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Supplementary Discussion 

 

Full 3-by-3 Hamiltonian Diagonalization 

A coupled two-level system of an exciton and a cavity photon is described by a 2x2 

Hamiltonian of the following form:  

0

X R

R C

E
H

E

 
  

 
 (1) 

 

where
X

E , 
CE  are the exciton and the cavity photon energies, respectively; 

R  is the Rabi 

energy, which denotes a two-level coupling strength. The UP and LP energies are 

calculated by performing diagonalization of the 
0H  and are given by 
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where the symbol 
C X

E E    denotes detuning or an energy mismatch between the 

cavity photon and the exciton energies.   

In order to describe the Stark photon interaction with exciton-polaritons, we 

introduce an additional coupling parameter: 
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Where 
P  is the Stark photon energy and

P is the Stark photon-exciton coupling 

strength. 



In order to find modified polariton energies in the presence of the Stark photon, we 

perform diagonalization of the aforementioned Hamiltonian. The UP and the LP 

eigenenergies are given by  
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Where we define several constants to simplify the results
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The ac Stark shift expression is given by a difference between the modified polariton 

energies ( ,UP LP
E ), and the original polariton energies without the presence of the Stark 

pump ( 0, 0LP UP
E ).  

Perturbative 2-by-2 Hamiltonian Diagonalization 

The perturbative treatment is applicable when the Stark photon-exciton coupling is 

small with respect to the Rabi frequency or, equivalently, when the Stark shift is small with 

respect to the polariton energy difference. The perturbed exciton energy is obtained from 

the Hamiltonian describing exciton-Stark photon coupling  
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For small pump coupling, the perturbed expression for the exciton level is 
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where 
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 is an ac Stark shift for the exciton level.  

The perturbed LP and UP energies ( ,UP LPE ) are obtained by substituting the 

perturbed exciton energy ( '
X

E ) into the expression of the LP and UP energies without the 

Stark photon presence ( 0, 0LP UP
E ).  
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The significant error between the perturbative and full approaches is noticeable for large 

Stark photon-exciton couplings as evident from Fig. 4 in the main manuscript. Therefore, 

in the regime of strong Stark pump coupling, the cavity photon plays a non-negligible role 

in the dynamical Stark effect, which can no longer be described solely by the perturbed 

exciton energy.  

  



Supplementary Figure 1  

Fig. 1. Sample photoluminescence measurements for a detuning energy of -13.5 meV 

a-f Angle-resolved sample photoluminescence measurements for excitation powers of 0.08, 1, 2.4, 3, 4.1 and 

6.2mW, respectively . Theoretically predicted energies are depicted for the polaritons (dashed white), the bare 

cavity photon (dashed green) and the exciton (dashed red). 

 



 

Supplementary Figure 2  

 

 

 

 

 

 

 

 

Fig. 2. Sample condensation measurements for a detuning energy of -13.5 meV  

a-c Wavelength, line width and integrated intensity of photoluminescence as a function of the injection power. LP 

points (in red) and condensate points (in blue). 

 

 



Supplementary Figure 3  

 

Fig. 3. Sample photoluminescence measurements for a detuning energy of −7.5 meV  

a-f Angle-resolved sample photoluminescence measurement for excitation powers of  0.09, 0.8, 1.4, 2, 3.1 and 

5.2mW, respectively . Theoretically predicted energies are depicted for the polaritons (dashed white), the bare 

cavity photon (dashed green) and the exciton (dashed red). 

 



Supplementary Figure 4  

 

 

 

 

 

 

 

 

 

Fig. 4. Sample condensation measurements for a detuning energy of −7.5 meV  

a-c Wavelength, line width and integrated intensity of photoluminescence as a function of the injection power. LP points (in 

red) and condensate points (in blue). 

 

 



Supplementary Figure 5  

 

Fig. 5. Sample photoluminescence measurements for a detuning energy of −2.9 meV  

a-f Angle-resolved sample photoluminescence measurement for excitation powers of  0.06, 0.7, 1.9, 2.7, 3.5 and 5.2mW, 

respectively . Theoretically predicted energies are depicted for the polaritons (dashed white), the bare cavity photon (dashed 

green) and the exciton (dashed red). 

 



Supplementary Figure 6 

 

  

Fig. 6. Sample condensation measurements for a detuning energy of −2.9 meV 

a-c Wavelength, line width and integrated intensity of photoluminescence as a function of the injection power. LP points 

(in red) and condensate points (in blue). 

 

 



Supplementary Figure 7 

  

 

 

  

Fig. 7. Sample normalized reflectivity at different detunings as a function of energy 

showing UP and LP.  

 



Supplementary Discussion: Data Processing and Stark Shift Magnitude Extraction 

In the pump-probe experiment, the differential reflectivity is determined by the 

difference in reflected probe spectra when both pump and probe beams impinge on the 

sample and the spectrum of the reflected probe beam alone i.e. 

   PumpProbe ProbeR R R    , where is the time delay between the pump and probe 

pulses. Normalized differential reflectivity   Probe/R R  is commonly used in order to 

exclude the spectral dependence of the probe beam. For our sample, the probe spectra alone 

will reveal two dips belonging to the lower ( LPE ) and the upper ( UPE ) polaritons as 

depicted in Supplementary Figure 8 (a) by the blue trace. When the pump and probe pulses 

arrive at near zero-time delay, the probe spectra will record a blueshift of the polariton lines 

(Supplementary Figure 8 (a), red trace).  

For Stark shifts less than a half width of the polariton line, the shift will influence 

the differential reflectivity amplitudes of the characteristic bump and dip trace. In this case, 

in order to extract the Stark shift, the differential reflectivity spectrum at near zero-delay 

time should be fitted to the theoretical model with the shift value as a free parameter. For 

shifts which are much larger than the polariton line widths, however, the differential 

reflectivity amplitudes of the unperturbed and shifted polaritons are no longer a function 

of the pump intensity, therefore the extraction process is more straightforward, and is 

depicted on the Supplementary Figure 8. The Stark shift for each polariton can be 

determined from the difference in spectral position of the differential reflectivity bump and 

dip.   

  



Supplementary Figure 8  

 

Fig. 8. Schematics of the Stark shift extraction. a. Reflectivity of the unperturbed 

polariton lines (blue) together with the reflectivity at zero pump-probe delay Δt=0 (red) 

showing shifted polariton energies due to the ac Stark effect. b. Normalized differential 

reflectivity of the spectra shown in a, the lower and upper polariton shifts are indicated 

by ΔELP and ΔEUP, respectively. c. Measured normalized differential reflectivity 

spectra for a 3.7 GW/cm2 pump intensity at zero pump-probe delay Δt=0. 
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