1,2-f]phenanthridin-14-yl)benzonitrile (3ai)

14-(thiophen-2-yl)indolo[1,2-f]phenanthridine (3aj):

14-(furan-2-yl)indolo[1,2-f]phenanthridine (3ak)

pyrrolo[1,2-f]phenanthridine (3al)

2,7-dimethylindolo[1,2-f]phenanthridine (3ba)

$6,\!11\text{-}dimethylpyrrolo[1,\!2\text{-}f] phen anthridine (3bb)$

5,7,10,12-tetramethylpyrrolo[1,2-f]phenanthridine (3bc)

2,7-difluoroindolo[1,2-f]phenanthridine (3bd)

2,7-dichloroindolo[1,2-f]phenanthridine (3be)

6,11-dichloropyrrolo[1,2-f]phenanthridine (3bf)

2,7-bis(trifluoromethyl)indolo[1,2-f]phenanthridine (3bg)

6,11-bis(trifluoromethyl)pyrrolo[1,2-f]phenanthridine (3bh)

7-fluoro-1,3-dimethylindolo[1,2-f]phenanthridine (3bi):

Number	¹ H	¹³ C
1	7.85 (1H, d, <i>J</i> = 8.0 Hz)	121.2
2	7.42 (1H, ddd, <i>J</i> = 8.6, 7.1, 1.4 Hz)	122.4
3	8.27 (1H, dd, <i>J</i> = 8.4, 2.8 Hz)	113.8
4	-	130.5
5	-	132.8
6	7.37 (1H, t, <i>J</i> = 7.2 Hz)	122.0
7	-	-
8	-	134.9
9	7.28 (1H, d, <i>J</i> = 5.5 Hz)	101.9
10	-	136.6
11	-	119.0
12	-	127.9
13	-	122.6
14	7.82 (1H, d, <i>J</i> = 5.0 Hz)	120.6
15	-	136.8
16	7.17 (1H, d, <i>J</i> = 3.1 Hz)	132.6
17	-	135.5
18	8.16 (1H, dd, <i>J</i> = 11.2, 2.4 Hz)	103.3
19	-	162.7
20	7.03 – 6.98 (1H, m)	110.1
21	8.20 (1H, dd, <i>J</i> = 8.8, 6.2 Hz)	126.1
22	2.81 (3H, s)	25.0
23	2.47 (3H, s)	21.5

6-fluoro-10,12-dimethylpyrrolo[1,2-f]phenanthridine (3bj)

The mixture of ethyl indolo[1,2-f]phenanthridine-2-carboxylate (3bk) and ethyl indolo[1,2-f]phenanthridine-7-carboxylate (3bk')

The mixture of ethyl pyrrolo[1,2-f]phenanthridine-11-carboxylate (3bl) and ethyl pyrrolo[1,2-f]phenanthridine-6-carboxylate (3bl')

9*H*-Dibenzo[*a*,*c*]carbazole(4a):

2,7-dimethyl-9H-dibenzo[a,c]carbazole (4b):

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 fl (ppm)

2,7-difluoro-9*H*-dibenzo[*a*,*c*]carbazole (4c):

2,7-dichloro-9*H***-dibenzo**[*a,c*]**carbazole**(4d):

12-methyl-9*H*-dibenzo[*a*,*c*]carbazole (4e):

12-methoxy-9H-dibenzo[a,c] carbazole (4f):

11-methoxy-9H-dibenzo[a,c]carbazole (4g):

12-fluoro-9*H*-dibenzo[*a,c*]carbazole (4h):

12-chloro-9*H*-dibenzo[*a*,*c*]carbazole (4i):

9-methyl-9*H*-dibenzo[*a*,*c*]carbazole (4j):

2,7,9-trimethyl-9H-dibenzo[a,c]carbazole (4k):

9-benzyl-9*H*-dibenzo[*a*,*c*]carbazole (4l):

1-methyl-3-(naphthalen-1-yl)-1*H*-indole (10)

