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Figure S1 The influence of initial aqueous pH on the electrooxidation performance with Mn-450/ACF as particle

electrodes

Figure S1 exhibited the influence of initial aqueous pH on the performance of 3-D electrode. As
shown in the Figure, with the rise of aqueous pH, the average TOC removal decreased slowly. At
pH=2.0, the average TOC removal was about 68%. When the aqueous pH increased to 4.0 and 6.0,
the average TOC removal decreased to about 62% and 56%, respectively. So the optimal initial

aqueous pH would be 2.0.
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Figure S2 The influence of current density on the electrooxidation performance with Mn-450/ACF as particle

electrodes

The influence of current density on the performance of 3-D electrode with Mn-450/ACF as particle
electrodes was also investigated in Figure S2. It can be seen from Figure S2 that the average TOC
removal was about 56% under the lowest current density. When the current density increased to 20
mA-cm? the average TOC removal would increase to about 68%. However, if the current density
increased to 30 mA-cm2, the average TOC removal would be 70%, which was slightly higher than at

20 mA-cm™. So the optimal current density would be 20 mA-cm™2.
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Figure S3 Pore size distribution for the Mn/ACF samples calcined at different temperatures

The pore size distribution of Mn/ACF samples calcined at different temperatures were shown in
Figure S3. It can be seen from Figure S3 that pore size of the sample is concentrated at about 1-1.5

nm, and the pore size distribution is uniform.
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Figure S4 The XPS spectra of MnO,/ACF sample at different calcination temperatures

Figure S4 depicted the XPS spectra of MnO,/ACF samples calcined at different temperatures.
Usually 3 types of XPS spectra could be analyzed, namely: Mn3s, Mn2p, and Ols from the top down

in Figure S1. Due to some unknown reasons, the Mn3s spectra of Mn-350/ACF and Mn-400/ACF

can not be detected.
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Figure S5 The XPS spectra of MnO,/ACF samples at different Mn Loads

Figure S5 exhibited the XPS spectra of MnO,/ACF samples loaded with different amount of Mn.
Usually 3 types of XPS spectra could be analyzed, namely: Mn3s, Mn2p, and O1s from the top down

in Figure S2. Due to lower Mn content, 3 XPS spectra of Mn-2/ACF can not be detected.
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Table S1 The Nomenclature of Mn/ACF Samples

Factors being
Naming Other factors were kept equal
investigated

Calcination temperature:
Active metal
Mn/ACF, Cu/ACF, Fe/ACF, Sn/ACF 500°C, the same molal weight:
species
0.730 mmol/g.

Precursor solution: Mn(NOs),,
Mn-2/ACF, Mn-4/ACF,
Mn-load calcination temperature:
Mn-6/ACF, Mn-8/ACF

500°C.
Calcination Mn-350/ACF, Mn-400/ACF, Mn-load: 6%, precursor
temperature Mn-450/ACF, Mn-500/ACF solution: Mn(NOs),

For the convenience of description, the obtained ACF-based catalysts were named according to
Table S1. When different active metal oxides were supported onto ACF, the samples of Mn/ACF,
Cu/ACF, Fe/ACF, Sn/ACF in the Table S1 represented MnO,, CuOy, FeO, and SnO, were supported
onto the ACF. Meanwhile the calcination temperature (500°C) and molar weight of metal (0.730
mmol/g.) on ACF were the same. Then as for the factor being studied: Mn-load, different amount of
Mn were loaded onto the ACF. Mn-2/ACF indicated that the mass of Mn element was 2% of support
mass (2g Mn/100 ACF), similar for Mn-4/ACF, Mn-6/ACF and Mn-8/ACF. And the calcination
temperature of 4 samples was 500°C. The 3rd factor needed to be investigated was the calcination
temperature. Mn-350/ACF represented that the sample was calcined at 350°C with 6% Mn-load.
Similarly, Mn-400/ACF, Mn-450/ACF and Mn-500/ACF standed for that they were calcined at

400 °C, 450 °C and 500 °C.
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