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S.1. Training and Selection of Denoising Autoencoder Network 

In order to select the deep neural network (DNN) architecture, we have tried various architectures with 

different nonlinearities and depths. Based on initial experiments, we have pursued full training of only six 

DNNs for almost 6,000,000 steps. The six DNNs are shown in Table S1. The loss function for Net 4 is 

smaller compared with the remaining DNNs, and it has a smaller overfitting as shown in Figure S1. The 

overfitting is measured as the distance of loss function value on validation and training dataset. Note that 

during training of deterministic networks, data usually gets divided into three sets, namely training, 

validation, and testing.1 However, in the case of generative networks, data is usually divided into only two 

sets, training and validation. In this study, we use data from simulation of other simple liquids2 as the test 

dataset and generalizability assessment.  

Table S1. The DNNs trained for selecting the optimal network. 

 Encoder Latent Space Decoder Regularization factor 

Net 1 250 × 200 × 125  75 125 × 200 × 250  10−5 

Net 2 250 × 200 × 125  75 125 × 200 × 250  5 × 10−5 

Net 3 250 × 200 × 125  75 125 × 200 × 250  10−4 

Net 4 250 × 200 × 150  100 150 × 200 × 250  10−5 

Net 5 250 × 200 × 150  100 150 × 200 × 250  5 × 10−5 

Net 6 250 × 200 × 150  100 150 × 200 × 250  10−4 

 



 

Figure S1. Loss function for six different DNNs trained for about 6,000,000 iterations. Net 4 is selected 

for obtaining the results in the main manuscript. Blue and orange boxes show loss function of training 

and validation data sets, respectively. 

The loss functions decrease with training steps for the six DNNs as shown in Figure S2. 

 

Figure S2. Loss function with training steps for six different DNNs. a. Net 1 b. Net 2 c. Net 3 d. Net 4 

e. Net 5 f. Net 6.  



We also invesigated the transferability of DAE network to unforeseen thermodynamic states. To do so, 

we feed RDF of various Lennard-Jones liquids into the frozen DAE network. We observe that the 

performance of DAE detoriates as we explore thermodynamic states far away from the dataset 

thermodynamic states (shown in Figure S3). However, we observe a clear correlation between peak 

radial distance between DAE prediction and MD ground truth RDFs. 

 

 

Figure S3. Transferability of DAE network for prediction of RDF for unforseen thermodynamic 

states.  

 

 

 

 

 



S.2. Molecular Dynamics Details 

The potential parameters and thermodynamic states of 6 randomly selected LJ systems studied in the 

main manuscirpt are given in Table S2.  

 

Table S2. Potential parameters and thermodynamic states of LJ systems studied in Figures 2-3 of the 

main manuscript. a, b, c, d, e , and f refer to the results with the same alphabetic order. 

System 

Potential Parameters Thermodynamic States 

𝐶12 [
𝑘𝐽

𝑘𝑚𝑜𝑙 𝑛𝑚12
] 𝐶6 [

𝑘𝐽

𝑘𝑚𝑜𝑙 𝑛𝑚6
] 𝑇 [𝐾] 𝜌 [𝑛𝑚−3] 

a 2.215 × 10−5 3.06 × 10−3 385.42 16.05 

b 8.160 × 10−6 7.26 × 10−3 346.45 16.44 

c 2.232 × 10−5 2.03 × 10−3 325.98 13.40 

d 6.190 × 10−5 7.59 × 10−3 399.86 13.53 

e 4.086 × 10−5 3.27 × 10−3 399.86 14.33 

f 2.395 × 10−5 6.74 × 10−3 318.46 11.40 

 

Potential parameters used in MD simulation of simple liquids are given in Table S3. The thermodynamic 

states of all the simple liquid systems are identical with temperature and density of 350 𝐾 and 12.23 

𝑛𝑚−3, respectively. 

 

 

 

 

 

 



Table S3. Potential parameters of simple liquids studied in the main manuscript. 

 Parameters Values 

Exponential Potential 

𝐴 [
𝑘𝐽

𝑘𝑚𝑜𝑙
] 1.34 × 106 

𝑘𝐷 [𝑛𝑚−1]  3.424 × 101 

Yukawa Potential 

𝐴 [
𝑘𝐽

𝑘𝑚𝑜𝑙
] 3.17 × 107 

𝑘𝐷 [𝑛𝑚−1] 3.203 × 101 

Inverse-Power-Law Potential 

(14-8) 

𝐶14 [
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚14
] 

4.142 × 10−6 

𝐶8 [
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚8
] 

6.077 × 10−5 

Inverse-Power-Law Potential 

(10-4) 

𝐶10 [
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚10
] 

2.500 × 10−4 

𝐶4[
𝑘𝐽

𝑘𝑚𝑜𝑙. 𝑛𝑚8
] 

8.521 × 10−2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S.3. Comparison with PCA and ICA 

 

Principal component analysis (PCA) and independent component analysis (ICA) are dimensionality 

reduction and denoising algorithms for high dimensional and large datasets.3,4 In particular, PCA method 

is developed for data with Gaussian distribution, and recent work focuses on extending this for non-

Gaussian data.3 The denoising performance of PCA also requires independent and identically distributed 

(iid) Gaussian noise components. We assess validity of these conditions, namely Gaussian distribution and 

iid.5 To do so, we test the departure from normality with calculation of p-value for null hypothesis of noise 

being drawn from Gaussian distribution with 𝛼 = 0.05 (the test combines skew and kurtosis to assess 

departure of normality; we use scipy stats package of python to perform this test).6 We observe that at 

various radial distances the null hypothesis is rejected (shown below with red circles in Figure S4a). Figure 

S4b shows the noise distribution of argon Lennard-Jones liquids at a radial distance of 0.46 nm, which 

shows a non-Gaussian distribution, the non-Gaussian noise for MD data is also reported for other quantities 

in the literature7. 

 

Figure S4. a. Non-Guassian noise at various radial distance b. noise distribution at a specific radial 

distance.   

 

b. 

a. 



To check the iid condition of noise components, mutual information8,9 between the noise component at each 

radial distance with the noise at other radial distance is calculated. The mutual information can be expressed 

as, 

𝐼(𝑋, 𝑌) = ∑ ∫ log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) 𝑑𝑦

𝑥

 S.1 

where (𝑥, 𝑦) are the data points with underlying probability distribution 𝑝(𝑥, 𝑦). For iid data, mutual 

information is equal to zero, otherwise its non-zero. The maximum value of estimated mutual information 

at various radial distances is shown in Figure S5 (the test is performed using scikit-learn package of python). 

 

Figure S5. Mutual information at various  radial distances. The maximum value of mutual information 

between noise at each radial distance with other radial distances is shown with circles. The non-zero 

circles show dependency with other points. 

 

As shown in Figure S5 mutual information has a non-zero value, which indicates that the iid condition is 

not satisfied.  

Even though the conditions for validity of PCA and ICA are not fully-satisfied, we compare performance 

of PCA and ICA with different number of components with the DAE method developed in the main 

manuscript. In general, we observe that the DAE method is better than both methods consistent with recent 



studies reporting a better performance for denoising autoencoder compared with PCA for physical 

problems.10,11 The main problem associated with PCA and ICA is unphysical negative values as these 

methods do not guarantee non-negative value for the non-negative dataset. We investigate both methods up 

to 19 components with dataset of 1500 RDFs. For any number of components, the DAE method 

outperforms both methods. RDFs of various systems reconstructed by PCA and ICA with number of 

components between 3 and 11 are shown in Figure S6-14. Similar trends are observed for the number of 

components between 12 and 18.  Further increase in the number of components, in fact, deteriorates 

denoising performance of both PCA and ICA methods as shown in Figure S15 for 19 components.  

 

 

 

 

 

 

 

 

 

 

 

 

 



PCA with 3 components ICA with 3 components 

  

  

  

Figure S6. Comparison between DAE, PCA, and ICA (ICA and PCA with 3 components). 

 

 

 

 



 

PCA with 4 components ICA with 4 components 

  

  

  

Figure S7. Comparison between DAE, PCA, and ICA (ICA and PCA with 4 components). 

 

 

 



 

 

PCA with 5 components ICA with 5 components 

  

  

  

Figure S8. Comparison between DAE, PCA, and ICA (ICA and PCA with 5 components). 

 

 



 

 

 

PCA with 6 components ICA with 6 components 

  

  

  

Figure S9. Comparison between DAE, PCA, and ICA (ICA and PCA with 6 components). 

 



 

PCA with 7 components ICA with 7 components 

  

  

  

Figure S10. Comparison between DAE, PCA, and ICA (ICA and PCA with 7 components). 

 

 

 



PCA with 8 components ICA with 8 components 

 
 

 

  

  

Figure S11. Comparison between DAE, PCA, and ICA (ICA and PCA with 8 components). 

 

 

 

 



PCA with 9 components ICA with 9 components 

 
 

 

  

  

Figure S12. Comparison between DAE, PCA, and ICA (ICA and PCA with 9 components). 

 

 

 

 



PCA with 10 components ICA with 10 components 

 
 

 

  

  

Figure S13. Comparison between DAE, PCA, and ICA (ICA and PCA with 10 components). 

 

 

 

 



PCA with 11 components ICA with 11 components 

 
 

 

  

  

Figure S14. Comparison between DAE, PCA, and ICA (ICA and PCA with 11 components). 

 

 

 

 



PCA with 19 components ICA with 19 components 

 
 

 

  

  

Figure S15. Comparison between DAE, PCA, and ICA (ICA and PCA with 19 components). 

 

 

 



S.4. DAE with PCA Input-Output 

We augment the denoising deficiency of PCA by using it as input and output of the DAE network. This 

methodology, in turn, reduces the size of the DAE network. To do so, we reduce dimensions of the feature 

vector (obtained thorough concatenation of temporally averaged RDF, temperature, and density – denoted 

as 𝑥) from 𝑑 dimension into 𝑛 components using the PCA,  

𝒀 = 𝑿𝑾𝑛 (𝑆. 2) 

where 𝑿 is the input matrix with dimension of |𝐷| × 𝑑, where |𝐷| is the number of systems (i.e.,𝑿 =

[

𝑥1,1 … 𝑥1,𝑑

⋮ … ⋮
𝑥|𝐷|,1 … 𝑥|𝐷|,𝑑

]), and 𝑾𝑛 is the matrix of size 𝑑 × 𝑛.  The matrix 𝑾𝑛 is weights whose columns are 

eigenvectors of 𝑿𝑇 𝑿 with 𝑛 largest eigenvectors. Having matrix 𝑾𝑛, we transform input vector of all 

temporally averaged and single snapshot RDFs into reduced dimension. Once the data are transformed 

using PCA, we train DAE network to map PCA transformation of single snapshot RDFs into corresponding 

PCA transformation of temporally averaged RDF, analogous to training of DAE in the main manuscript for 

the RDFs. Once the DAE is trained, we apply inverse-transformation to increase dimension of DAE 

predicted PCA component into dimension of original data, i.e., 𝑿 = 𝒀𝑾𝑛
𝑻  (see Figure S.16 for the 

workflow). 

We employ PCA algorithm with 20 components, which show good ability in the dimensionality reduction 

of temporally averaged RDF, however, it comes at the cost of losing denoising functionality for a single 

snapshot RDF. After both the single snapshot and temporally averaged RDFs are dimensionally reduced 

with PCA, we train a small DAE network with two 2 hidden layers (encoder and decoder networks have 

two hidden layers with 20x15x10x15x20 architecture for DAE; we don’t go through rigorous optimization 

of network architecture, as the main objective is to show how DAE network can be combined with PCA). 

Then, the DAE learns to map noisy PCA component of single snapshot RDF back to PCA components of 

temporally averaged RDF. The results shown in Figure S17 clearly indicate that DAE combined with PCA 



outperform PCA denoising ability. The loss function of the training of DAE network with PCA input-output 

is also shown in Figure S18. 

  

Figure S16. Workflow for using PCA as input and output of the DAE network.   

 

 

 

 

 

 



  

 

Figure S17. DAE with PCA input/output RDF prediction for four randomly selected systems. PCA with 

20 components. The dash-dotted blue lines show PCA output for temporally averaged RDF. Solid red 

line shows the PCA of a single snapshot RDF, which is fed into DAE network to reproduce DAE 

predicted temporally averaged RDF shown with dash-dot blue lines.   

 

 

 

 



  

Figure S18. DAE with PCA input/output loss function during training steps.   
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