Supporting Information

A Luminescent Amine-Functionalized Metal-Organic Framework

Conjugated with Folic Acid as a Targeted Biocompatible pH
Responsive Nanocarrier for Apoptosis Induction in Breast Cancer Cells

Reza Abazari,[†] Farangis Ataei,[‡] Ali Morsali,^{*,†} Alexandra M. Z. Slawin,[§] and Cameron L.

Carpenter-Warren[§]

[†]Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115–175, Iran

*Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University,

Tehran, 14115–175, Iran

§School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK

^{*}E-mail: morsali a@modares.ac.ir

Collection and reduction of X-ray data. X-ray diffraction data was collected at 125 K using a Rigaku SCXmini CCD diffractometer with a SHINE monochromator [Mo K α radiation (λ = 0.71075 Å)]. Intensity data were collected using ω steps accumulating area detector images spanning at least a hemisphere of reciprocal space. All data were corrected for Lorentz polarization effects. A multiscan absorption correction was applied by using CrysAlisPro¹ Structures were solved by dual space methods (SHELXT) and refined by full-matrix least-squares against F² (SHELXL-2013).² Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using a riding model, with the exception of the N-H's, which were refined freely. All calculations were performed using Olex 2.³ The occupancy of the second DMF molecule was set to 0.5, in order to obtain consistent thermal parameters - the formula reflects this. Selected crystallographic data are presented in Table S1.

Figure S1. Light microscope image of bulk NH₂-Eu:TMU-62 crystals.

Figure S2. Fluorescence microscope image of bulk NH₂-Eu:TMU-62 crystals.

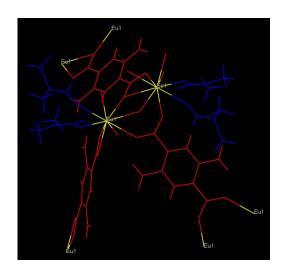


Figure S3. The coordination environment of the NH_2 -Eu:TMU-62 (2-ATA ligand: red; DMF: blue; and Eu: yellow).

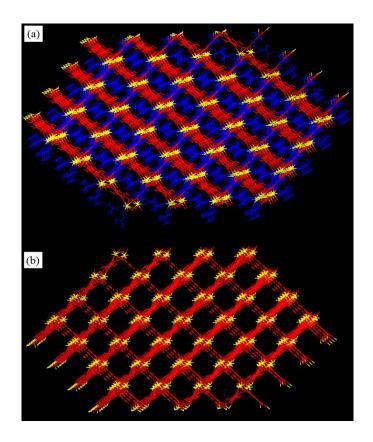
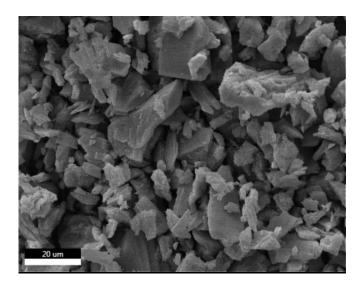



Figure S4. The pore geometry of the 3D structure of the NH_2 -Eu:TMU-62 along the c axis. (a) With coordinated DMF molecules and (b) activated NH_2 -Eu:TMU-62.

Figure S5. The FE-SEM image of the NH₂-Eu:TMU-62 crystals.

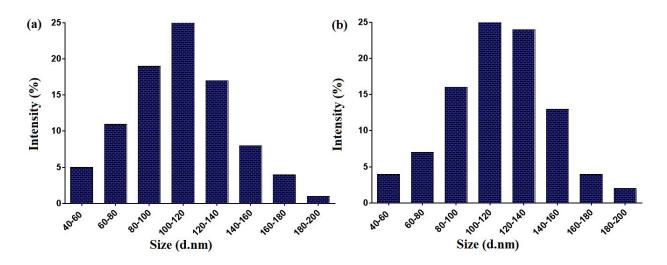
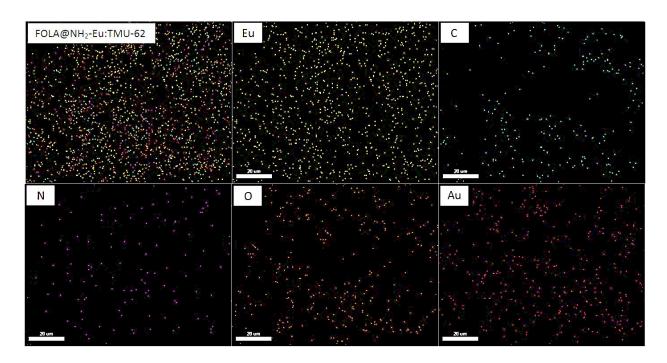
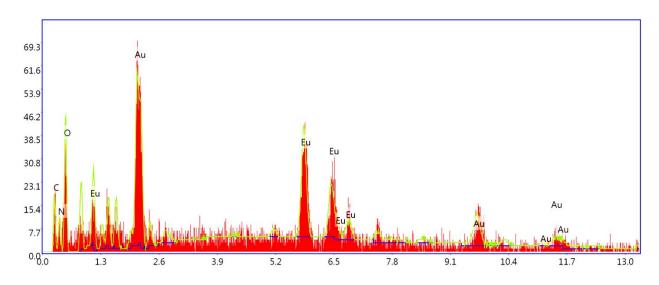




Figure S6. Particle size distribution of the FOLA@NH₂-Eu:TMU-62 in water (a) and PBS (b).

Figure S7. The elemental mapping of the FOLA@NH₂-Eu:TMU-62.

Figure S8. EDS analysis of the synthesized FOLA@NH₂-Eu:TMU-62.

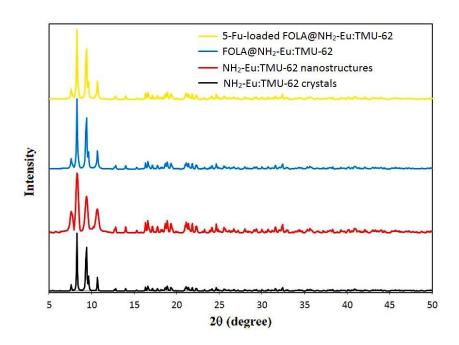
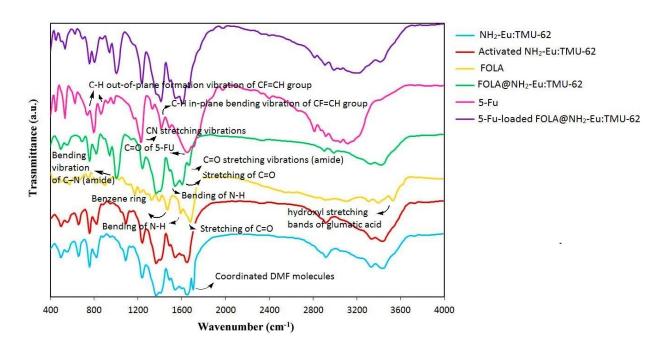



Figure S9. The XRD patterns of the NH₂-Eu:TMU-62 structure simulated from the single crystal X-ray data (black line), the NH₂-Eu:TMU-62 nanostructures synthesized via the conventional ball mill (red line), the FOLA@NH₂-Eu:TMU-62 (blue line), and the loaded FOLA@NH₂-Eu:TMU-62 with 5-Fu drug (orange line).

Figure S10. The FT-IR spectra of the NH₂-Eu:TMU-62 (blue line), activated NH₂-Eu:TMU-62 (red line), FOLA (orange line), FOLA@NH₂-Eu:TMU-62 (green line), 5-Fu (pink line), and 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 (purple line).

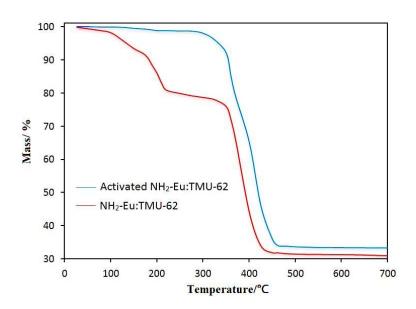
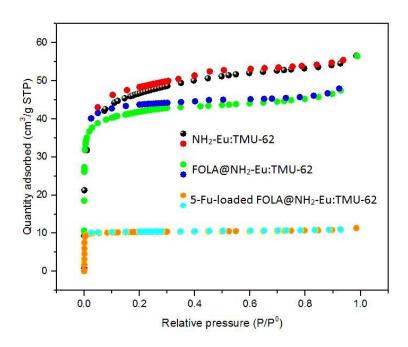



Figure S11. Thermogravimetric analysis of the NH_2 -Eu:TMU-62 single crystals synthesized via the hydrothermal method (red line) and the NH_2 -Eu:TMU-62 sample activated under vacuum at 140 °C for 24 h (blue line).

Figure S12. The N₂ adsorption-desorption isotherms of NH₂-Eu:TMU-62, FOLA@NH₂-Eu:TMU-62, and 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 collected at 77 K.

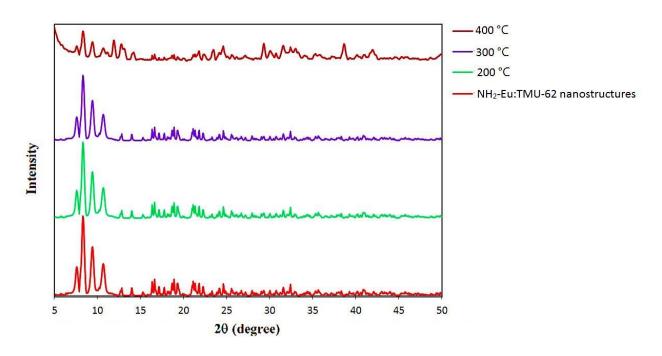


Figure S13. The PXRD patterns of the NH_2 -Eu:TMU-62 nanostructures (red line); and the NH_2 -Eu:TMU-62 nanostructures calcined in air at 200 °C (green line), 300 °C (purple line), and 400 °C (brown line).

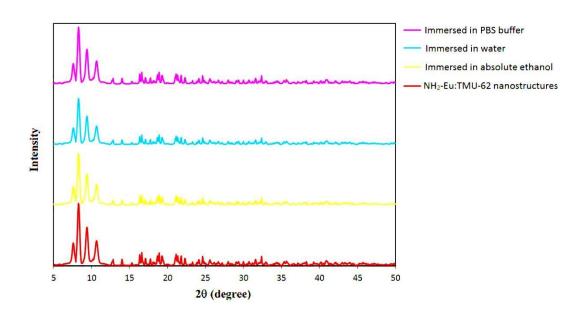


Figure \$14. The PXRD patterns of the NH₂-Eu:TMU-62 nanostructures (red line); and the NH₂-Eu:TMU-62 nanostructures immersed in absolute ethanol (yellow line), water (blue line), and PBS buffer (pink line).

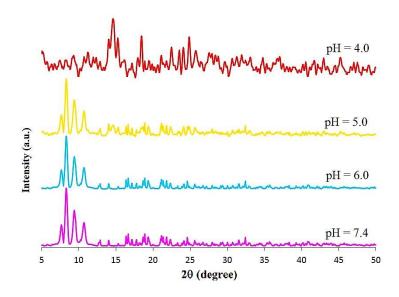
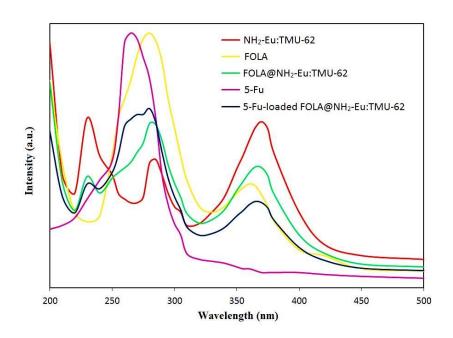



Figure S15. The PXRD patterns of FOLA@NH $_2$ -Eu:TMU-62 carrier in the PBS solution at different pHs.

Figure S16. UV–visible absorption spectra of the NH₂-Eu:TMU-62 (red line), FOLA (orange line), FOLA@NH₂-Eu:TMU-62 (green line), 5-Fu (pink line), and 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 (dark blue).

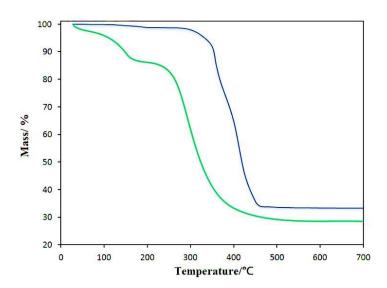
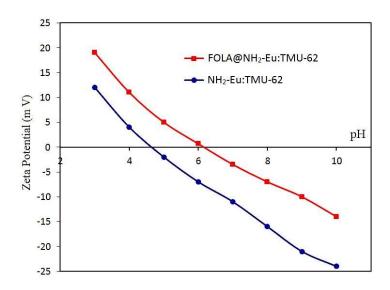



Figure S17. Thermogravimetric analysis of the NH_2 -Eu:TMU-62 (blue line) and $FOLA@NH_2$ -Eu:TMU-62 (green line).

Figure S18. Variation of zeta-potential of NH₂-Eu:TMU-62 (blue line) and FOLA@NH₂-Eu:TMU-62 (red line) as a function of pH.

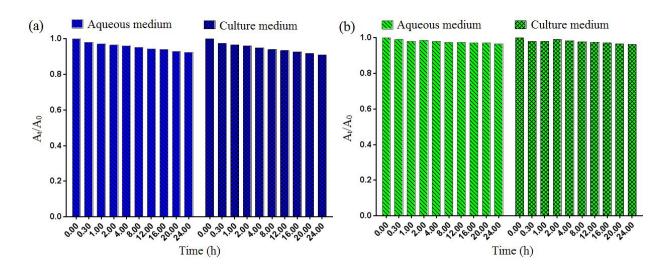


Figure S19. Normalized UV absorbance (A_t/A_0) vs. time plots of (a) the NH₂-Eu:TMU-62 and (b) and FOLA@NH₂-Eu:TMU-62 in aqueous and culture medium in different mediums (A_t = absorbance at time 't' and A_0 = Absorbance at t=0).

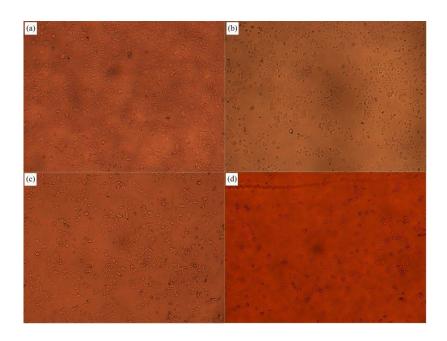


Figure S20. The morphological changes in the MCF-7 cells of the control group (a) and the cells exposed to the FOLA@NH₂-Eu:TMU-62 carrier (b), alone 5-Fu (c), and 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 (d) at pH 7.4 for 24 h. Cell density reduction, irregular shapes and cellular shrinkage were observed by optical microscopy.

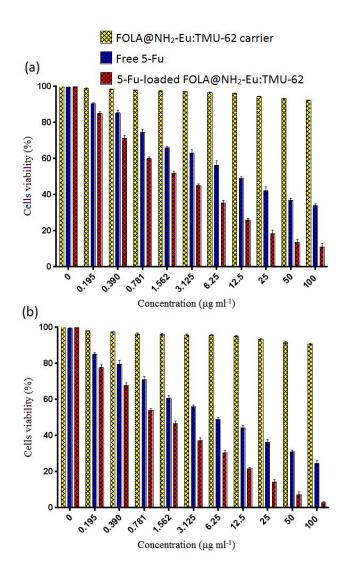


Figure S21. Comparison of the cytotoxic effect of the FOLA@NH₂-Eu:TMU-62 carrier, alone 5-Fu, and 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 on cell viability of the MCF-7 cells incubated at pH 7.4 in the presence of various concentrations of the samples for 24h (a) and 72h (b).

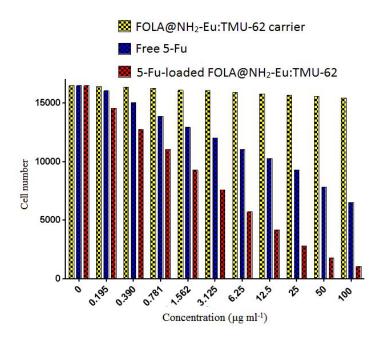


Figure S22. *In vitro* viability of the MCF-7 cells dyed with trypan blue and incubated at pH 7.4 for 24 h with various concentrations of the FOLA@NH₂-Eu:TMU-62 carrier, alone 5-Fu, and 5-Fu-loaded FOLA@NH₂-Eu:TMU-62.

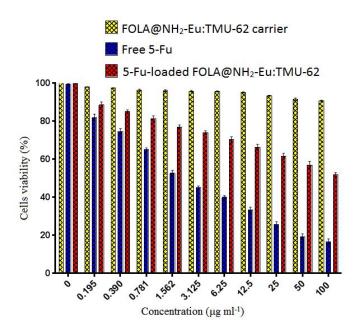
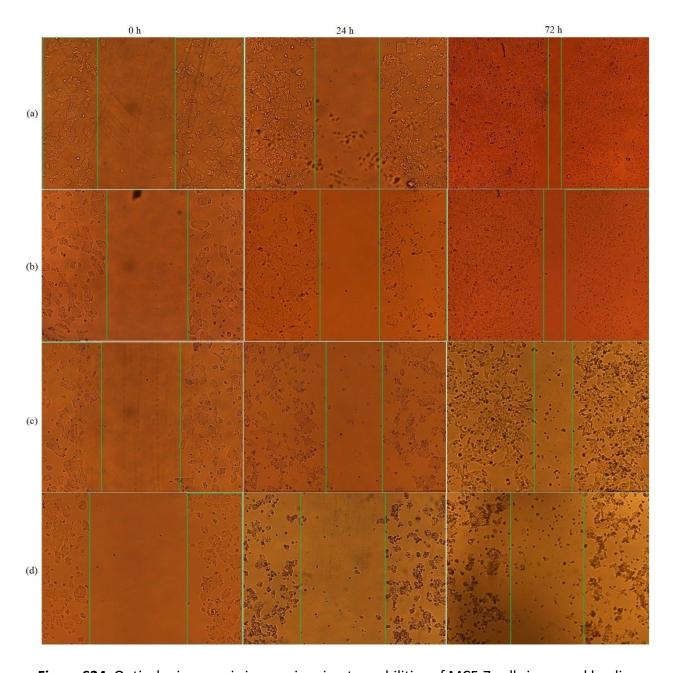



Figure S23. Comparison of the cytotoxic effect of the FOLA@NH $_2$ -Eu:TMU-62 carrier, alone 5-Fu, and 5-Fu-loaded FOLA@NH $_2$ -Eu:TMU-62 on cell viability of the MCF-10A cells incubated at pH 7.4 for 24h in the presence of various concentrations of the samples.

Figure S24. Optical microscopic images in migratory abilities of MCF-7 cells in wound healing assay at 0, 24 and 72h after the creation of wounds. (a) Control group, (b) FOLA@NH₂-Eu:TMU-62, (c) alone 5-Fu and (d) 5-Fu-loaded FOLA@NH₂-Eu:TMU-62.

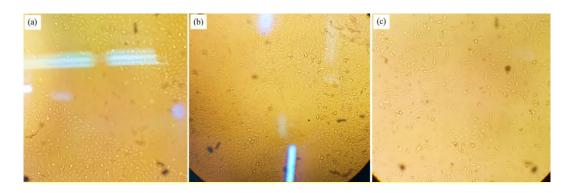


Figure S25. Optical microscopic images in migratory abilities of MCF-10A cells in wound healing assay at 72h after the creation of wounds. (a) Control group, (b) 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 after 24 h, and (c) 5-Fu-loaded FOLA@NH₂-Eu:TMU-62 after 72 h.

Table S1. Quantitative apoptosis assay on the MCF-7 cell line using the Anexin-V/PI dual staining method in the framework of the flow cytometry method. The percentage of the viable, early apoptotic, late apoptotic and necrotic cells are presented as mean values (n = 3).

Treatment Group	Conc. (μg ml ⁻¹)	Viable cells	Early apoptotic	Late apoptotic	Necrotic	Cell	Apoptotic cells
		(Q4%)	cell (Q3%)	cells (Q2%)	cells (Q1%)	death	(Q2% + Q3%)
Control group	1.562	88.20	1.37	7.07	3.35	11.80	8.44
FOLA@NH ₂ -Eu:TMU-62	1.562	76.50	0.65	15.20	7.65	23.50	15.85
Free 5-Fu	1.562	59.10	1.63	22.50	16.77	40.90	24.13
5-Fu-loaded FOLA@NH ₂ -Eu:TMU-62	1.562	38.50	35.9	25.50	0.011	61.50	61.4

Table S2. Crystal data and structure refinement for TMU-62.

Identification code TMU-62

 $\label{eq:empirical formula Eu} \text{Empirical formula} \qquad \qquad \text{Eu}_{0.33} \; \text{N}_{1.17} \; \text{O}_{2.75} \; \text{C}_6 \; \text{H}_{6.83}$

Formula weight 189.48 Temperature/K 173 Crystal system triclinic Space group P-1 a/Å 10.5035(7) b/Å 11.2286(8) c/Å 12.8073(12) α/° 100.493(8) β/° 110.554(6) γ/° 100.335(6) Volume/Å³ 1341.2(2) Ζ 6 $\rho_{calc}g/cm^3$ 1.407 μ/mm^{-1} 0.517 F(000) 562.86

Crystal size/mm³ 0.220 Radiation Mo K α (λ = 0.71075)

20 range for data collection/° 3.52 to 50.48

 $-12 \le h \le 12, \, -13 \le k \le 13, \, -15 \le l \le 15$ Index ranges

Reflections collected 11818

Independent reflections 11818 [R_{int} = 0.0722, R_{sigma} = 0.1427]

Data/restraints/parameters 11818/258/307

Goodness-of-fit on F² 1.136

Largest diff. peak/hole / e $\mbox{Å}^{-3}$ 1.712/-1.013

References

- (1) CrysAlisPro v1.171.38.41. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, U.K. 2015.
- (2) Sheldrick, G. M. Acta Crystallogr., Sect. A. 2015, 71, 3.
- (3) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. *J. Appl. Cryst*. **2009**, *42*, 339.