Estimation of Protein-Ligand Unbinding Kinetics Using Non-Equilibrium Targeted Molecular Dynamics Simulations

Steffen Wolf^{*,†,‡,#}, Marta Amaral^{§,||,∪,#}, Maryse Lowinski[⊥], Francois Vallée[⊥], Djordje Musil^{||}, Jörn Güldenhaupt[†], Matthias K. Dreyer[∠], Jörg Bomke[∩], Matthias Frech^{||}, Jürgen Schlitter[†], Klaus Gerwert[†]

- † Department of Biophysics, Ruhr-University Bochum, 44780 Bochum, Germany
- ‡ Institute of Physics, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- § Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
- Molecular Interactions and Biophysics, Merck KGaA, 64293 Darmstadt, Germany
- Sanofi-Aventis Deutschland GmbH, Biologics Research / Protein Therapeutics, 65926
 Frankfurt am Main, Germany
- ⊥ Sanofi IDD-BioStructure and Biophysics, 94400 Vitry-sur-Seine, France
- ∠ Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, 65926 Frankfurt am Main, Germany
- Molecular Pharmacology, Merck KGaA, 64293 Darmstadt, Germany
- # These authors contributed equally.

*steffen.wolf@physik.uni-freiburg.de

Table S1. Analytical data for compounds 1j and 2j.

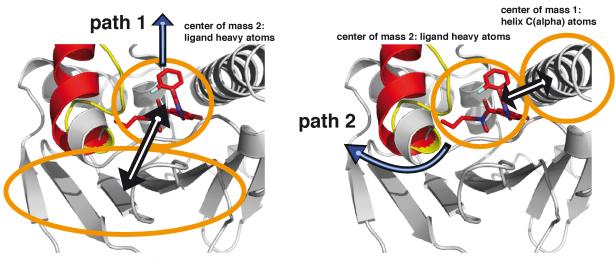
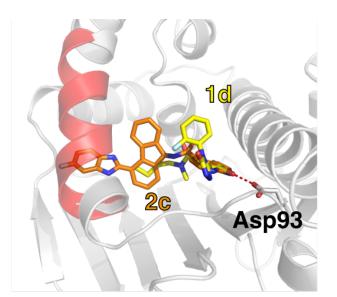

#	LC-MS	¹ H NMR
	M+H [m/z] 287.08	1H NMR (250 MHz, DMSO-d6) δ 9.43 (s, 1H), 9.41 (s, 1H), 7.67 (d, J = 1.8 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.45 – 7.33 (m, 3H), 6.71 (d, J = 8.3 Hz, 1H), 6.41 (d, J = 1.8 Hz, 1H), 6.23 (d, J = 2.3 Hz, 1H), 6.09 (dd, J = 8.4, 2.4 Hz, 1H).
2j	M+H [m/z] 415.90	1H NMR (500 MHz, DMSO-d6) δ 7.71 (dd, J = 8.9, 2.2 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.50 (d, J = 8.9 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.36 – 7.31 (m, 1H), 7.31 – 7.26 (m, 1H), 7.26 – 7.23 (m, 1H), 7.21 – 7.01 (m, 2H), 4.99 (s, 2H), 4.67 (s, 2H), 3.00 – 2.93 (m, 2H), 2.70 – 2.63 (m, 2H), 2.35 – 2.28 (m, 2H), 1.84 – 1.69 (m, 2H), 0.85 (t, J = 7.2 Hz, 3H).

Table S2. Data collection and refinement statistics

	2d	
Data collection		
Space group	I222	
Cell dimensions		
a, b, c (Å)	66.46 90.7 98.53	
α, β, γ (°)	90.00, 90.00, 90;00	
Resolution (Å)	66.73-1.33 (1.33-1.40)	
Nr. observations	245593	
Unique reflections	63093 (4299)	
Redundancy	4.6 (2.5)	
Completeness (%)	91.8 (90.1)	
$R_{merge} (\%)^d$	5.2 (38.7)	
I/σ(I)	14.8 (1.8)	
Refinement		
Resolution (Å)	18.73-1.33	
R_{work} (%)	17.4	
R_{free} (%)	18.9	
Model composition (No.		
<u>of atoms)</u>		
Protein	1638	
Ligand	33	
solvent	354	
PDB ID	5LRL	

compound	<w> along path 1 / kJ/mol</w>	<w> along path 2 / kJ/mol</w>
1b	577 ± 11	974 ± 31
2a	550 ± 19	659 ± 16
2aa	508 ± 15	718 ± 27

Table S3. Statistics for ligand pulling via path 1 and path 2 (see Figure S3). Errors indicate the 1σ confidence level from bootstrap analysis (see Methods).



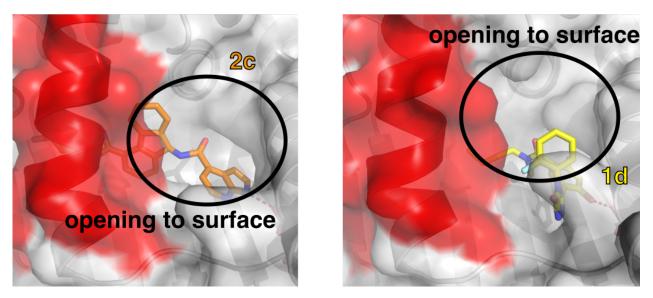

center of mass 1: sheet C(alpha) atoms

Figure S1: Definition of reaction coordinates in TMD runs.

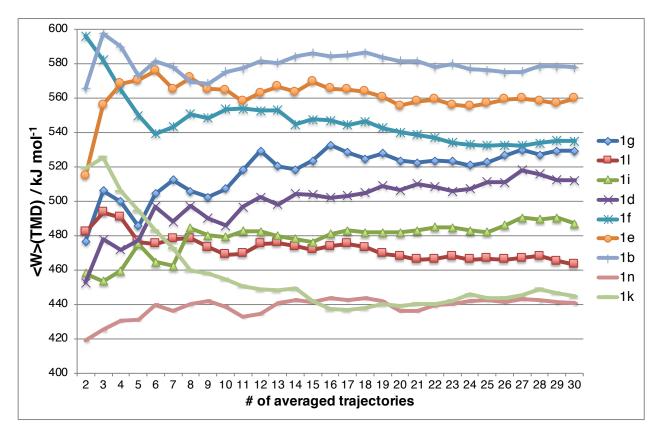


Figure S2: Free energy profile ΔG (A) and non-equilibrium work $\langle W \rangle$ (B) for compounds **1b**, **1g**, and **1l** calculated via thermodynamic integration and non-equilibrium TMD. C: differences of $\langle W \rangle$ referenced to **1l**. The shaded surfaces represent the 1 σ level from bootstrap analysis (see Methods). The range in *x* which corresponds to the transition state region highlighted in yellow, distance at which the ligand exits the binding site highlighted in purple.

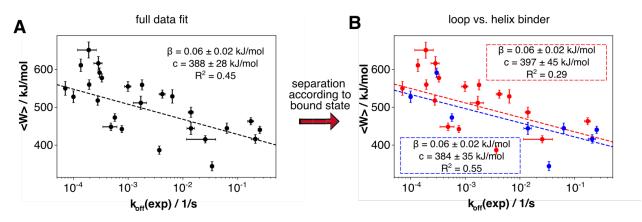


Figure S3: comparison of binding mode of resorcinol compound **1d** and N-heterocycle compound **2c**. Hydrogen bonds displayed as red dashes.

Figure S4: Convergence of non-equilibrium work <W> in dependence to the number of averaged trajectories for group **1** helix binding compounds. The work appears to be converged after ca. 25 averaged trajectories.

Figure S5: Model building for rationalization of non-equilibrium work and kinetic data. Vertical error bars indicate the 1σ level from bootstrap analysis (see Methods), horizontal error bars indicate the standard error of the mean (SEM) for N=2-4 measurements. A: fit to full data set, i.e., all compounds. B: separation into helix- (red) and loop-binding compounds (blue).

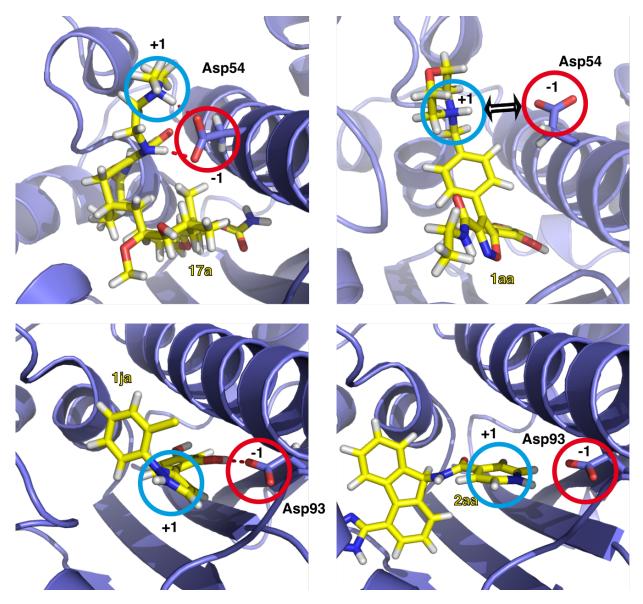
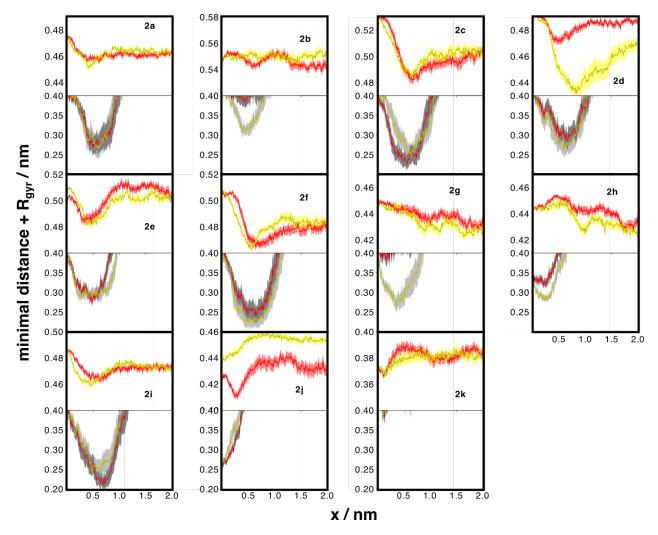



Figure S6. Charge interaction of compounds 17a, 1aa, 1ja and 2aa with Hsp90. Hydrogen bonds displayed as red dashes.

Figure S7. Electrostatic facilitation in group **2f** compounds. Radius of gyration and minimal distances between ligand and Asp102 as average of N=30 simulations. Trajectory means as lines, 1σ error level from bootstrap analysis (see Methods) as shaded area. Uncharged ligand **2f** in red, protonated form **2fa** in yellow. Radii shaded in red and yellow, respectively, minimal distances in dark and light gray, respectively.