Supporting Information

In Situ Detection of Melatonin and Pyridoxine in Plants Using a CuO-Poly(L-lysine)/Graphene-Based Electrochemical Sensor

Yi Liu,[†] Mingji Li,^{*,†} Hongji Li,^{*,‡} Guilian Wang,[§] Yongbing Long,[†] Aixue Li,[⊥] and Baohe Yang[†]

[†]Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

[‡]Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry

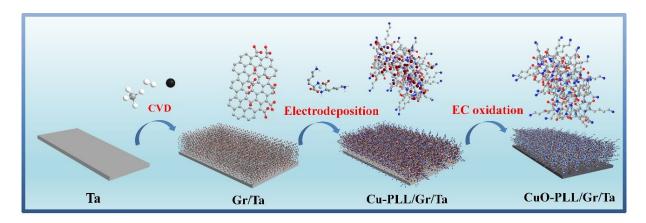
and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China

[§]Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, China

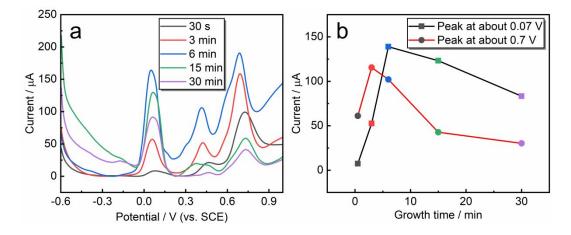
^ICollege of Electronic Engineering, South China Agricultural University, Guangzhou 510642, P. R. China.

^LBeijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China.

Corresponding Authors


* E-mails: limingji@163.com (M. Li); hongjili@yeah.net (H. Li).

Page Nos.	Schemes	Figures	Tables
20	1	20	3


■ S1. EXPERIMENTAL SECTION

Materials and chemicals. Melatonin (MT), pyridoxine hydrochloride (PN, 99%, C₈H₁₁NO₃•HCl), dopamine (DA), and Ni(NO₃)₂•6H₂O were purchased from Alfa Aesar (USA). Na₂HPO₄, NaH₂PO₄, L-lysine, L-cysteine, ascorbic acid, L-tyrosine, L-tryptophan, serine, KCl, and ZnCl₂ were purchased from the Tianjin Guangfu Fine Chemical Research Institute (China). Abscisic acid and indole-3-acetic acid were purchased from Macklin (China). Glucose was purchased from the Shanghai Yuanye Biotechnology Co., Ltd. (China). CaCl₂, CuSO₄•5H₂O, H₃PO₄ and salicylic acid were purchased from the Tianjin Jiangtian Unified Technology Co., Ltd. (China). K₂SO₄, Mg(NO₃)₂•6H₂O, Na₂S•9H₂O, hexacyanoferrate(II) trihydrate (K₄[Fe(CN)₆]•3H₂O), K₃[Fe(CN)₆], and NaNO₂ were purchased from the Tianjin Kewei Co., Ltd. (China). NaCl, H₃BO₃, NaOH, and NH₄F were purchased from the Tianjin Fengchuan Chemical Reagent Technology Co., Ltd. (China). Phosphate-buffered saline (PBS) (pH 5– 8) was prepared from 0.1 M NaH₂PO₄ and 0.1 M Na₂HPO₄. Ultrapure water was used throughout.

S2. EXPERIMENTAL RESULTS

Scheme S1. Schematic diagram of the CuO-PLL/Gr-electrode fabrication process.

Figure S1. (a) DPV curves of the Gr/Ta sheet with different growth times in PBS (pH 6.0) containing 100 μ M MT and 1000 μ M PN. (b) Plot of the growth time as a function of the current.

Tek	Output Of	III (0).
Period 112.000 000 0 ms		Duty C
Delay 0.00 ns Lear High 3.000 v Trai Low -1.200 v		Width — C
►Duty 10,000 %		L'eading Edge
900 ml -@		Trailing Edge
-1.200 0 55.0 112.0	ms 168.0 224.0	

Figure S2. Showing the parameter interface of the signal generator for Cu-PLL electrodeposition.

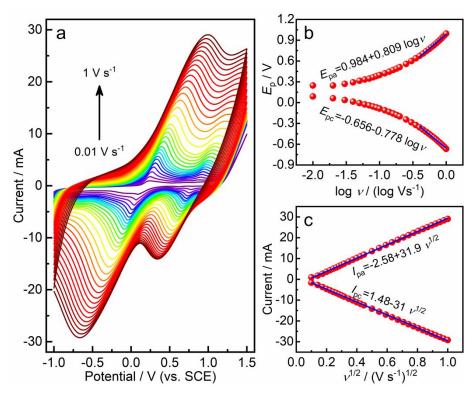


Figure S3. (a) CV curves of the CuO-PLL/Gr electrode in a mixed solution of 0.1 M KCl, 5 mM

 $K_4[Fe(CN)_6]$, and 5 mM $K_3[Fe(CN)_6$. (b) Peak potentials (E_p) as functions of the scan rate (log v). (c)

Peak currents (I_p) as functions of the square root of the scan rate ($v^{1/2}$).

Figure S4. DPV traces recorded using Gr and CuO-PLL/Gr electrodes in 300 μ M MT, 800 μ M PN, and a mixed solution of MT and PN.

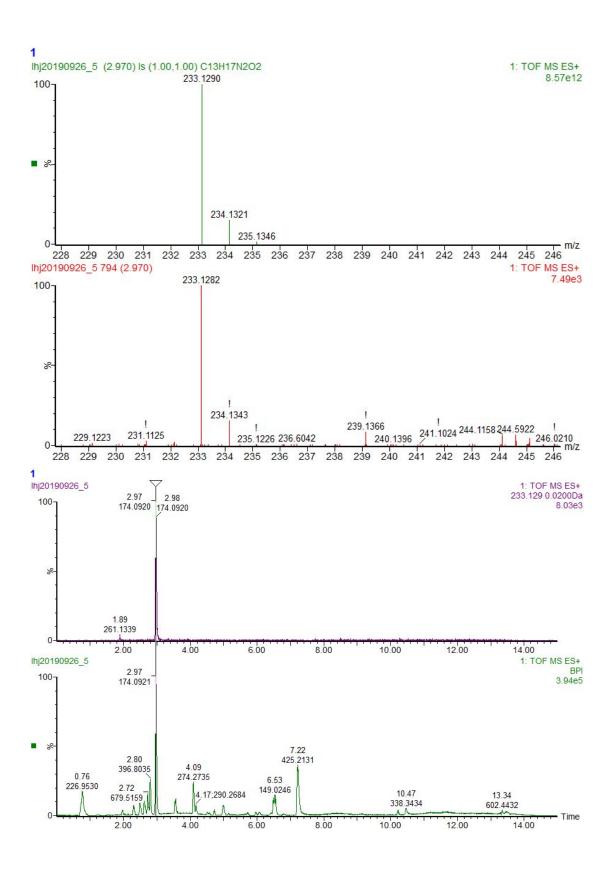


Figure S5. LC-MS spectra of MT solutions before test (MT: m/z = 233, ES⁺).

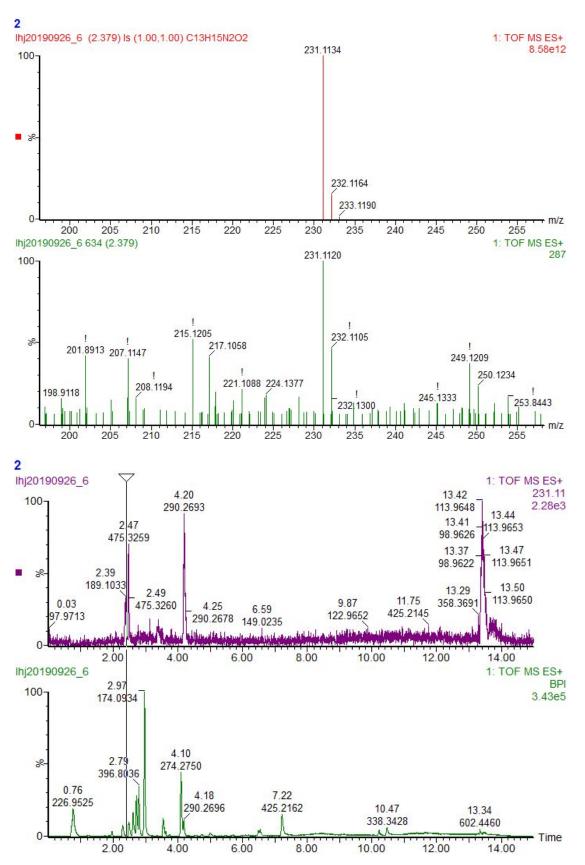
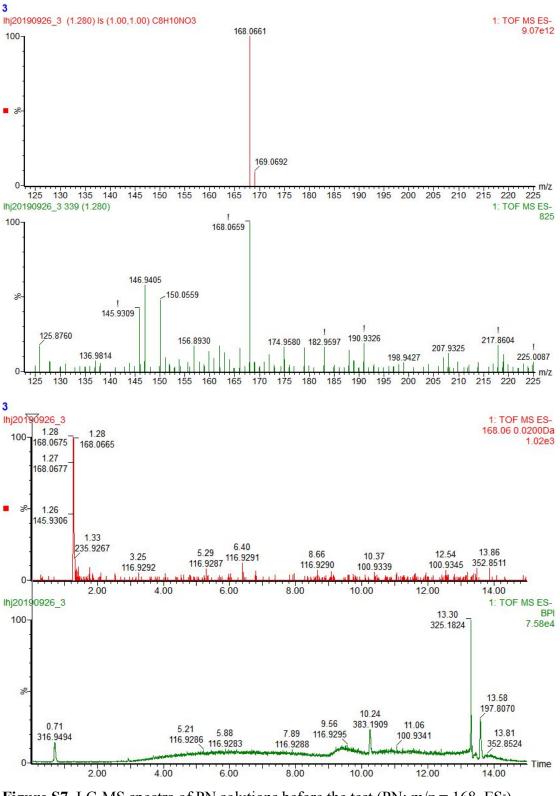
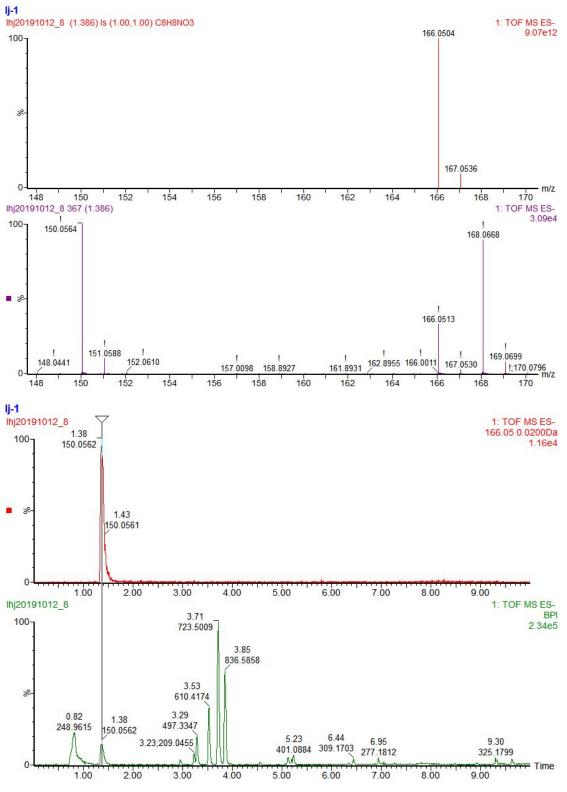




Figure S6. LC-MS spectra of MT solutions after the test (oxidized MT : m/z = 231, ES⁺).

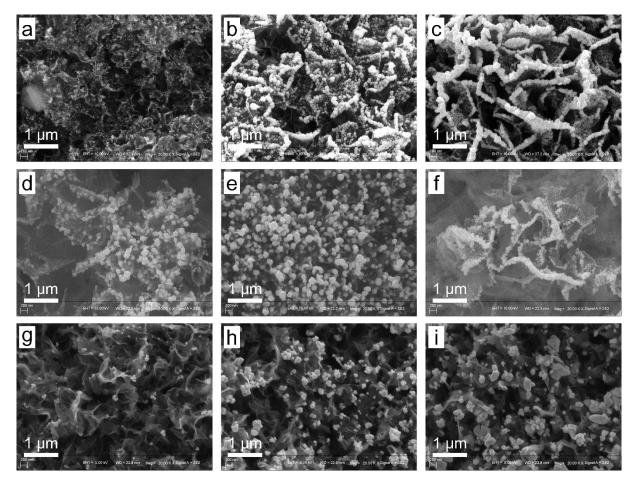


Figure S7. LC-MS spectra of PN solutions before the test (PN: m/z = 168, ES⁻).

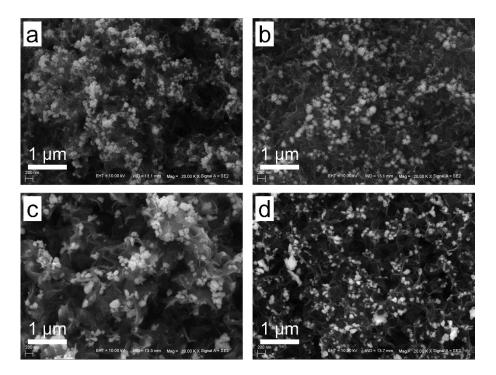


Figure S8. LC-MS spectra of PN solutions after the test (pyridoxal: m/z = 166, ES⁻).

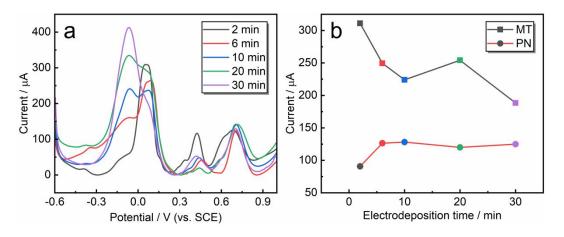

To explore the reaction mechanism, we analyzed the reaction products of MT and PN by LC-MS. In the LC profile, MT and PN showed retention time at 2.97 and 1.28 min, respectively (Figures R15, and R17). In the MT solution after the DPV test, a new peak at 2.379 min appeared on the LC spectrum, and a predominant peak at $m/z = 231.2461(ES^+)$ was observed from the HR-MS spectrum of the solution (Figure R17). We detected an oxidation product (deprotonated MT) with a molecular weight of 230 in the MT solution after the test. Similarly, a reaction product with a molecular weight of 167 was detected in the tested PN solution (Figure R18). The PN was oxidized to pyridoxal with a molecular weight of 167.18 (m/z = 166.05, ES⁻). The measured values are in agreement with the standard values. MS measurement confirmed the molecular weights of the reaction products. Based on the LC-MS results, the redox reactions could be proposed as shown in **Scheme 1c**.

Figure S9. SEM images of various CuO-PLL/Gr electrodes: (a-c) With Cu^{2+} at concentrations of 0.4, 0.8, and 4 mM, respectively; (d–f) With voltage ranges for deposition of Cu-PLL of -1.2-0, -1.2-1, and -3-0 V, respectively; and (g–i) With various deposition times: 2, 6, and 30 min, respectively. Note: (a–f) pH 6, (d–i) 0.16 mM Cu²⁺, and (g–i) pH 4. Other parameters are those of the optimized conditions.

Figure S10. SEM images of CuO-PLL/Gr electrodes with CuO-PLL layers deposited on them at different potential ranges (magnified 20, 000 times). (a) -1.2-0, (b) -1.2-1, (c) -1.2-2, and (d) -1.2-3 V. The electrolyte is a mixed solution of 1 mM _L-lysine, 0.16 mM CuSO₄, 0.8 mM NaCl, 0.072 mM H₃BO₃, and 0.1 M PBS (pH 4.0).

Figure S11. (a) DPV curves of the CuO-PLL/Gr electrodes with various deposition times for CuO-PLL. (b) Relationship between current and deposition time. The electrolyte solution was a mixture of 100μ M MT and 1000μ M PN.

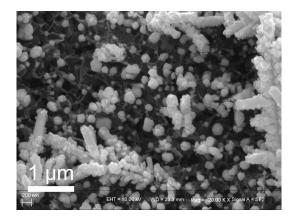


Figure S12. SEM image of the Cu/Gr electrode.

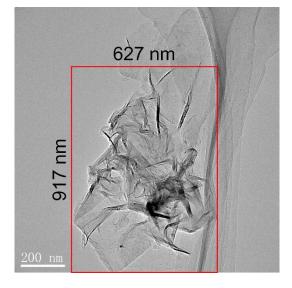


Figure S13. TEM image of a curled Gr sheet.

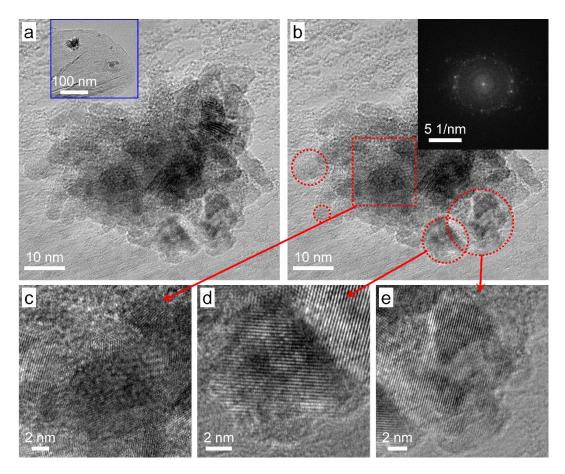
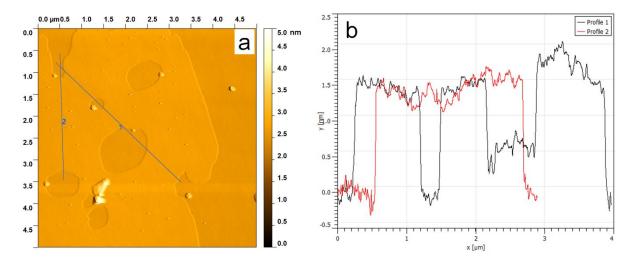
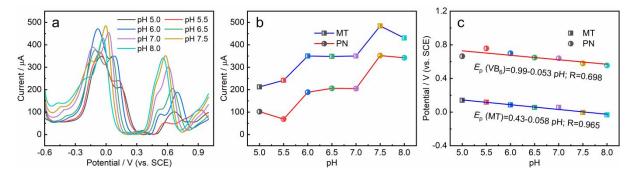
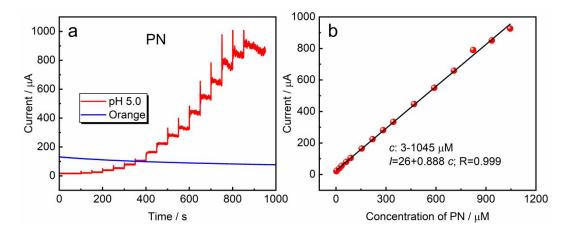
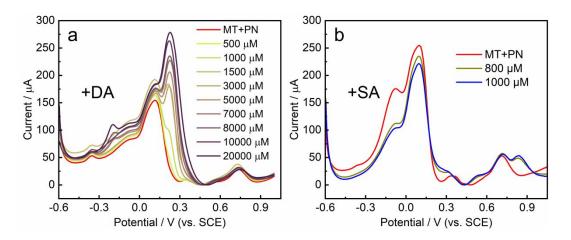
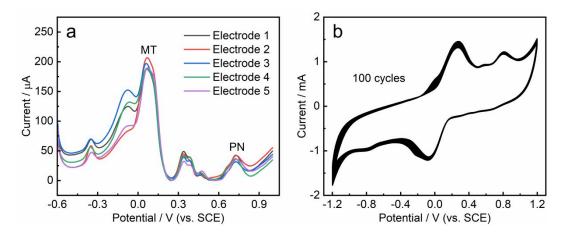


Figure S14. TEM and HRTEM images of the CuO-PLL/Gr nanosheets.


Figure S15. (a) AFM image of graphene sheets and (b) height profile along line.


Figure S16. The effect of pH on the signal response of the CuO-PLL/Gr electrode. (a) DPV curves in pH 5–8 PBS containing 500 μ M MT and 800 μ M PN. (b) Peak currents as functions of pH. (c) Peak potentials as functions of pH.

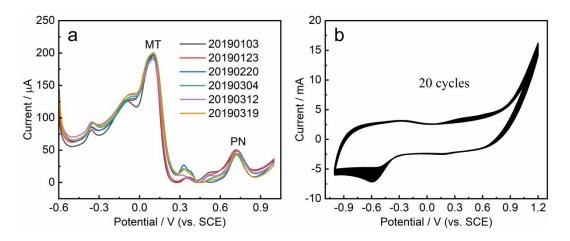

Figure S17. (a) Chronoamperometry traces for PN using the CuO-PLL/Gr electrode at 1 V. (b) The working curve. Electrolyte: pH 5.0 PBS solution.

Figure S18. DPV curves for the CuO-PLL/Gr electrode in 0.1 M PBS (pH 6.0) containing 300 μM MT, 800 μM PN, and additional (a) 500–20000 μM dopamine or (b) 800–1000 μM salicylic acid.

Figure S19. (a) DPV traces separately acquired using five different CuO-PLL/Gr electrodes. (b) CV traces continuously recorded for 100 cycles using a CuO-PLL/Gr electrode. Electrolyte: a solution of 300μ M MT and 800μ M PN.

Figure S20. (a) DPV traces for the CuO-PLL/Gr electrode acquired over several months. Electrolyte: a solution of 300 μ M MT and 800 μ M PN. (b) CV curves acquired during catalyst regeneration. Electrolyte: 0.1 M NaOH.

Method	Real sample	Sample preparation method	Concentration range/µM	on	LOD/µN	M	Ref.
		method	MT	PN	MT	PN	
EC	Orange	Crush or insert	0.016-	3-2076	0.012	2.3	This
		directly	1110				work
HPLC-	Rice	Pressurized Liquid	0.75-15;	-	1.15	-	1
FD		Extraction	15-750				
EC	Lymph node	Slices	0.05-100	-	0.024	-	2
EC	Oxylife	Liquid extraction	4.3-430	49-850	0.6	6.6	3
	capsules;						
	Melatonex						
	tablets						
BIA-	Pharmaceutical	Oral solution was	-	10-30	-	0.54	4
MPA	sample	dissolved in ethanol-					
		buffer solution.					
UV	Laboratory	-	-	24.3-	-	4.9	5
spectra	prepared			243.1			
	mixtures						
EC	Human serum;	diluted by pH 3 B-R	0.02-6	-	4.1	-	6
	tablet	buffer solution					

Table S1. Comparing different methods for the detection of MT and PN.

MT in the orange	Added/ µM	Found / μM	RSD/%	Recovery/%
puree/ µM				
86.9±0.5	48	134.1	4.3	98.3
	91	187.3	3.7	100.1
	130	225.8	4.1	99.7
	170	261.9	2.8	97.4
	200	294.8	3.9	99.3
	231	326.9	4.2	99.9

Table S2. Detecting MT in orange puree samples (n=5).

 Table S3. Detecting PN in orange puree samples (n=5).

PN in the orange	Added/ µM	Found / µM	RSD/%	Recovery/%
puree/ µM				
83.6±0.5	48	132.3	3.1	101.6
	89	173.2	3.7	100.7
	168	253.2	4.8	101.0
	200	283.2	1.9	99.8
	265	352.8	2.7	101.6

REFERENCES

 Setyaningsih, W.; Saputro, I. E.; Barbero, G. F.; Palma, M.; García Barroso, C., Determination of Melatonin in Rice (Oryza sativa) Grains by Pressurized Liquid Extraction. *J. Agric. Food Chem.* 2015, *63* (4), 1107-1115.

(2) Hensley, A. L.; Colley, A. R.; Ross, A. E., Real-Time Detection of Melatonin Using Fast-Scan Cyclic Voltammetry. *Anal. Chem.* **2018**, *90* (14), 8642-8650.

(3) Alpar, N.; Pinar, P. T.; Yardim, Y.; Senturk, Z., Voltammetric Method for the Simultaneous Determination of Melatonin and Pyridoxine in Dietary Supplements Using a Cathodically Pretreated Boron-doped Diamond Electrode. *Electroanalysis* **2017**, *29* (7), 1691-1699.

(4) Freitas, J. M.; Oliveira, T. d. C.; Gimenes, D. T.; Munoz, R. A. A.; Richter, E. M., Simultaneous Determination of Three Species with a Single-Injection Step Using Batch Injection Analysis with Multiple Pulse Amperometric Detection. *Talanta* **2016**, *146*, 670-675.

(5) Ibrahim, M. M.; Elzanfaly, E. S.; El-Zeiny, M. B.; Ramadan, N. K.; Kelani, K. M., Spectrophotometric Determination of Meclizine Hydrochloride and Pyridoxine Hydrochloride in Laboratory Prepared Mixtures and in Their Pharmaceutical Preparation. *Spectrochim. Acta, Part A* **2017**, *178*, 234-238.

(6) Zeinali, H.; Bagheri, H.; Monsef-Khoshhesab, Z.; Khoshsafar, H.; Hajian, A., Nanomolar Simultaneous Determination of Tryptophan and Melatonin by a New Ionic Liquid Carbon Paste Electrode Modified with SnO₂-Co₃O₄@rGO Nanocomposite. *Mater. Sci. Eng. C* **2017**, *71*, 386-394.