Supporting Information

Pentacyclic Ladder-Heteraborin Emitters Exhibiting High-EfficiencyBlue Thermally Activated Delayed Fluorescencewith an Ultrashort Emission Lifetime

Tomohiro Agou, ${ }^{*, \dagger}$ Kyohei Matsuo, ${ }^{\ddagger}$ Rei Kawano, ${ }^{\dagger}$ In Seob Park, ${ }^{\ddagger}$ Takaaki Hosoya, ${ }^{\dagger}$ Hiroki Fukumoto, ${ }^{\dagger}$ Toshio Kubota, ${ }^{\dagger}$ Yoshiyuki Mizuhata, ${ }^{\|}$Norihiro Tokitoh, ${ }^{\|}$and Takuma Yasuda**

${ }^{\dagger}$ Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
${ }^{\dagger}$ INAMORI Frontier Research Center (IFRC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
IInstitute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
E-mail: tomohiro.agou.mountain@vc.ibaraki.ac.jp (T.A.)
E-mail: yasuda@ifrc.kyushu-u.ac.jp (T.Y.)

Table of Contents:

General remarks S2
Synthesis and characterization. S2-S32
X-ray crystallography S33-S34
Photophysical measurements S35-S37
OLED fabrication and evaluation S37-S38
Quantum chemical calculations S39-S55
References S56

General remarks

All the manipulations were performed under a dry N_{2} atmosphere using Schlenk techniques. Commercially available materials and reagents were used as received. Solvents (THF, $\mathrm{Et}_{2} \mathrm{O}$, and toluene) were purified by the Ultimate Solvent System, Glass Contour Company. ${ }^{[1]}{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III 400 NMR spectrometer. High resolution mass spectra were collected on a JEOL JMS-700 MStation mass spectrometer (EI or FAB), Bruker micrOTOF mass spectrometer (APCI, APPI, or ESI), or Bruker solariX ion-cyclotron Fourier transform mass spectrometer (ESI or APCI). Thermogravimetric analysis (TGA) was performed on a Rigaku Thermo Plus EVO TG-DTA under Ar atmosphere with a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Elemental analysis was performed at the Microanalytical Laboratory, Institute for Chemical Research, Kyoto University. 1,3-Dibromo-4,6-diiodobenzene (4), $\left.{ }^{[52]} \mathrm{TipB}(\mathrm{OMe})\right)_{2}{ }^{[53]}$ and 1,3,6,8-tetramethylcarbazole ${ }^{[54]}$ were prepared according to the literature.

Synthesis and characterization

1,5-Dibromo-2-(3-bromophenoxy)-4-fluorobenzene (2)

A mixture of 1,5-dibromo-2,4-difluorobenzene ($\mathbf{1}, 1.8 \mathrm{~g}, 6.6 \mathrm{mmol}$), 2-bromophenol (1.1 g , $6.6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.91 \mathrm{~g}, 6.6 \mathrm{mmol})$, and DMA $(10 \mathrm{~mL})$ was stirred at $150^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane/ $\left.\mathrm{CHCl}_{3}=9: 1, \mathrm{v} / \mathrm{v}\right)$ to give $\mathbf{2}$ as a colorless oil ($1.8 \mathrm{~g}, 4.2 \mathrm{mmol}, 65 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HF}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.00(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (td, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, $\left.{ }^{4} J_{\mathrm{HF}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 103.01(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 106.35(\mathrm{~d}, J=26.8$ $\mathrm{Hz}), 108.29$ (d, $J=3.6 \mathrm{~Hz}), 115.18$ (s), 121.25 (s$), 126.31$ (s$), 129.07$ (s$), 134.33$ (s), 136.73 (d, J $=1.5 \mathrm{~Hz}), 152.03(\mathrm{~s}), 154.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 158.65(\mathrm{~d}, J=247.4 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-104.90$; HRMS (EI^{+}) m/z $421.7956\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}^{79} \mathrm{Br}_{3} \mathrm{~F}\right.$, calcd 421.7953), 423.7935 $\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}^{79} \mathrm{Br}_{2}{ }^{81} \mathrm{BrF}\right.$, calcd 423.7933), $425.7915\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}^{79} \mathrm{Br}^{81} \mathrm{Br}_{2} \mathrm{~F}\right.$, calcd 425.7913), $427.7894\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}^{81} \mathrm{Br}_{3} \mathrm{~F}\right.$, calcd 427.7894).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

1,5-Dibromo-2-(2-bromophenoxy)-4-(2,5-dibromophenoxy)benzene (3)

A mixture of $2(1.8 \mathrm{~g}, 4.2 \mathrm{mmol}), 2,5-$ dibromophenol $(1.1 \mathrm{~g}, 4.3 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.59 \mathrm{~g}, 4.3$ $\mathrm{mmol})$, and DMA (10 mL) was stirred at $150{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane $\left./ \mathrm{CHCl}_{3}=9: 1, \mathrm{v} / \mathrm{v}\right)$ to give $\mathbf{3}$ as a white solid $(2.0 \mathrm{~g}, 3.1 \mathrm{mmol}, 73 \%)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{dt}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{td}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.98,109.65,110.83,112.30,114.44,120.13,121.39,121.56,126.05,134.24,134.87,137.61$, 152.26, 152.32, 153.51, 153.71; HRMS (EI $\left.{ }^{+}\right) m / z 651.6520\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{5} \mathrm{O}_{2}\right.$, calcd 651.6519), $653.6495\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{4}{ }^{81} \mathrm{BrO}_{2}\right.$, calcd 653.6499), $655.6480\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{3}{ }^{81} \mathrm{Br}_{2} \mathrm{O}_{2}\right.$, calcd 655.6479), $657.6459\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{2}{ }^{81} \mathrm{Br}_{3} \mathrm{O}_{2}\right.$, calcd 657.6460), $659.6439\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{4} \mathrm{O}_{2}\right.$, calcd 659.6441), $661.6426\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{81} \mathrm{Br}_{5} \mathrm{O}_{2}\right.$, calcd 661.6426).

N

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}.
(2-Bromophenyl)(2,4-dibromo-5-iodophenyl)sulfane (5)

A mixture of 1,4-dibromo-2,5-diiodobenzene (4,5.4 g, 11 mmol), 2-bromobenzenethiol (1.9 $\mathrm{g}, 10 \mathrm{mmol}),\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](0.29 \mathrm{~g}, 0.50 \mathrm{mmol})$, $\operatorname{DPEphos}(0.27 \mathrm{~g}, 0.50 \mathrm{mmol}), t \mathrm{BuONa}(1.4 \mathrm{~g}, 15$ $\mathrm{mmol})$, and toluene (30 mL) was stirred at $80^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane/ $\mathrm{CHCl}_{3}=9: 1, \mathrm{v} / \mathrm{v}$) followed by recrystallization from CHCl_{3} to give $\mathbf{5}$ as a white solid ($1.3 \mathrm{~g}, 2.4 \mathrm{mmol}, 24 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 100.24,125.13,126.66,128.50,128.83,129.78,133.37$, $133.89,134.03,136.10,137.23,141.47$; HRMS (EI^{+}) m/z $545.6790\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{3} \mathrm{SI}\right.$, calcd 545.6785), 547.6766 ($\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6}{ }^{79} \mathrm{Br}_{2}{ }^{81} \mathrm{BrSI}$, calcd 547.6765), $549.6746\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{2} \mathrm{SI}\right.$, calcd 549.6744), $551.6722\left(\mathrm{M}^{+}, \mathrm{C}_{12} \mathrm{H}_{6}{ }^{81} \mathrm{Br}_{3}\right.$ SI, calcd 551.6723).

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of 5 in CDCl_{3}.

```
ト N우 N
```


Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5}$ in CDCl_{3}.

A mixture of $5(2.3 \mathrm{~g}, 4.2 \mathrm{mmol})$, 2,5-dibromobenzenethiol $(1.1 \mathrm{~g}, 4.0 \mathrm{mmol}),\left[\mathrm{Pd}(\mathrm{dba})_{2}\right]$ $(0.24 \mathrm{~g}, 0.42 \mathrm{mmol})$, DPEphos $(0.23 \mathrm{~g}, 0.42 \mathrm{mmol}), t \mathrm{BuONa}(0.81 \mathrm{~g}, 8.4 \mathrm{mmol})$, and toluene (16 mL) was stirred at $80^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane/ $\mathrm{CHCl}_{3}=8 / 2$) followed by recrystallization from CHCl_{3} to give $\mathbf{6}$ as a colorless solid (1.4 $\mathrm{g}, 2.1 \mathrm{mmol}, 51 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{dd}, J=$ 7.8, 1.4 Hz, 1H), $7.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 120.53,120.68,121.73,126.69$, $128.47,129,16,130.74,132.51,133.06,133.98,134.90,135.65,135.91,136.39,136.43,136.86$, 138.29 (One signal could not be observed probably because of the overlapping); HRMS (EI ${ }^{+}$) m / z $683.6063\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{5} \mathrm{~S}_{2}\right.$, calcd 683.6062), $685.6047\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{4}{ }^{81} \mathrm{BrS}_{2}\right.$, calcd 685.6042$)$, $687.6026\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{3}{ }^{81} \mathrm{Br}_{2} \mathrm{~S}_{2}\right.$, calcd 687.6022), $689.6002\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}_{2}{ }^{81} \mathrm{Br}_{3} \mathrm{~S}_{2}\right.$, calcd 689.6001), $691.5980\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{4} \mathrm{~S}_{2}\right.$, calcd 691.5981), $693.5960\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{9}{ }^{81} \mathrm{Br}_{5} \mathrm{~S}_{2}\right.$, calcd 693.5960).

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ in CDCl_{3}.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}$ in CDCl_{3}.

$\mathrm{Br}-\mathrm{BOBO}$ (7)

To a $\mathrm{Et}_{2} \mathrm{O}$ solution $(70 \mathrm{~mL})$ of $\mathbf{3}(0.54 \mathrm{~g}, 0.81 \mathrm{mmol})$ was added $n \mathrm{BuLi}(1.57 \mathrm{M}$ in hexane, $2.3 \mathrm{~mL}, 3.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. To this mixture was added $\operatorname{TipB}(\mathrm{OMe})_{2}(0.74 \mathrm{~mL}, 2.4 \mathrm{mmol})$. This mixture was refluxed for 15 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane/ $\left.\mathrm{CHCl}_{3}=8: 2, \mathrm{v} / \mathrm{v}\right)$ followed by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to give 7 as a white solid $(0.12 \mathrm{~g}, 0.16 \mathrm{mmol}, 19 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 2.21-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.90(\mathrm{sept}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 4 \mathrm{H})$, 7.22-7.27 (m, 1H), $7.36(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.90,24.22,24.23,24.85,34.51,34.98,35.02$, $103.53,117.32,119.75,119.83,120.59,121.97,122.54,122.84,125.11,126.30,126.40,128.80$, $134.59,134.67,135.06,137.04,138.05,148.56,148.74,149.26,149.94,149.97,158.81,158.97$, $162.43,162.93$ (Three aliphatic signals could not be observed probably because of overlapping); HRMS (ESI $\left.{ }^{+}\right) m / z 763.34858$ ([M-H] ${ }^{+}$, calcd 763.3488).

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 in CDCl_{3}.

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of 7 in CDCl_{3}.

Figure S11. HRMS of $7\left(\mathrm{ESI}^{+}\right)$. Results of two independent measurements (experimental 1 and 2) are shown.

Br-BSBS (8)

To a $\mathrm{Et}_{2} \mathrm{O}$ solution $(70 \mathrm{~mL})$ of $\mathbf{6}(0.80 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added $n \mathrm{BuLi}(1.57 \mathrm{M}$ in hexane, 3.3 $\mathrm{mL}, 5.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. To this mixture was added $\mathrm{TipB}(\mathrm{OMe})_{2}(1.1 \mathrm{~mL}, 3.5 \mathrm{mmol})$. This mixture was refluxed for 15 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane $\left./ \mathrm{CHCl}_{3}=8: 2, \mathrm{v} / \mathrm{v}\right)$ followed by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to give $\mathbf{8}$ as a white solid ($0.27 \mathrm{~g}, 0.34 \mathrm{mmol}, 29 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 1.33(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 12 \mathrm{H}), 2.05-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.91(\mathrm{sept}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 4 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.37(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.03,24.05,24.28,24.30,24.62,24.63,34.44,35.21,35.23,119.73,120.06,120.14$, $124.73,124.89,127.30,127.45,128.01,130.53,131.11,132.33,133.98,135.45,136.92,137.37$, $140.31,141.42,141.66,143.55,145.73,147.10,148.20,148.38,149.39,149.43,152.94$ (One aliphatic signal could not be observed probably because of overlapping); HRMS (ESI ${ }^{+}$m/z $795.30327\left([\mathrm{M}-\mathrm{H}]^{+}\right.$, calcd 795.3031).

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ in CDCl_{3}.

Figure S13. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}$ in CDCl_{3}.

Figure S14. HRMS of $\mathbf{8}$ (ESI ${ }^{+}$). Results of two independent measurements (experimental 1 and 2) are shown.

MCz-BOBO

A mixture of $7(0.62 \mathrm{~g}, 0.81 \mathrm{mmol}), 1,3,6,8$-tetramethylcarbazole $(0.22 \mathrm{~g}, 0.97 \mathrm{mmol})$, $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](47 \mathrm{mg}, 0.081 \mathrm{mmol}),\left[t \mathrm{Bu}{ }_{3} \mathrm{PH}\right] \mathrm{BF}_{4}(24 \mathrm{mg}, 0.081 \mathrm{mmol}), t \mathrm{BuONa}(0.12 \mathrm{~g}, 1.2 \mathrm{mmol})$, and toluene (8 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane $/ \mathrm{CHCl}_{3}=7: 3 \mathrm{v} / \mathrm{v}$) followed by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to give $\mathbf{~ M C z}-$ BOBO as a light-yellow solid ($0.58 \mathrm{~g}, 0.64 \mathrm{mmol}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 12 \mathrm{H}$), 1.30 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}), 2.24-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.48$ (s, 6H), 2.86-2.96 (m, 2H), 6.92 (d, J=0.8 Hz, 2H), 6.93 (s, 4H), 7.23-7.27 (m, 2H), 7.32 (dd, J $=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.85-7.87(\mathrm{~m}, 2 \mathrm{H})$, $8.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.43,21.17,23.84,24.00,24.30,24.32,24.90,34.58$, $35.09,35.26,103.63,117.44,117.92,119.84,119.93,120.09,121,38,122.12,122.61,122.92$, $124.52,126.14,126.42,126.67,129.35,130.38,134.76,134.94,135.12,136.81,137.10,139.62$, 148.27, 148.64, 148.84, 149.41, 149.92, 150.04, 158.33, 158.91, 162.84, 163.01 (two aliphatic signals could not be observed probably due to overlapping); HRMS (ESI $) ~ m / z ~ 907.56540\left(\mathrm{M}^{+}\right.$, calcd 907.5665); Anal. calcd (\%) for $\mathrm{C}_{64} \mathrm{H}_{71} \mathrm{~B}_{2} \mathrm{NO}_{2}$: C 84.67, H 7.88, N 1.54; found: C 84.73, H 8.13, N 1.45 (averaged values of two independent measurements).

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M C z}-\mathbf{B O B O}$ in CDCl_{3}.

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M C z}-\mathbf{B O B O}$ in CDCl_{3}.

Figure S17. HRMS of $\mathbf{M C z - B O B O}\left(\mathrm{ESI}^{+}\right)$. Results of two independent measurements (experimental 1 and 2) are shown.

MCz-BSBS

A mixture of $\mathbf{8}(0.50 \mathrm{~g}, 0.63 \mathrm{mmol}), 1,3,6,8$-tetramethylcarbazole $(0.17 \mathrm{~g}, 0.76 \mathrm{mmol})$, $\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](36 \mathrm{mg}, 0.063 \mathrm{mmol}),\left[t \mathrm{Bu} \mathbf{3}_{3} \mathrm{PH}\right] \mathrm{BF}_{4}(18 \mathrm{mg}, 0.063 \mathrm{mmol}), t \mathrm{BuONa}(0.090 \mathrm{~g}, 0.94$ $\mathrm{mmol})$, and toluene (5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane/ $\mathrm{CHCl}_{3}=8: 2$, v / v) followed by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to give $\mathbf{~ M C z}-$ BSBS as a light-yellow solid ($0.36 \mathrm{~g}, 0.38 \mathrm{mmol}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 6 \mathrm{H}$), 0.90 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$), 1.34 (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.35$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$), 1.87 ($\mathrm{s}, 6 \mathrm{H}$), 2.08-2.23 (m, 4H), 2.47 (s, 6H), 2.87-2.98 (m, 2H), 6.89 (d, $J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (s, 4H), 7.267.31 (m, 1H), 7.40 (dd, $J=8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (td, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 3 \mathrm{H})$, 7.78 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H})$, 8.62 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.49,21.15,23.10,24.14,24.36,24.38,24.62,24.67$, 34.52, 35.29, 35.43, 117.96, 119.84, 120.16, 120.25, 121.25, 124.49, 124.68, 124.79, 124.95, $127.15,127.73,129.35,130.40,130.77,131.21,132.40,135.53,137.35,137.47,139.49,140.23$, $140.36,141.79,141.86,146.04,146.28,147.21,148.30,148.53,149.40,149.52,153.11$ (one aliphatic signal could not be observed probably because of overlapping); HRMS (ESI ${ }^{+}$) m / z $939.52015\left(\mathrm{M}^{+}\right.$, calcd 939.5227); Anal. calcd (\%) for $\mathrm{C}_{64} \mathrm{H}_{71} \mathrm{~B}_{2} \mathrm{NS}_{2}$: C 81.78, H 7.61, N 1.49; found: C $81.65, \mathrm{H} 7.70, \mathrm{~N} 1.57$ (averaged values of two independent measurements).

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{M C z}-\mathbf{B S B S}$ in CDCl_{3}.

Figure S19. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{M C z}-\mathrm{BSBS}$ in CDCl_{3}.

Figure S20. HRMS of $\mathbf{M C z - B S B S}\left(\mathrm{ESI}^{+}\right)$. Results of two independent measurements (experimental 1 and 2) are shown.

2,2'-[(4,6-dibromo-1,3-phenylene)bis(oxy)]bis(bromobenzene) (9)

1
9
A mixture of 1,5-dibromo-2,4-difluorobenzene (1, $0.90 \mathrm{~g}, 3.3 \mathrm{mmol}), 2$-bromophenol $(1.2 \mathrm{~g}$, $7.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.97 \mathrm{~g}, 7.0 \mathrm{mmol})$, and DMA (5 mL) was stirred at $150{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane $\left./ \mathrm{CHCl}_{3}=8: 2, \mathrm{v} / \mathrm{v}\right)$ followed by recrystallization from CHCl_{3} to give 9 as a white solid $(1.7 \mathrm{~g}, 2.9 \mathrm{mmol}, 90 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{td}, J=8.0,1.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 108.83,110.47,114.07,119.42,125.64,128.80,134.09,137.36,152.54,153.31$; HRMS ($\left.\mathrm{EI}^{+}\right) \quad m / z \quad 573.7414\left(\mathrm{M}^{+}, \quad \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{79} \mathrm{Br}_{4}, \quad\right.$ calcd 573.7414$), \quad 575.7392\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{79} \mathrm{Br}_{3}{ }^{81} \mathrm{Br}$, calcd 575.7394), $577.7375\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{79} \mathrm{Br}_{2}{ }^{81} \mathrm{Br}_{2}\right.$, calcd 577.7375), $579.7355\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{3}\right.$, calcd 579.7356), $581.7338\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{81} \mathrm{Br}_{4}\right.$, calcd 581.7340).

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of 9 in CDCl_{3}.

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of 9 in CDCl_{3}.

2,2'-[(4,6-dibromo-1,3-phenylene)bis(oxy)]bis(bromobenzene) (10)

A mixture of 1,5-dibromo-2,4-difluorobenzene (4, $2.9 \mathrm{mmol}, 6 \mathrm{mmol}$), 2-bromobenzenethiol $(1.9 \mathrm{~g}, 10 \mathrm{mmol}),\left[\mathrm{Pd}(\mathrm{dba})_{2}\right](0.29 \mathrm{~g}, 0.50 \mathrm{mmol})$, DPEphos $(0.27 \mathrm{~g}, 0.50 \mathrm{mmol}), t \mathrm{BuONa}(1.4 \mathrm{~g}$, $15 \mathrm{mmol})$, and toluene $(20 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane/ $\mathrm{CHCl}_{3}=7: 3$, v/v) followed by recrystallization from CHCl_{3} to give $\mathbf{1 0}$ as a white solid ($2.0 \mathrm{~g}, 4.7 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.51(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 120.10,128.42,128.71$, 128.76, 130.36, 132.84, 133.92, 135.44, 136.23, 137.66; HRMS (EI $) ~ m / z 605.6958\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}_{4}$, calcd 605.6977), $607.6937\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}_{3}{ }^{81} \mathrm{Br}\right.$, calcd 607.6937), $609.6915\left(\mathrm{M}^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}_{2}{ }^{81} \mathrm{Br}_{2}$, calcd 609.6916), $611.6896\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~S}_{2}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{3}\right.$, calcd 611.6896), $613.6874\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~S}_{2}{ }^{81} \mathrm{Br}_{4}\right.$, calcd 613.6875).

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of 10 in CDCl_{3}.

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}$ in CDCl_{3}.

BOBO

To a $\mathrm{Et}_{2} \mathrm{O}$ solution $(100 \mathrm{~mL})$ of $9(0.80 \mathrm{~g}, 1.4 \mathrm{mmol})$ was added $n \mathrm{BuLi}(1.57 \mathrm{M}$ in hexane, 3.9 $\mathrm{mL}, 6.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. To this mixture was added $\operatorname{TipB}(\mathrm{OMe})_{2}(1.3 \mathrm{~mL}, 4.1 \mathrm{mmol})$. This mixture was refluxed for 15 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent; hexane $\left./ \mathrm{CHCl}_{3}=8: 2, \mathrm{v} / \mathrm{v}\right)$ followed by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to give $\mathbf{B O B O}$ as a colorless solid ($0.33 \mathrm{~g}, 0.48 \mathrm{mmol}, 34 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 0.93(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.30(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 12 \mathrm{H}), 2.28(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.90(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 4 \mathrm{H}), 7.23(\mathrm{td}, J$ $=7.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{td}, J=7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{dd}$, $J=7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.90,24.24,24.84,34.50$, $34.95,103.36,117.30,119.72,122.20,122.71,126.43,134.55,135.20,137.02,148.47,149.24$, 149.94, 158.85, 162.79; HRMS (ESI') m/z $686.44616\left(\mathrm{M}^{+}\right.$, calcd 686.4461).

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{B O B O}$ in CDCl_{3}.

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{B O B O}$ in CDCl_{3}.

Figure S27. HRMS of $\mathbf{B O B O}\left(\mathrm{ESI}^{+}\right)$. Results of two independent measurements (experimental 1 and 2) are shown.

BSBS

To a $\mathrm{Et}_{2} \mathrm{O}$ solution $(120 \mathrm{~mL})$ of $\mathbf{1 0}(1.0 \mathrm{~g}, 1.6 \mathrm{mmol})$ was added $n \mathrm{BuLi}(1.57 \mathrm{M}$ in hexane, $4.6 \mathrm{~mL}, 7.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. To this mixture was added $\mathrm{TipB}(\mathrm{OMe})_{2}(1.5 \mathrm{~mL}, 4.9 \mathrm{mmol})$. This mixture was refluxed for 15 h . The reaction was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with CHCl_{3}. The organic layer was dried with MgSO_{4}, and the solvents were evaporated. The crude product was separated by column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: hexane $\left./ \mathrm{CHCl}_{3}=8: 2, \mathrm{v} / \mathrm{v}\right)$ followed by recrystallization from $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ to give BSBS as a colorless solid $(0.61 \mathrm{~g}, 0.85 \mathrm{mmol}, 52 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.34(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 12 \mathrm{H}), 2.13(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.92(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 4 \mathrm{H}), 7.27(\mathrm{td}, J$ $=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8,1.3$ $\mathrm{Hz}, 2 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.06,24.30,24.61,34.44$, $35.19,119.70,120.04,124.62,124.86,130.82,132.23,135.51,137.52,140.27,141.77,146.66$, 148.13, 149.40, 152.93; HRMS (ESI+ $m / z 718.40044$ (${ }^{+}$, calcd 718.4005).

Figure $\mathbf{S 2 8}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{B S B S}$ in CDCl_{3}.

Figure S29. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{B S B S}$ in CDCl_{3}.

Figure S30. HRMS of BSBS (ESI ${ }^{+}$). Results of two independent measurements (experimental 1 and 2) are shown.

Figure S31. TGA curve of MCz-BOBO.

Figure S32. TGA curve of MCz-BSBS.

X-ray crystallography

Single crystals suitable for the X -ray analysis were obtained by recrystallization from CHCl_{3}. The single crystals were immersed in cryo-oil, mounted on a MicroMounts ${ }^{\mathrm{TM}}$, and measured at a temperature of 173 K (MCz-BOBO) or 103 K (MCz-BSBS). X-Ray diffraction data were recorded on a Rigaku XtaLabMini CCD diffractometer (MCz-BOBO) or on a Rigaku Saturn 724 CCD diffractometer equipped with a Rigaku VariMax optic system (MCz-BSBS) using Mo-K radiation ($\lambda=0.71075 \AA$). The reflection data were integrated, scaled and averaged by using the CrysAlisPro (ver. 1.171.38.46) (MCz-BOBO) or the HKL-2000 (MCz-BSBS). ${ }^{[55]}$ Empirical absorption corrections were applied using the SCALE3 ABSPACK scaling algorithm (CrysAlisPro). The structures were solved by a direct method (SHELXT-2014/5) and refined by full-matrix least square method on F^{2} for all reflections (SHELXL-2016/6 or SHELXL-2014/7) ${ }^{[56]}$ All hydrogen atoms were placed using AFIX instructions, while all the other atoms were refined anisotropically.

The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication materials. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Table S1. Crystallographic data for $\mathrm{MCz}-\mathrm{BOBO}-\left(\mathrm{CHCl}_{3}\right)_{3}$ and $\mathrm{MCz}-\mathrm{BSBS}$.

	$\mathrm{MCz}-\mathrm{BOBO}-\left(\mathrm{CHCl}_{3}\right)_{3}$	MCz-BSBS
Empirical formula	$\mathrm{C}_{67} \mathrm{H}_{74} \mathrm{~B}_{2} \mathrm{Cl}_{9} \mathrm{NO}_{2}$	$\mathrm{C}_{64} \mathrm{H}_{71} \mathrm{~B}_{2} \mathrm{NS}_{2}$
FW	1265.94	939.95
Temperature (K)	173	103
Crystal system	monoclinic	monoclinic
Space group	$P 2{ }_{1} / c$	C_{2} / c
$a(\AA)$	20.879(1)	46.427(2)
$b(\AA)$	10.1453(6)	22.725(1)
$c(\AA)$	32.428(2)	10.8682(5)
$\beta\left({ }^{\circ}\right)$	105.291(7)	103.413(4)
$V\left(\AA^{3}\right)$	6625.8(7)	11153.6(9)
Z	4	8
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.269	1.120
$\mu\left(\mathrm{mm}^{-1}\right)$	0.424	0.135
$F(000)$	2648	4032
Crystal size (mm)	$0.41 \times 0.21 \times 0.17$	$0.15 \times 0.10 \times 0.05$
$\theta_{\text {range }}\left({ }^{\circ}\right.$)	1.847 to 25.499	1.804 to 25.249
Reflection collected	49235	63791
Independent reflections	12344	10080
$R_{\text {int }}$	0.1054	0.1478
Completeness to $\theta_{\text {max }}$	100.0\%	100.0\%
Data/restraints/parameters	12344/0/746	10080/1/654
GOF on F^{2}	1.029	1.031
$R_{1}(I>2 \sigma(I))$	0.0729	0.0687
$w R_{2}$ (all data)	0.2251	0.1540
Largest diff. peak and hole (e \AA^{-3})	0.739, -0.887	0.506, -0.329
CCDC	1935681	1935682

Photophysical measurements

Organic thin films for photophysical measurements were deposited under high vacuum (~ 7 $\times 10^{-5} \mathrm{~Pa}$) onto quartz substrates using an ALS E-200 vacuum evaporation system. UV/Vis absorption and PL spectra were measured with a JASCO V-670 spectrometer and a JASCO FP8600 spectrophotometer, respectively. The absolute PL quantum yields were determined using a JASCO ILF-835 integrating sphere system. The transient PL decay curves for the toluene solutions and thin films were measured using a Hamamatsu Photonics C11367 Quantaurus-tau fluorescence lifetime spectrometer $(\lambda=340 \mathrm{~nm}$, pulse width $=100 \mathrm{ps}$, repetition rate $=20 \mathrm{~Hz}$) under N_{2}. The ionization potentials (IP) of materials in neat films were determined using a RikenKeiki AC-2 ultraviolet photoelectron spectrometer. The electron affinities (EA) were estimated by subtracting the optical energy gaps $\left(E_{\mathrm{g}}\right)$ from the measured IP values.

Figure S33. Transient PL decay profiles of (a) MCz-BOBO and (b) MCz-BSBS in deoxygenated toluene solutions.

Figure S34. Temperature dependence of transient PL decays for (a) MCz-BOBO and (b) MCzBSBS in the doped films in the PPF host in the temperature range of 100-300 K.

Figure S35. Fluorescence (blue) and phosphorescence (red) spectra of (a) MCz-BOBO and (b) MCz-BSBS in the doped films in the PPF host. Reference phosphorescence spectra (black) of BOBO and BSBS are also included. The lowest triplet (${ }^{3}$ LE) energies of BOBO and BSBS can be estimated to be 2.92 and 2.69 eV , respectively.

Figure S36. Photoelectron yield spectra of MCz-BOBO and MCz-BSBS in neat films measured in air.

OLED fabrication and evaluation

ITO-coated glass substrates were cleaned with detergent, deionized water, acetone, and isopropanol. The substrates were then subjected to UV-ozone treatment for 0.5 h before being loaded into an ALS E-200 vacuum evaporation system. The organic layers and a cathode Al layer were thermally evaporated on the substrates under vacuum with a deposition rate of $<0.3 \mathrm{~nm} \mathrm{~s}^{-1}$ through a shadow mask, defining a pixel size of $0.04 \mathrm{~cm}^{2}$. The thickness and deposition rate were monitored in situ during deposition by an oscillating quartz thickness monitor. The $J-V-L$ characteristics of the fabricated OLED devices were measured using a Keithley 2400 source meter and a Konica Minolta CS-2000 spectroradiometer.

B3PyPB

Liq

Figure S37. Energy level diagram and chemical structures of the materials for the TADF-OLEDs based on MCz-BOBO and MCz-BSBS as emitters.

Figure S38. Efficiency roll-off behavior of devices A and B.

Quantum chemical calculations

Geometry optimizations in the S_{0} states for MCz -BOBO and MCz -BSBS were performed using the PBE0 functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis set in the gas phase, implemented in the Gaussian 16 program package. TD-DFT vertical excitation calculations were performed using the optimized geometry in the S_{0} state at the same level of theory. Geometry optimization in the S_{1} and T_{1} states were performed using the optimized geometry in the S_{0} state as initial geometry with TD-DFT method at the same level of theory. The T_{2} states were simulated using the optimized T_{1} geometries. The computational geometry data for $\mathrm{MCz}-\mathrm{BOBO}$ and $\mathrm{MCz}-\mathrm{BSBS}$ were provided in pages S40-S55.

The spin-orbit coupling (SOC) matrix elements $\left\langle S_{n}\right| H_{\text {Soc }}\left|T_{m}\right\rangle$ at the optimized T_{1} geometries were calculated by using a scalar relativistic TD-DFT with the two-component zerothorder regular approximation (ZORA) ${ }^{[57]}$ and the PBE0 functional and the DZP basis set, implemented in the ADF2017 program package. ${ }^{[58]}$ The contributions of the three degenerate triplet states ($T_{m, \mathrm{x}}, T_{m, \mathrm{y}}$, and $T_{m, z}$) were taken into account by calculating the root sum square of the real and imaginary parts (Re and Im) of the matrix elements, as expressed by the following equation: ${ }^{[59]}$

$$
\left\langle S_{n}\right| H_{\mathrm{SOC}}\left|T_{m}\right\rangle=\left\{\sum_{a=x, y, z}\left(\operatorname{Re}^{2}\left\langle S_{n}\right| H_{\mathrm{SOC}}\left|T_{m, a}\right\rangle+\operatorname{Im}^{2}\left\langle S_{n}\right| H_{\mathrm{SOC}}\left|T_{m, a}\right|\right)\right\}^{1 / 2}
$$

Geometry data for MCz-BOBO (S_{0} optimization: unit \AA)

C	2.738899-2.981400 1.773100
C	1.680599-2.222000 1.268400
C	1.886999-1.040500 0.538600
C	3.224800-0.646200 0.334699
C	4.289600-1.378600 0.827700
C	4.038900-2.555299 1.548899
O	0.445100-2.728500 1.530900
C	-0.692900-2.087599 1.162300
C	-0.683399-0.860900 0.457400
B	0.661300-0.264299 0.008499
C	-1.867199-2.738400 1.517200
C	-3.077600-2.134800 1.195599
C	-3.153799-0.873300 0.559299
C	$-1.934900-0.2877000 .195700$
O	-4.176200-2.841100 1.551300
C	$-5.441300-2.3949001 .304000$
C	-5.713100-1.143599 0.727999
B	-4.535000-0.228100 0.338700
C	-6.454500-3.277999 1.684000
C	-7.774000-2.909400 1.482899
C	-8.090999-1.670500 0.911399
C	-7.071100-0.808999 0.547499
C	$0.7796990 .970999-0.963600$
C	-4.715300 1.255800-0.163899
C	$0.9831000 .739500-2.341000$
C	$1.0510001 .818300-3.222500$
C	$0.9387003 .136499-2.778999$
C	$0.7586003 .352699-1.414600$
C	$0.6702002 .297800-0.503900$
C	-4.638600 1.596299-1.531000
C	-4.766100 2.929199-1.920100
C	-4.956599 3.952300-0.989900
C	$-5.0394003 .6032990 .355700$
C	-4.929699 2.2776000 .782300
C	$0.9902994 .301300-3.747100$
C	$2.3021004 .339100-4.534800$
C	-0.216799 4.293000-4.689899
C	-5.058299 5.400699-1.423900
C	-3.758300 5.883000-2.074500
C	-6.255099 5.637999-2.348600
C	$-5.0293001 .9633002 .267600$
C	-4.473000 0.511600-2.583200
C	-5.825800 0.149500-3.206300
C	-3.457100 0.870700-3.668899
C	-3.884300 2.5922993 .065099
C	$-6.3892002 .3659002 .843600$
C	1.119200-0.675799-2.883599
C	-0.016099-1.035599-3.844700
C	$2.486000-0.905700-3.533700$
C	0.5110002 .5892000 .979300
C	1.8537002 .9866001 .602500
C	$-0.5558003 .6449001 .275399$

N	5.124800-3.321000 2.050899
C	5.753500-4.372299 1.376899
C	6.840299-4.811999 2.162399
C	$6.873100-3.9917003 .343999$
C	5.804200-3.075600 3.247799
C	7.723300-3.981700 4.452199
C	7.512800-3.060700 5.466100
C	6.435299-2.164200 5.345200
C	5.557199-2.134199 4.265500
C	5.462199-4.971200 0.135999
C	6.302100-6.013300-0.246300
C	7.387600-6.478499 0.518299
C	$7.651800-5.8644001 .732299$
C	4.331800-4.565599-0.770500
C	$4.429800-1.1379004 .257699$
C	8.403600-3.007899 6.677199
C	8.231900-7.616300 0.012899
H	$2.542200-3.8902002 .332500$
H	3.406900 0.263800-0.232099
H	5.317499-1.068600 0.665099
H	-1.841200-3.692500 2.031599
H	-1.961000 0.670000-0.321000
H	-6.188200-4.232300 2.127499
H	-8.568000-3.592100 1.773900
H	-9.129700-1.391900 0.758900
H	-7.302100 0.1582000 .107100
H	1.192900 1.625499-4.284699
H	0.679199 4.377799-1.057199
H	-4.708800 3.180699-2.977100
H	-5.190400 4.3920001 .091799
H	0.936299 5.221099-3.148100
H	$2.3381995 .221700-5.184000$
H	$3.1670004 .371900-3.863800$
H	$2.4084993 .454400-5.173400$
H	-0.201899 5.168700-5.349500
H	-1.156599 4.302199-4.127099
H	-0.215799 3.397500-5.322599
H	-5.216600 5.999400-0.515999
H	-3.820500 6.948499-2.325199
H	-2.903099 5.735600-1.406199
H	-3.554200 5.334000-3.001599
H	-6.341399 6.700099-2.606500
H	-7.190800 5.323300-1.874500
H	-6.149999 5.076900-3.284499
H	-4.942000 0.8743002 .386400
H	-4.096899-0.386800-2.071900
H	-5.713699-0.655299-3.942600
H	-6.538700-0.183499-2.444500
H	-6.260000 1.017700-3.716800
H	-3.284399 0.011100-4.326699
H	-2.495200 1.172100-3.240199
H	-3.814100 1.692100-4.301200
H	-3.962200 2.3282004 .126400
H	-2.912600 2.2472002 .697300

H	-3.900800	3.686000	2.990500
H	-6.457100	2.089600	3.902399
H	-7.207100	1.870499	2.309600
H	-6.548100	3.448200	2.771100
H	$1.049300-1.368900$	-2.033300	
H	$0.089000-2.068600-4.196900$		
H	$-0.991000-0.938000-3.356500$		
H	$-0.015800-0.381300-4.724499$		
H	$2.582599-1.943400-3.874099$		
H	$3.299499-0.701200-2.829300$		
H	$2.627100-0.255100-4.404699$		
H	0.187200	1.656300	1.464399
H	1.746700	3.166200	2.679000
H	2.605999	2.203100	1.461500
H	2.236200	3.905699	1.142499
H	-0.712900	3.733899	2.356499
H	-1.515099	3.392599	0.810700
H	8.256100	4.634300	0.910800
H	$6.544200-4.692500$	4.517400	
H	$6.101499-6.496300-1.201700$		
H	$8.486499-6.196399$	2.345799	
H	$4.377799-3.507099-1.048599$		
H	$4.367300-5.154299-1.692100$		
H	$3.351599-4.729899-0.309000$		
H	$3.450200-1.623099$	4.188200	
H	$4.446200-0.552300$	5.181700	
H	$4.496299-0.437500$	3.417900	
H	$7.834999-3.161800$	7.602500	
H	$9.179600-3.778299$	6.632500	
H	$8.905000-2.036200$	6.766200	
	$8.681899-7.382800-0.959800$		
	$7.645099-7.845899$	0.708299	
H		$-8.530100-0.118499$	

Geometry data for $\mathrm{MCz}-\mathrm{BOBO}$ (S_{1} optimization: unit \AA)

C	$2.738899-2.981400$	1.773100
C	$1.680599-2.222000$	1.268400
C	$1.886999-1.040500$	0.538600
C	$3.224800-0.646200$	0.334699
C	$4.289600-1.378600$	0.827700
C	$4.038900-2.555299$	1.548899
O	$0.445100-2.728500$	1.530900
C	$-0.692900-2.087599$	1.162300
C	$-0.683399-0.860900$	0.457400
B	$0.661300-0.264299$	0.008499
C	$-1.867199-2.738400$	1.517200
C	$-3.077600-2.134800$	1.195599
C	$-3.153799-0.873300$	0.559299
C	$-1.934900-0.287700$	0.195700
O	$-4.176200-2.841100$	1.551300
C	$-5.441300-2.394900$	1.304000

C	$-5.713100-1.143599$	0.727999
B	$-4.535000-0.228100$	0.338700
C	$-6.454500-3.277999$	1.684000
C	$-7.774000-2.909400$	1.482899
C	$-8.090999-1.670500$	0.911399
C	$-7.071100-0.808999$	0.547499
C	0.779699	$0.970999-0.963600$
C	-4.715300	$1.255800-0.163899$
C	0.983100	$0.739500-2.341000$
C	1.051000	$1.818300-3.222500$
C	0.938700	$3.136499-2.778999$
C	0.758600	$3.352699-1.414600$
C	0.670200	$2.297800-0.503900$
C	-4.638600	$1.596299-1.531000$
C	-4.766100	$2.929199-1.920100$
C	-4.956599	$3.952300-0.989900$
C	-5.039400	3.603299

0	
-1.841200-3.692500 2.031599	
-1.961000 0.670000-0.31	
-	. 232300
568000-3.592100 1.773900	
-9.129700-1.39	-1.391900 0.75
-7.302100 0.1582000 .107100	
199	
0	
99	
99	
99	
$-5.2166005 .999400-0.515999$	
-3.820500 6.948499-2.325199	
-2.903099 5.73	5.735600-1.406199
-3.554200 5.334000-3.001599	
-7.190800 5.323300-1.87450	
-4.942000 0.8743002 .386400	
-6.538700-0.183499-2.444500	
-6.260000 1.017700-3.716800	
999	
200 1.172100-3.240199	
100 1.692100-4.301200	
622002.3282004 .126400	
9126002.2472002 .697300	
$-3.9008003 .6860002 .990500$	
-6.457100 2.0896003 .902399	
-7.207100	
-6.548100 3.4482002 .771100	
49300-1.368900-2.033300	
.089000-2.068600-4.196900	
991000-0.938000-3.356500	
-0.015800-0.381300-4.72449	
.701200	
$2.627100-0.255100-4.40469$	

H	$8.544200-4.692500$	4.517400
H	$6.269899-1.447099$	6.148099
H	$6.101499-6.496300$	-1.201700
H	$8.486499-6.196399$	2.345799
H	$4.377799-3.507099$	-1.048599
H	$4.367300-5.154299-1.692100$	
H	$3.351599-4.729899-0.309000$	
H	$3.450200-1.623099$	4.188200
H	$4.446200-0.552300$	5.181700
H	$4.496299-0.437500$	3.417900
H	$7.834999-3.161800$	7.602500
H	$9.179600-3.778299$	6.632500
H	$8.905000-2.036200$	6.766200
H	$8.681899-7.382800-0.959800$	
H	$9.045099-7.845899$	0.708299
H	$7.639300-8.530100-0.118499$	

Geometry data for $\mathrm{MCz}-\mathrm{BOBO}$ (T_{1} optimization: unit \AA)

C	$2.783600-2.953400$	1.766300	
C	$1.737699-2.193000$	1.269999	
C	$1.925699-1.010300$	0.505399	
C	$3.287400-0.651600$	0.264900	
C	$4.354300-1.386899$	0.745800	
C	$4.099999-2.538099$	1.498600	
O	$0.499100-2.682000$	1.559499	
C	$-0.647700-2.041700$	1.188099	
C	$-0.640900-0.823600$	0.464500	
B	$0.711499-0.243700$	0.007000	
C	$-1.810199-2.692300$	1.568400	
C	$-3.036500-2.102600$	1.254899	
C	$-3.126500-0.858599$	0.601599	
C	$-1.903300-0.266300$	0.215300	
O	$-4.122000-2.821500$	1.644899	
C	$-5.391600-2.391600$	1.421000	
C	$-5.680700-1.151099$	0.826700	
B	$-4.512599-0.242100$	0.394600	
C	$-6.393500-3.272400$	1.838900	
C	$-7.719800-2.916500$	1.662700	
C	$-8.053700-1.688300$	1.075499	
C	$-7.046599-0.829600$	0.672400	
C	0.818399	$1.007599-0.966100$	
C	-4.727699	$1.227799-0.149899$	
C	1.047900	$0.815299-2.347400$	
C	1.097600	$1.909800-3.213199$	
C	0.938200	$3.216200-2.754600$	
C	0.729300	$3.403399-1.389999$	
C	0.660899	$2.330699-0.498400$	
C	-4.665400	$1.527600-1.527700$	
C	-4.825200	$2.843100-1.961900$	
C	-5.031900	$3.893100-1.065999$	
C	-4.096700	3.587800	0.290600
C	2.278999	0.760099	

C	$0.9650004 .397900-3.703499$
C	$2.2856004 .492900-4.471599$
C	-0.226699 4.367600-4.665200
C	-5.167600 5.323699-1.547599
C	-3.884899 5.811400-2.227700
C	-6.377800 5.505700-2.467400
C	$-5.0244992 .0176992 .257100$
C	-4.473899 0.413000-2.543599
C	-5.821200-0.019700-3.132500
C	-3.485599 0.768100-3.655500
C	-3.841600 2.6496002 .994899
C	-6.357499 2.4673002 .859800
C	$1.220900-0.581500-2.925799$
C	$0.073700-0.953000-3.868300$
C	$2.576500-0.753200-3.615999$
C	0.4688002 .5931990 .986899
C	1.8215002 .8295991 .668300
C	$-0.4939003 .7412001 .292699$
N	5.195000-3.315200 2.008600
C	$5.805000-4.3563001 .341800$
C	$6.850500-4.8655002 .157799$
C	6.846999-4.072400 3.373500
C	5.799600-3.122900 3.232000
C	7.621500-4.103299 4.510499
C	7.360999-3.173800 5.539899
C	$6.324900-2.2494005 .376599$
C	5.509699-2.175900 4.243499
C	$5.521300-4.9013990 .066699$
C	$6.340900-5.965800-0.319300$
C	$7.375600-6.4847990 .464800$
C	$7.629700-5.9166001 .731000$
C	4.439199-4.426700-0.851899
C	$4.425800-1.1463004 .173900$
C	8.192100-3.188100 6.785800
C	8.211900-7.628500-0.021100
H	2.573699-3.850399 2.341200
H	$3.4777990 .244200-0.320799$
H	5.379200-1.082299 0.546600
H	-1.770299-3.638000 2.097499
H	-1.946299 0.683000-0.314700
H	-6.110199-4.217100 2.293200
H	-8.503799-3.597599 1.983800
H	-9.097000-1.415899 0.941000
H	-7.294500 0.1277000 .218600
H	$1.2569001 .736400-4.277099$
H	$0.6066004 .419799-1.020100$
H	-4.777700 3.059500-3.027399
H	-5.255799 4.3979991 .001600
H	$0.8722005 .305900-3.090900$
H	$2.3024005 .385000-5.109500$
H	$3.1385004 .544500-3.786400$
H	$2.4310003 .619900-5.118800$
H	-0.231200 5.253000-5.312800
H	-1.173700 4.337599-4.115600

H
-0.188300 3.480999-5.309300
-5.329900 5.949600-0.658599
-3.971200 6.866500-2.514700
$-3.0206005 .703700-1.563699$
-3.677900 5.234299-3.136900
-6.488700 6.556000-2.762899
-7.301900 5.188699-1.972299
-6.270500 4.912399-3.383100
-4.954700 0.9324002 .407800
-4.057999-0.449500-2.004300
-5.690700-0.846900-3.841100
$-6.509400-0.350000-2.347099$
-6.294300 0.813199-3.667300
-3.289100-0.109500-4.282599
-2.530599 1.117300-3.248799
-3.878499 1.552200-4.313999
$-3.8891002 .4252004 .067699$
$-2.8918002 .2680992 .606600$
-3.837499 3.7402992 .879800
-6.399799 2.2226993 .928000
$-7.2001991 .9730992 .364600$
$-6.4982003 .5503992 .761699$
1.191600-1.284900-2.084000
0.198399-1.974100-4.250299
$-0.888699-0.898000-3.349800$
$0.028600-0.276700-4.730699$
2.697899-1.781400-3.979900
3.399300-0.535200-2.926200
2.677700-0.084099-4.479299
0.0398991 .6793991 .419700
1.6949002 .9831992 .747599
2.4906991 .9751991 .519800
2.3116003 .7201001 .254600
$-0.6948003 .7897002 .369400$
-1.450700 3.6127990 .775100
$-0.0779004 .7131001 .000199$
8.423500-4.828300 4.624200
$6.136400-1.5408006 .178600$
6.157300-6.415000-1.291599
8.430299-6.310300-2.352000
4.570700-3.375199-1.123199
4.435400-5.027300-1.765100
3.453700-4.495299-0.381900
3.441600-1.605899 4.044300
4.417599-0.550699 5.090300
4.559400-0.476099 3.319800
7.869500-2.423400 7.496200
8.133600-4.163000 7.284600
9.249400-3.012100 6.553099
7.894300-7.971000-1.008799
9.268599-7.341699-0.084099
8.152899-8.478300 0.669499

Geometry data for MCz-BSBS (S_{0} optimization: unit \AA)

C	2.839300-3.143700 1.859799
C	$1.655200-2.5552991 .395000$
C	1.673099-1.364300 0.640499
C	2.941700-0.806400 0.372000
C	4.118700-1.375799 0.824400
C	4.062600-2.556499 1.574000
S	0.198000-3.440700 1.800399
C	-1.139100-2.473900 1.218000
C	-0.995599-1.239799 0.533299
B	0.383099-0.675500 0.114500
C	-2.394200-3.023900 1.468500
C	-3.547500-2.338199 1.089599
C	-3.479999-1.052700 0.493599
C	-2.190100-0.570099 0.220400
S	-5.035499-3.190399 1.426599
C	-6.334600-2.156200 0.861500
C	-6.144200-0.854199 0.354800
B	-4.743200-0.206500 0.194299
C	-7.615200-2.715099 0.979599
C	-8.725500-1.982100 0.595400
C	-8.576099-0.685599 0.095300
C	-7.307200-0.143299-0.013799
C	0.510500 0.533399-0.896900
C	-4.630100 1.322400-0.195800
C	0.702300 0.241200-2.264600
C	0.835200 1.280699-3.184800
C	0.798999 2.618800-2.788899
C	$0.6248002 .893700-1.434600$
C	$0.4758001 .879299-0.485400$
C	-4.439600 1.757400-1.523500
C	-4.365200 3.123000-1.799199
C	-4.466199 4.084400-0.792699
C	-4.661699 3.6427000 .513999
C	-4.751399 2.2842990 .826800
C	0.936399 3.743699-3.795299
C	$2.2667003 .679000-4.550000$
C	-0.245700 3.771400-4.768400
C	-4.364200 5.564100-1.104600
C	-2.992899 5.925599-1.682499
C	-5.489600 6.028900-2.032699
C	-4.982900 1.862099 2.270299
C	-4.364599 0.752300-2.662299
C	-5.690300 0.688899-3.428800
C	-3.204300 1.021599-3.622000
C	-3.819099 2.2573993 .181899
C	-6.313000 2.3941002 .809900
C	0.772500-1.200500-2.747699
C	-0.381300-1.552300-3.689200
C	2.125699-1.518900-3.388600
C	0.3290992 .2381000 .984899
C	1.6771992 .6427991 .591400
C	-0.716099 3.3275991 .231600

$5.258600-3.163100$	2.038999	
$5.961199-4.177300$	1.380399	
$7.136299-4.446500$	2.113900	
$7.146500-3.558999$	3.246400	
$5.976000-2.774500$	3.174499	
$8.054000-3.391499$	4.294900	
$7.798800-2.444600$	5.274199	
$6.618200-1.684899$	5.181399	
$5.68009-1.814499$	4.161300	
$5.669900-4.872600$	0.190800	
$6.599700-5.835600-0.191600$		
$7.773300-6.133700$	0.524400	
$8.036500-5.424900$	1.685899	
$4.453199-4.643900-0.664600$		
$4.443399-0.957700$	4.182199	
$8.747899-2.223799$	6.420199	
$8.710700-7.198500$	0.024100	
$2.817999-4.058999$	2.445700	
2.979400	$0.104000-0.220500$	
$5.085299-0.932500$	0.603900	
$-2.475200-3.990999$	1.960600	
-2.109199	$0.397299-0.271600$	
$-7.735300-3.722099$	1.371900	
$-9.714800-2.422699$	0.687600	
$-9.448100-0.110099-0.201899$		
-7.182400	$0.867099-0.394700$	
0.972200	$1.041500-4.238299$	
0.604000	$3.933900-1.114399$	
-4.222700	$3.448200-2.827799$	
-4.745400	4.382500	1.309300
0.921099	$4.685599-3.229599$	
2.368699	$4.533700-5.228799$	
3.115899	$3.687499-3.858500$	
2.337199	$2.766600-5.153800$	
-0.163630	$4.621100-5.456499$	
-1.196300	$3.854200-4.230400$	
-0.283000	$2.855799-5.370600$	
-4.475100	$6.102699-0.152999$	
-2.910699	$7.007500-1.840299$	
-2.185999	$5.612700-1.011300$	
-2.829699	$5.43489-2.649499$	
-5.430100	$7.110199-2.203800$	
-6.473099	$5.802900-1.607300$	
-5.426800	$5.534200-3.009099$	
-5.046299	0.764300	2.292100
$-4.194999-0.239000-2.215299$		
$-5638099-0.053400-4.234099$		
-6.522200	$0.417200-2.770900$	
-5.921400	$1.661199-3.880500$	
-3.122200	$0.211499-4.355800$	
-2.248900	$1.102499-3.093499$	
-3.355799	$1.950800-4.184000$	
-4.001599	1.919000	4.208700
-2.880000	1.812399	2.837299

H	-3.685199 3.345300 3.206899
H	-6.483300 2.0408003 .833600
H	-7.152300 2.0606992 .190399
H	-6.324099 3.4902002 .829599
H	0.674999-1.853600-1.867900
H	-0.317700-2.601100-4.002000
H	-1.348899-1.399200-3.200600
H	-0.360399-0.931700-4.592800
H	$2.176299-2.574400-3.680500$
H	2.949499-1.316599-2.695600
H	2.291100-0.916300-4.289400
H	$-0.0117991 .3338991 .511700$
H	1.5682992 .8800002 .656400
H	2.4180001 .8419001 .496899
H	2.0763003 .5312001 .087200
H	$-0.8653003 .4747992 .307400$
H	-1.682499 3.073500 0.784300
H	-0.396000 4.2904000 .815600
H	8.953300-4.001799 4.341899
H	6.416999-0.949700 5.959300
H	6.401300-6.389999-1.107899
H	8.938899-5.625299 2.259299
H	$4.350400-3.598600-0.975099$
H	4.517300-5.255599-1.569500
H	3.525100-4.913600-0.147699
H	$3.525600-1.5550004 .162699$
H	$4.427399-0.3526005 .093500$
H	$4.393600-0.2735003 .327699$
H	8.254900-2.380800 7.387300
H	9.599999-2.908499 6.366800
H	$9.143700-1.2007006 .423700$
H	9.066399-6.978000-0.989800
H	$9.588500-7.2901000 .671300$
H	8.221999-8.180000-0.013300

Geometry data for MCz-BSBS (S S_{1} optimization: unit \AA)

C	$2.774400-2.75189990 .868500$	
C	$1.605200-2.191000$	0.374400
C	$1.594500-1.003700-0.423600$	
C	$2.890800-0.475500-0.726000$	
C	$4.067300-1.024699-0.261000$	
C	$4.007299-2.164800$	0.552100
S	$0.141299-3.102700$	0.730600
C	$-1.214400-2.093299$	0.230899
C	$-1.065500-0.864300-0.465299$	
B	$0.319200-0.328800-0.917300$	
C	$-2.457900-2.627600$	0.539100
C	$-3.625799-1.935800$	0.195000
C	$-3.562199-0.660000-0.407199$	
C	$-2.269199-0.184800-0.723000$	
S	$-5.105499-2.783399$	0.590100
C	$-6.417200-1.744900$	0.080699

$-6.230400-0.445899-0.439100$		
-4.828700	$0.184399-0.656900$	
$-7.700700-2.287599$	0.251399	
$-8.817200-1.545300-0.090300$		
$-8.671500-0.251299-0.602399$		
-7.402300	$0.274900-0.764200$	
0.424800	$0.894199-1.935800$	
-4.728300	$1.714600-1.060900$	
0.609300	$0.640000-3.314699$	
0.710000	$1.697300-4.221300$	
0.645000	$3.027299-3.807299$	
0.476500	$3.274500-2.447200$	
0.361599	$2.240199-1.514700$	
-4.562600	$2.136100-2.396400$	
-4.494000	$3.498100-2.691499$	
-4.574399	$4.471900-1.695300$	
-4.742500	$4.045700-0.379999$	
-4.826400	$2.690900-0.049399$	
0.740899	$4.171199-4.797400$	
2.067500	$4.160599-5.561100$	
-0.446300	$4.178400-5.764399$	
-4.475300	$5.947900-2.025999$	
-3.113200	$6.300800-2.630300$	
-5.614600	$6.404999-2.940999$	
-5.013200	2.288699	1.405999
-4.505400	$1.116400-3.522900$	
-5.850500	$1.029900-4.252399$	
-3.371500	$1.381499-4.514500$	
-3.801500	2.664100	2.262100
-6.306200	2.858100	1.994699
$0.700600-0.785500-3.840100$		
$-0.464800-1.133100-4.768699$		
$2.045400-1.056199-4.520099$		
0.219700	$2.577099-0.038300$	
1.588599	2.871700	0.585600
-0.747800	3.729599	0.234700
$5.216200-2.744700$	1.066999	
$5.962600-3.714599$	0.432200	
$7.084700-4.026499$	1.245800	
$6.983800-3.186900$	2.425400	
$5.805900-2.408399$	2.266099	
$7.772200-3.051099$	3.544899	
$7.393600-2.123199$	4.538499	
$6.230500-1.368600$	4.358099	
$5.395600-1.467699$	3.241700	
$5.741400-4.354999-0.810600$		
$6.702800-5.304600-1.167900$		
$7.815300-5.629200-0.385599$		
$8.003300-4.971000$	0.847899	
$4.585999-4.089299-1.724500$		
$4.171900-0.610900$	3.151599	
$8.236100-1.959500$	5.766100	
$8.801999-6.660800-0.839099$		
$2.741099-3.647900$	1.484899	

2.935499	$0.408700-1.356399$	
$5.028799-0.583400-0.513899$		
$-2.526900-3.588600$	1.045299	
-2.202000	$0.783899-1.213799$	
$-7.814300-3.292099$	0.652500	
$-9.807300-1.974100$	0.042500	
-9.547700	$0.333599-0.868600$	
-7.282600	$1.282099-1.155599$	
0.838999	$1.47629-5.280400$	
0.429200	$4.309200-2.111299$	
-4.369600	$3.809900-3.726900$	
-4.806200	4.795000	0.408600
0.699799	$5.104000-4.217400$	
2.138900	$5.025300-6.232000$	
2.919499	$4.188300-4.873299$	
2.163700	$3.256299-6.173700$	
-0.396600	$5.040799-6.440500$	
-1.395199	$4.221099-5.218999$	
-0.458600	$3.270599-6.379299$	
-4.569999	$6.49760-1.078899$	
-3.031000	$7.380900-2.802799$	
-2.296500	$5.992800-1.968799$	
-2.966400	$5.797200-3.593100$	
-5.555999	$7.484099-3.127500$	
-6.591200	$6.18589-2.496300$	
-5.569199	$5.896900-3.911600$	
-5.101399	1.194100	1.440100
-4.313999	$0.135200-3.065000$	
-5.814099	$0.274500-5.047000$	
-6.661099	$0.762000-3.566599$	
-6.102599	$1.992900-4.713399$	
-3.302000	$0.561900-5.239300$	
-2.404500	$1.472600-4.009299$	
-3.541599	$2.302499-5.085199$	
-3.945800	2.338600	3.299400
-2.891399	2.192000	1.877999
-3.640400	3.748899	2.269500
-6.442799	2.517000	3.027900
-7.177399	2.538500	1.413200
-6.292100	3.954600	2.005599
$0.635000-1.453200-2.971199$		
$-0.390699-2.172500-5.111999$		
$-1.422499-1.012500-4.252900$		
$-0.477800-0.487800-5.655900$		
$2.112900-2.103400-4.840899$		
$2.87700-0.852500-3.837200$		
$2.180900-0.428499-5.409600$		
-0.180600	1.682100	0.457400
1.490499	3.086100	1.657600
2.268800	2.021600	0.467100
2.050899	3.744799	0.107799
-0.903999	3.845900	1.313700
-1.723100	$3.558200-0.232600$	
-0.357100	$4.684900-0.137600$	

H	$8.674299-3.644299$	3.671800
H	$5.952900-0.658300$	5.132200
H	$6.571800-5.820900$	-2.115100
H	$8.863399-5.213300$	1.467100
H	$4.544999-3.040900$	-2.033699
H	$4.665400-4.715500-2.616800$	
H	$3.629600-4.296499-1.235599$	
H	$3.261999-1.213600$	3.077400
H	4.098100	0.027500
H	4.185800	0.0233500
H	$7.826000-1.204199$	6.440500
H	$8.310900-2.904199$	6.318200
H	$9.258400-1.662400$	5.502800
H	$8.529799-7.081700-1.809900$	
H	$9.807300-6.230900-0.924299$	
H	$8.867400-7.484099-0.117599$	

Geometry data for $\mathrm{MCz}-\mathrm{BSBS}$ (T_{1} optimization: unit \AA)

C	2.878900-3.150499 1.800800
C	$1.710000-2.5896001 .306599$
C	1.699300-1.402999 0.507399
C	2.996099-0.875699 0.203799
C	4.172499-1.425300 0.668000
C	4.112600-2.564700 1.482600
S	0.245999-3.500900 1.663600
C	-1.109600-2.491300 1.164199
C	-0.960600-1.263000 0.467000
B	0.424500-0.728200 0.013999
C	-2.353200-3.024700 1.473600
C	-3.520800-2.332500 1.129799
C	-3.456900-1.057199 0.526400
C	-2.163900-0.583099 0.209399
S	-5.000899-3.178599 1.526800
C	-6.312199-2.139699 1.017100
C	-6.125000-0.841399 0.495900
B	-4.722900-0.212100 0.276600
C	-7.595900-2.681400 1.189199
C	-8.712199-1.938799 0.847200
C	-8.566000-0.645500 0.333599
C	-7.296500-0.120200 0.170700
C	$0.5295000 .493700-1.005900$
C	-4.621899 1.317499-0.129200
C	$0.7126990 .237900-2.384699$
C	$0.8130991 .294100-3.292500$
C	$0.7492002 .624599-2.879900$
C	$0.5820992 .873400-1.520000$
C	$0.4674991 .840100-0.586100$
C	-4.456800 1.737599-1.465300
C	-4.387499 3.099300-1.761699
C	-4.466700 4.074099-0.766300
C	-4.634200 3.6492000 .549499
C	-4.718700 2.294700 0.881400

0.844800	$3.767399-3.871300$	
2.170899	$3.755299-4.635899$	
-0.343000	$3.774100-4.837599$	
-4.366899	$5.549599-1.098499$	
-3.004799	$5.901200-1.703900$	
-5.506399	$6.006499-2.013299$	
-4.904799	1.894100	2.337399
-4.401100	$0.716700-2.590800$	
-5.746900	$0.630300-3.319199$	
-3.267900	$0.980200-3.583599$	
-3.692400	2.269700	3.192300
-6.197200	2.464599	2.926300
$0.803000-1.188200-2.908499$		
$-0.363200-1.536400-3.836000$		
$2.147099-1.460199-3.589299$		
0.327199	2.178700	0.890100
1.696899	2.473100	1.512500
-0.639399	3.331999	1.162800
$5.320699-3.144199$	1.997400	
$6.072100-4.108000$	1.358499	
$7.194799-4.418799$	2.171400	
$7.088899-3.585899$	3.355500	
$5.907800-2.811900$	3.199199	
$7.876000-3.451999$	4.476300	
$7.492799-2.530399$	5.473899	
$6.327199-1.779300$	5.295699	
$5.493499-1.876700$	4.178000	
$5.853600-4.744600$	0.113500	
$6.819600--5.688100--0.247900$		
$7.933599-6.010500$	0.533100	
$8.117900-5.357399$	1.769900	
$4.695900-4.481700-0.798400$		
$4.267200-1.023400$	4.090000	
$8.333500-2.369100$	6.702900	
$8.925999-7.034699$	0.074700	
$2.845500-4.045999$	2.418000	
3.041000	$0.008100--0.427399$	
$5.134000-0.984899$	0.414100	
$-2.422399-3.985300$	1.980699	
-2.096399	$0.385100-0.282400$	
$-7.709999--3.685500$	1.591300	
$-9.702500-2.366800$	0.981100	
$-9.442000-0.060299$	0.067500	
-7.176299	$0.886499-0.222000$	
0.941100	$1.071900-4.351599$	
0.535599	$3.908400-1.185100$	
-4.263500	$3.409899-2.797399$	
-4.696900	4.399299	1.337400
0.804499	$4.700800-3.292199$	
2.242299	$4.619300-5.307799$	
3.023400	$3.783399-3.948699$	
2.266300	$2.850299-5.247600$	
-0.293400	$4.635699-5.514600$	
-1.291599	$3.817700-4.291600$	

$$
\begin{aligned}
& \text {-0.356099 2.865599-5.451399 } \\
& \text {-4.460699 6.100299-0.151800 } \\
& \text {-2.922100 6.981000-1.877500 } \\
& -2.1879005 .593300-1.042600 \\
& \text {-2.858899 5.396600-2.666400 } \\
& \text {-5.447300 7.085499-2.200700 } \\
& -6.4828995 .788500-1.567800 \\
& \text {-5.461899 5.497599-2.983400 } \\
& \text {-4.993399 } 0.7995002 .372500 \\
& \text {-4.209900-0.264200-2.132099 } \\
& \text {-5.711499-0.125800-4.112999 } \\
& \text {-6.557000 0.363500-2.632500 } \\
& \text {-5.998700 1.593099-3.780900 } \\
& \text {-3.199500 0.159900-4.307700 } \\
& \text {-2.300399 1.071399-3.079399 } \\
& \text {-3.437999 1.900699-4.155199 } \\
& -3.8362001 .9452994 .230200 \\
& -2.7827001 .7969002 .808299 \\
& \text {-3.530799 } 3.3544003 .198700 \\
& -6.3333002 .1245993 .960000 \\
& -7.0689002 .1447992 .345600 \\
& -6.1824993 .5610992 .936200 \\
& \text { 0.738200-1.855000-2.038999 } \\
& -0.289800-2.576200-4.178200 \\
& \text {-1.320600-1.414799-3.319500 } \\
& \text {-0.376599-0.892099-4.723700 } \\
& \text { 2.214099-2.507799-3.908899 } \\
& \text { 2.979999-1.256099-2.907100 } \\
& \text { 2.282299-0.833699-4.479600 } \\
& -0.0731991 .2844001 .387000 \\
& 1.5999002 .6887002 .584200 \\
& 2.3764001 .6224001 .394199 \\
& 2.1591993 .3454001 .033300 \\
& -0.7945003 .4495002 .241800 \\
& -1.6153003 .1608000 .696599 \\
& -0.2483994 .2866000 .789299 \\
& \text { 8.780600-4.041900 } 4.601000 \\
& \text { 6.046299-1.073200 } 6.072499 \\
& \text { 6.690900-6.201300-1.197000 } \\
& \text { 8.978400-5.599199 } 2.388700 \\
& \text { 4.652600-3.433800-1.108800 } \\
& \text { 4.774400-5.108899-1.690099 } \\
& \text { 3.740800-4.689799-0.307200 } \\
& 3.358700-1.6286994 .019500 \\
& \text { 4.194099-0.383800 } 4.973400 \\
& \text { 4.276800-0.390799 } 3.197700 \\
& \text { 7.920499-1.617699 } 7.380000 \\
& \text { 8.410500-3.315799 } 7.251300 \\
& \text { 9.355300-2.067900 } 6.442100 \\
& \text { 8.651000-7.459199-0.893800 } \\
& \text { 9.926900-6.596099-0.017900 } \\
& \text { 9.003400-7.856100 } 0.796999
\end{aligned}
$$

References

(S1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
(S2) Hart, H.; Harada, K. Tetrahedron Lett. 1985, 26, 29-32.
(S3) Pelter, A.; Smith, K.; Buss, D.; Jin, Z. Heteroatom Chem. 1992, 3, 275-277.
(S4) Numata, M.; Yasuda, T.; Adachi, C. Chem. Commun. 2015, 51, 9443-9446.
(S5) Otwinowski, Z.; Minor, W. Methods in Enzymol. 1997, 276, 307-326.
(S6) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
(S7) Wang, F.; Ziegler, T. J. Chem. Phys. 2005, 123, 154102.
(S8) ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com/
(S9) Li, E. Y.-T.; Jiang, T.-Y.; Chi, Y.; Chou, P.-T. Phys. Chem. Chem. Phys. 2014, 16, 2618426192.

